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1. Introduction

In this paper we study solutions of a quasilinear elliptic equation
(1.1) Tu = —divA;(Vu) =0

on a Riemannian n-manifold M. Here (A2(Vu),Vu) = |Vul® and 1 < p < n.
The precise assumptions on A are given in section 2.

In the Euclidean n-space R" solutions of (1.1) have been extensively studied
recently by J. Heinonen, T. Kilpeldinen, P. Lindqvist, and O. Martio. They have
developed a nonlinear potential theory where so called A-superharmonic functions
play a role similar to that of superharmonic functions in the classical potential
theory, see [GLM], [HK], [HKM] and references there.

Our purpose is to extend this theory to cover Riemannian n-manifolds, too.
Part of the problems in this theory are in a sense local and therefore they do
not cause extra difficulties in the case of Riemannian manifolds. In this paper we
are mainly interested in global problems, like finding counterparts for the Green
function and for the classification theory of Riemann surfaces. In the latter one
defines several classes of surfaces depending on the existence of harmonic functions
of given kind on them, see [AS] and [SN].

The paper is organized as follows. Section 2 contains some properties of
solutions of (1.1) known in the euclidean case. Here we also discuss how we can
obtain these results on Riemannian manifolds. In section 3 we give a definition
for a Green function and a proof of the existence theorem. The uniqueness of
the Green function is also studied. In section 4 we apply some methods from
section 3 to study solutions of (1.1) which have many singularities. Section 5 is
devoted to the classification problem. We introduce some classes of manifolds and
prove inclusions between them. Strictness of some inclusions is also discussed in
this section, but a detailed discussion will appear in a forth-coming paper. In
section 6 we study the Heisenberg group which can be an interesting example in
the classification theory, In the final section we apply some potential theoretic
methods in studying quasiregular mappings. We prove a generalization of the so
called Comparison lemma which is an essential tool in the proof of the Picard
type theorem for quasiregular mappings and in value distribution theory, see [Ri,
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Chapter 1V and V|. We also extend the Picard type theorem for metrics in the
image with only a regularity assumption.

Notation. Throughout this paper we let M (and N) be an n-dimensional,
n > 2, noncompact, connected and orientable Riemannian manifold of class ¢
equipped with a Riemannian metric (, ). For each point z € M, the tangent
space to M at = will be denoted by T,M; and the tangent bundle, that is, the
union of all tangent spaces of M, will be denoted by TM . The norm associated
to the Riemannian metric will be denoted by | | and the Riemannian volume
form by dm.

Throughout the paper G will be an open subset of M and D ¢ G means
that D, the closure of an open set D, is compact in G. The space of all functions
u € locL'(G) whose distributional gradient Vu belongs to L”(G), 1<p< oo ,
will be denoted by L}(G). We equip L}(G) with the seminorm [Vul|,. Similarly,
the Sobolev space W,(G) consists of all functions u € L1(G) which belongs to
L?(G), too. It is a Banach-space equipped with the norm

lully, = llull, + Vel -

The spaces L;, o(G) and W, are the closures of Cg°(G) in L1(G) and in Wi (G),

)Y

respectively. Recall that a vectorfield X € locL'(G) is a distributional gradient
of a function v € locL'(G) if

/ udivYdm=— [ (X,Y)dm
G G

for all vectorfields Y € C(G).

2. A-harmonic functions

Let A :TM — TM be an operator satisfying the following assumptions for
some numbers 1 <p<nand 0<a<f < oo:

the mapping A, = AT, M : T,M — T, M is continuous
(2.1) for a.e. z € M, and the mapping z — A,(X)

is measurable for all measurable vectorfields X;

forae. z& M andforall he T M

(2.2 {A(h),h) > a|h]”
3 H Vi p-1
(2.3) A(R)} < BRI,
{94 {/A I 4 7 v b A
;u“{ié X;‘ﬁgfifig}“—é{ngég’;?}é;kﬁgf > 4,

whenever iy % hy, and
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(2.5) A (Ah) = [APT2 A4 (R)

for all A€ R\ {0}.

The class of all operators A which satisfy the conditions (2.1) - (2.5) with the
constant p will be denoted by A,(M). If M =R", A is defined in R* x R™ and
we also write A(z,h) instead of A,(h).

A function u € C(G) N locW}(G) is said to be A-harmonic in G if it is a
weak solution of the equation (1.1), in other words, if u satisfies

(2.6) L(ﬂx(\’/u), Ve)dm=0

for all p € C§°(G). If, moreover, u belongs to L1(G), it is equivalent to require
(2.6) for all p € L} 4(G), see [Ri, VL.L.15].

The simplest operator satisfying the conditions (2.1) - (2.5) is the p-Laplacian
Az(R) = |RP"?h.

In this case continuous solutions are usually called p-harmonic.

We shall list below the most important properties of A-harmonic functions.
It follows directly from (2.6) that Au + p is A-harmonic, if v is A-harmonic and
A, € R. Here the assumption (2.5) is also used. Furthermore, it is well known
that solutions of (1.1) are locally Hélder continuous and that Harnack’s inequality
holds: If u is a nonnegative A-harmonic function in G and if C is a connected
compact subset of G, there is a constant ¢ = ¢(n,p,8/a,C,G) > 1 with

(2.1 supu < cinfu,
ol (o4

see [Sel] and [Tr|. A frequently used fact is that the class of A-harmonic func-
tions is closed under uniform convergence. As a consequence we obtain Harnack’s
principle: If w;, ¢ =1, 2, ..., is an increasing sequence of A-harmonic functions
in a domain G, then u = lim;_. o, u; is either A-harmonic or identically +oo in
G, [HK, 3.2 and 3.3].

It is worth noting that the Holder continuity and Harnack’s inequality have
been proved for M = R™. However, these results can easily been obtained on
Riemannian manifolds by using suitable chart mappings. Indeed, for every z € M
we can choose a neighborhood U of z and a chart  : U — B™(0,r) which is
2-bilipschitz, see [LF, 2.2]. It turns out that uo ™! is 4;-harmonic in B™(0,r},
if v is A-harmonic in /. Here A, is an operator, called the pullback of 4 by
@~ 1, which satisfies the conditions (2.1) - (2.5} with the same constant p as A
does and with constants «; and 3, depending only on p, n and on the constants
a and B of A, see [MV, Section 3] and (2.9) below.
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One of the most natural questions also in this nonlinear theory is the solv-
ability of the Dirichlet boundary value problem. The following Wiener criterion
has turned out to be very important in this problem. A closed set C ¢ R™ is said
to be p-thin at a point z € R if

' (ca% (gn(ﬁﬁ, tHync, B”{z’gi}) ) 1/(p—~1) @
t

cap,, (g’"(x, t), Bn(z, 235}) T

W@@x[

0

We recall the definition of the p-capacity of a condenser. Let F be a subset of G.
The (outer) p-capacity of the condenser (F,G) is defined by

cap,(F,G) = é’é{:; «cap, (U, G)

U open

where, for any set A C G,
.cap,(A,G) = supin / [Vul|? dm.
c * Jg

In the latter the supremum is taken over all compact sets C C A and u runs
through all functions in C§°(G) with u > 1 in C. See [Mz2] and [Rel] for a
thorough discussion of variational capacities.

The connection between the Dirichlet boundary value problem and the thin-
ness of a closed set is the following. Let G be a bounded domain in R™ and
v € W}(G). Then there exists a unique A-harmonic function u in G with bound-
ary values v, ie. u—v € W},(G). If, moreover, v € C(G) and the Wiener
criterion W(z,R™ \ G) = oo holds at z € G, then

(2.8) lim u(y) = v(z),

Yz
see [Mz1]. On the other hand, [LM] shows that W{z,R™\ G) = oo if (2.8) is true
forall ve WJ(G) NC(G) andif n—1<p<n.

To generalize the definition of the thinness of a set to Riemannian manifolds
one can use again suitable charts, We say that a closed set C C M s p-thin
at £ € M if there exist a neighborhoed U of z and a 2-bilipschitz chart ¢ :
U — B™(0,r) such that (U NC) is p-thin at ©(z). The above mentioned result
extends immediately to Riemannian manifolds. A domain G CC M will be called
regular if W(z, M\ G} = oo for every z € G. Tt follows from the existence of a
triangulation that every open set can be exhausted by regular ones.

It is well known that the Laplace equation Au = 0 in the plane s invariant
under analytic functions. This connection between harmonic and analytic fune
tions has a counterpart for equations {1.1). The so called quasiregular (qr) maps
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form a generalization of complex analytic functions in the plane to R™ and even
more generally to Riemannian n-manifolds. See [MaR] for the definition of qr
maps on Riemannian n-manifolds and [Ri] for properties of qr maps. Let L > 1.
A quasiregular map f : M — N is of L-bounded length distortion, abbreviated
L-BLD, if

|h|/L < |Tofh| < LA

for almost every z € M and for all h € T, M.

Let then f: M — N be a qr map and A an operator in TN satisfying (2.1)
- (2.5) with constants p, « and f. The pullback f#*A of A is defined by

(2.9a) f#ﬂx(h) = Jf(a:)Tmf'lﬂf(x)(Tmf'l*h)
whenever J;(z) > 0. Otherwise, we set
(2.9b) f#Az(h) = R h.

If fis L-BLD, then f#4 satisfies (2.1) - (2.5) with constants p, a; = L2~ "~Pq
and By = L**?~28. On the other hand, if p=n andif f is a qr map, then we can
choose ay = a/Ko(f) and B; = K;(f)B for the constants of f#A. Moreover, if
u is A-harmonic in N, then uo f is f#A-harmonic in M in the both cases. For
these important results we refer to [Re2|, [GLM] and [MV]. See [ET, p. 235] for
the equivalence of the measurability conditions appearing in the above mentioned
references.

We close this section by introducing A-superharmonic functions. A lower
semicontinuous function u : G — R U {co} is A-superharmonic if it satisfies the
A-comparison principle, i.e. if for each domain D cC G and each A-harmonic
h € C(D), h <uon 3D implies h < u in D. A function v is A-subharmonic
if —v is A-superharmonic. For basic properties of A -superharmonic functions we
refer to [HK]. Here we mention only the so called comparison principle: If v and
—v are A-superharmonic in a domain G CC M with

limsupv(y) < liminf u(y)
Yz

Yz

for all z € 8G and if the left and the right hand side are not simultaneously oo
or —oo, then v <u in G, see [HK, 3.7].

3. The Green function

The Green function has an important role in the theory of linear uniformly
elliptic equations in divergence form

(3.1) Ly =~ i Di(a " Diu) =0

E -3
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where the coefficients a*/ are supposed to be bounded measurable functions in a
bounded domain @2 C R” such that the matrix (a*’) is symmetric and uniformly
positive definite in (1. The Green function g = g(,v), y € O, is a weak solution
of the equation

Lg = ¢,

with vanishing boundary values in the W3 4(0)- sense. Here and in the sequel 6,
will be the Dirac measure at y. The importance of the Green function can be seen
in the following representation formula. For any bounded measure u the solution
of

Lu=p

vanishing on 91 can be represented by

(3.2) u(e) = [ olz,9)duty)

see e.g. [LSW, Theorem 6.1] and [GW].

It is clear that the representation formula (3.2) has no counterpart for equa-
tions (1.1). However, in this section we are going to define a Green function for
(1.1) and prove some properties of it. Singular solutions of equations like (1.1)
have been studied by J. Serrin in his fundamental papers [Sel], [Se2| and in the
case of the p-Laplacian by S. Kichenassamy and L. Veron ([KV], [K]) in R™ and
by V. M. Kesel’'man on Riemannian n-manifolds ([Ke]). In [Ke] the name Green
function was used and results similar to those in Theorem 5.2 were stated without
proofs.

We start by introducing the A-capacity of a condenser. Suppose that G ¢ M
is an open set and C C G is compact. Let G; CC M be an increasing sequence
of open subsets of G such that C C G; and UiG; = G. Let p € C®(G) be such
that ¢» = 1 in a neighborhood of C and spt ¢, the support of o, is a compact
subset of ;. Then there exists a unique A-harmonic function u; in G; \ C with
u;—p € Wli(G;\C). Weset u; =1 in C and u; =0 in G\ G;. Then (u;)
is increasing and the limit u = lim; .o u; is A-harmonic in G \ C by Harnack’s
principle. The function u is called the A-potential of (C,G) and the number

(3.3) cap4(C,G) = / {ﬁm(Vu}ﬁ?’u:} dm

Vel
is said to be the A-capacity of (C,G). If F is any subset of G, the A-capacity
of £ = (F,G) is defined by

(3.4) capg E'= inf  _cap,(U,G)
yi;;g;
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where, for any set A C G,

*Ca‘pﬂ(A, G) = ;’néa Capﬂ(c, G).
C compact

It follows from the proof of 3.6 that (3.3) and (3.4) give the same A-capacity of
(F,G) if F is a compact subset of G. This will be proved after Lemma 3.7. If
Ac(h) = |h[""% b, we obtain the usual p-capacity. It it easy to show that

P

B
(3.5) acap, E <capy  E < —51 2Py E,

see [Mz1, p. 231].

The following two lemmas are trivial if (1.1) is the Euler equation of some
variational integral

/ F(Vu)dm

where F;(h) ~ |h|". The proofs for general A were presented to the author by T.
Kilpeldinen in a private communication. The warmest thanks are due to him.

3.6. Lemma. Let E; = (F;,G), i = 1, 2, be condensers such that F; C F,.
Then
capg Ey <capy Fs.

Proof. We may assume that F; and F, are compact subsets of G. Let i;
be the A-potential of E;, 1 =1, 2. Suppose first that G\ F, is regular. Then u,
is continuous in G, ug =1 in F; and limgz—, u2(z) = 0 whenever z € G. For
every 0 < § < 1 the function

. u2——5u1 1
= mi e
© n =T

is also continuous in G, ¢ =1 in Fy and lim,—., p(z) = 0 for every 2 € 9G. It
follows from [Ma, 2.2] that up — ¢ € L} 4(G \ F2) and thus

capy By = L\F {ﬁm{?ag}§V¢} dm
GAF,

— 11— 5}/ (4,(Vus), Vuy — §Vuy) dm
Fol

where D = {z € G : ug{z) — buy{z) < 1—6}. On the other hand, uy — ¢ €
L} o(G\ Fi) and hence

~

capg By = 1/{1 — é}/ (A2(Vuy), Vug — §Vu, ) dm.
D
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These together with (2.4) and (2.5) imply
67" leap  Ey = 1/(1 — 6)/ (A2(6Vuy), Vuy — 6Vuy)dm
D

< 1/(1»—5)/D<Aw('§7u2),Vu2~§Vu1>dm

= capy Es.

Letting 6§ — 1 we obtain capy E; < capy E2. Recall that we supposed G\ F; to
be regular.

Let then (C;,Gy), j = 1, 2, ... , be a sequence of condensers such that
Cy C Gy is compact, G; \ C; is regular, G; \ C; CC Gj41 \ Cj4; and finally
U;(G;\Cj) = G\ F». We proved above that cap 4(Fy,G;) < cap4(C;,G;). Hence

cap4(F1,G) = 31__1520 capy(F1, Gy)

< lim cap4(Cy, G;) = cap4(F2, G)
j—oo

by [Mzl1, Lemma 1] and [HK, 2.32]. o

3.7. Lemma. Let E; = (F,G;), ¢ = 1, 2, be condensers such that
Gs C Gy. Then

capyg By < capy Es.

Proof. The claim can be proved as 3.6 by replacing the function ¢ by

1/J:max<0,21{—5§—1—>. o

We shall next prove that (3.3) and (3.4) give the same A-capacity of (F,G)
if F C G is compact. To prove this, let F C G be compact and write

v=Jjnf . capy(U,G).

U open

It follows immediately from the definition of ~ that ~ > cap 4(F,G). It remains
to show that v < cap4(F,G). Suppose that U; cC G isa decreasing sequence of
open sets such that F C U; and n; I, = F. Let C bea compact subset of U, In
the proof of 3.6 we showed that cap4(U;,G) > cap,(C,G). Hence

cap4(U;,G) > ,cap 4(U;, G) > .

g by

o
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If u; is the A-potential of (U;,G), the sequence (u;) is decreasing and the limit
u = lim;_, o u; is the A-potential of (F, G). As in the end of the proof of 3.6 we
obtain

3 e

lim cap4(U;, G) = cap4(F, G).

Hence cap 4(F,G) > 7. We have proved that v = cap4(F, G).

The next lemma will be used frequently in the sequel. We shall use the
following notation. Let C be a compact set in G CC M and let u be the A-
potential of E = (C,G). Suppose, for simplicity, that u is continuous in G, u = 1
in C, and limg., u(z) = 0 for all y € G. Let E(a,b) be the condenser

({zeG:u(z) >b},{z€ G :u(z) > a})
where 0 < a < b < 1. Then the following lemma holds.

3.8. Lemma. PForall0<a<b<1

capg F

capg4 E(a,b) = W

Proof. Let D= {z € G:a < u(z) < b}. The function v, defined by

0 if u(z) <a
v(z) = uz)-a ifze D
b—a
1 if u(z) > b,

is the A-potential of E(a,b). Using (2.5) we obtain
capg E = L(ﬂx(Vu), Vv)dm = /D(ﬂx(Vu), Vov)dm
= (b-a)P! /D<;4$(Vv), Vv)dm = (b—a)? ! cap, E(a,b). ©o
We are now ready to give a definition for a Green function. We shall first

define it in a regular domain G CC M.

3.9. Definition. Let y be a point in a regular domain G cc M. A
function g = g(,y) is a Green function in G for the equation (1.1) if it satisfies
the following conditions:

(3.10) g is A-harmonic in G\ {y},
(3.11) lim g(z) = 0

for every z € 90,
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(3.12) Jim o(z) = o,

and

(3.13) capy({z € G :g(z) > b},{z € G : g9(z) > a})
=(b—a)l-?

forallb>a > 0.

Before studying the existence of a Green function we shall prove some prop-
erties following quite immediately from the definition.

3.14. Lemma. Let g be a Green function and b > a > 0. Then

/ <A$(Vg),Vg> dn=b-a
D

where D = {z € G : a < g(z) < b}.

Proof. It is clear that the function (¢ — a)/(b— a) is the A-potential of the
condenser

E=({z€G:¢g(z) 2 b}, {z € G:g(z) > a}).

Hence
/ (A2(Vg),Vg)dm = (b— a)’capyE=b—a. o
D

A simple consequence of 3.14 is that g ¢ locL1(G). However, g € locLl(G)
for every 0 < ¢ < n(p—1)/(n—1) by |Li, 1.4].

3.15. Lemma. Let g =g(-,y) be a Green function. Then
Tg =14,
in the sense of distributions, i.e.

[ .,k )
| (#(99), Vi) dm = p(y)
(&4

for every p € C§°(G).
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Proof. It follows from [Se2, Theorem 3] that
Tg=Xé,

for some A € R. Choose ¢ € C°(G) such that ¢ = 1 in the set C = {zeq:
g(z) > 1}. Then g —p € L} ,(G\ C) and hence

A:L<ﬂx(’§7g),?go>dm=/G\C<ﬂz(Vg),Vg>dm= 1

by 3.14. o

As a first step in studying the existence of a Green function we shall prove
the following result.

3.16. Lemma. Suppose that g' satisfies the conditions (3.10) - (3.12).
Then Ag' is a Green function for some A € R..

Proof. Fix ¢ > 0 and let
d=capy({z € G:g'(z) > c},G)l/(l_p).
Then g = de™'¢’ satisfies (3.10) - (3.12) and, moreover,
(317)  capy({z € G:g(z) > d},G) = cap, ({z€G:¢'(z) > c},G) = d'~P.
Let then b > a > 0. Suppose first that d > b. Since g/d is the A-potential of the
condenser ({z € G : g(z) > d}, G), it follows from 3.8 and (3.17) that
cap4({z € G :g(z) > b},{z € G: g(z) > a})
=caps({z € G:g(z)/d > b/d},{z € G:g(z)/d > a/d})
_capy({z€G:g(z) > d},G)
N (b/d —a/d)r-1
Let then d < b. Using again 3.8 and (3.17) we obtain

cap 4 ({3: €G:g(z) > b},G’)
@)1

= (b—a)l~P.

=capy({z € G:g(z)/b > d/b},G) = d'~r.
Hence
cap ({z € G : g(z) > b},G) = bt-F
and
cap;({z € G :g(z) > b}, {z e G 9(z) > a})
=caps({z€Gig(z)/b>1},{zeC: 9(z)/b > a/b})

_cap ({z€G:g(z) > b}, G)
h (1 —a/b)p-t

= (b—a)t~P,
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We have proved that dc~ !¢’ satisfies also the condition (3.13) and the claim fol-
lows. o

In the light of 3.16 it is easy to make the following observation. Suppose that
g9 € C(G\{y}) NlocW}(G \ {y}) is positive in G\ {y} satisfying (3.11) and

Tg=é,.

Then g is a Green function.

Unfortunately, we are not able to prove the uniqueness of a Green function
for all operators 4. However, the following lemma is useful at least in the case
p=n.

3.18. Lemma. Suppose that there exist a constant ¢ and a neighborhood
U of y such that

l91(z) — ga(z)| < e

for all z € U\ {y} whenever g, and g, are Green functions. Then g1 = g2, le.
the Green function is unique.

Proof. Suppose that there exists a point zo € G \ {y} such that go(z¢) >
g1(zo). Let A < 1 be such that Agy(ze) > 91(zo). Then y belongs to the
boundary of the zo-component of the open set {z € G\ {y} : Ag2(z) > g1(2)}.
Hence

lim inf 91(2) <i<1
Ty gg(x)

which is a contradiction since

lim 91(2)
2=y go(z)

=1
by assumption. o
Next we shall show the existence of a Green function.

3.19. Theorem. Let G CC M be a regular domain and Jet y € G. Then
there exists a Green function g = g(-,y).

Proof. Choose a neighborhood U of y and a 2-bilipschitz chart ¢ : U —
B™(0, R) with p(y) = 0. Let (r:) be a decreasing sequence such that ri < R
and lim; .o 7; = 0. Write D(r) = @ 'B™(0,r) when 0 < r < R. Let u, be the
A-potential of F; = {@{r;}&?}. For 0 < r < R write

mi(r} = min{u;(z) : z € 8D(r)}

and

for B & SN

e

tE et e o

fc

L~ i s S S

2
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M;(r) = max{u;(z) : z € dD(r)}.
Then m;(r) = Mi(r) = 1 if r < r;. Suppose that r > r;. By the comparison
principle, u;|D(r) > m;(r) and u; < M;(r) in G\ D(r). Since Mi(r) — u; is a
nonnegative A-harmonic function in G\lj(r) , it follows from Harnack’s inequality
that u;(z) < M;(r) for all z€ G\ D(r). Hence

{z € G :ui(z) > Mi(r)} € D(r) C {z € G : ui(z) > my(r)}

and thus
(3.20) capy E;(0,my(r)) > capy(D(r),G) > capy E: (0, M;(r))

by 3.6. Here E;(0,b), 0 < b < 1, is the condenser ({a: € G : ufz) > b},G).
Suppose now on that r < R/2 and ¢ is sufficiently large so that r; < r/2. By
Harnack’s inequality,

(3.21) M;(r) < Amy(r)

where the constant A is independent on r and 7. Lemma 3.8, (3.20) and (3.21)
then imply

cap ; E; 1/(p—1)
M;(r) < dmy(r) = X S
(r) < Ams(r) (capg E; (O,m;(r)))

1/(p~1
cap 4 E; /{p=1}
<A A ,
cap 4 (D(r), G)

and similarly

1/(p-1)
my(r) > A7t -———c—a—%—’i—gi——— .
. capy (D(r),G’)

Let

gi = capy Eilf(lbp)ug.

Then L /(1
A"teap4(D(r),6) /" < gi(x) < Acap, (D(r),G) /P

for all z € D(r), when r and ¢ are as above. Hence (g;) is locally uniformly
bounded in G'\{y} and it follows from the Holder continuity estimate [Tr, Theorem
2.2] that (g;) is equicontinuous in G\ {y}. Ascoli’s theorem and a fairly standard
diagonal process then give a subsequence, denoted again by (g;), which converges
uniformly on every compact subset of G\ {y}. The limit ¢’ = lim; .o g; is A-
harmonic in G\ {y} and lim,_., ¢'(z) = co. Moreover, lim,_., ¢’(z) = 0 for every
z € dG by a boundary estimate due to V.G. Maz’ya [Mzl1, p. 236]. The existence
of a Green function follows now from 3.16. In fact, ¢’ satisfies also (3.13), see the
proof of 3.25. ©
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3.22. Theorem. If p=n, then the Green function is unique.

Proof. Let ¢ and D(r), 0 <r < R,beasin the proof of 3.19. We shall show
that there exists a constant ¢ such that lg1 — 92| < ¢ in D(R/2)\ {v}, whenever
91 and g, are Green functions. For 0 < r < Randi=1, 2, let M;(r) and my(r)
be the maximum and, respectively, the minimum of g; on OD(r). As in the proof
of 3.19 we get
(3.23) m;(r) < cap4(D(r), G) Yit=r) < M;(r).

Moreover, either M;(r) = m;(r) or
cap,({z € G : gi(z) > Mi(r)} {z € G: gi(z) > m;(r)}) Y(t=n)
= M;(r) — my(r)
by (3.13). Suppose that M;(r) > my(r) and let € > 0 be so small that M(r) >
mi(r) + 2¢. The set {z € G : 9:(z) > M;(r) — €} contains a continuum Ci(r)
which joins 0D(r) and y. Similarly, there exists a continuum Cy(r) C {z € G :
9:(z) < my(r) + €} joining dD(r) and OD(R). Let K;(r) = ©C;(r). Then
cap({z € G : g;(z) > M;(r) — e}, {z € G: g(z) > m;(r) — €})
> 4'""aM,,(T,)
where M,,(T';) is the n-modulus of the family of all closed paths which join K 1(r)
and Ks(r) in B*(0,R). By [Vi, Theorem 10.12],
3r/2
r/2

for all r < R/2 where ¢, is a positive constant depending only on n. Hence

M;(r) — my(r) — 2¢ < 4(ac, log 3)1/(1-7)

M, (T,) > ¢, log

= ¢, log 3

and letting € — 0 we obtain
(3.24) M;(r) = m;(r) < ¢y
for all r < R/2. Finally, (3.23) and (3.24) imply
cap(ﬁ(r),G) Yi=n) _ ¢; <gi(z) < cap(lj(f), G) 1/(1=n) + ¢

for all z € 8D(r), r < R/2. Hence l91 — g2 < 2¢; in D(R/2) \ {y}. The claim
follows now from 3.18. o

S. Kichenassamy and L. Veron have proved the uniqueness of a Green function
for (L1} if Az(h) = |h|P % h, 1 < p < n,and G C R", see [KV, Theorem 2.1].
Their methods are not available in the general case.

We shall define a Green function on M by using an exhaustion. This is one
motivation for the next theorem.
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3.25. Theorem. Let G| and G, be regular domains with y € G; C G,.
If g1(+,y) is a Green function in G, then there exists a Green function g,(-,y) in
G such that g,(-,y) < g2(-,¥)-

Proof. Let g;(-,y) =0 in M \ G; and write
Ci={z€Gy:g9i(z,y) >}

for i =1, 2, .... Let g; € C(G2) be a sequence of functions such that g; is
A-harmonic in G3\ C;, ¢; =0 on 3G4 and

6:|Ci = cap4(Ci, Go) /177,
Then g; > g((-,y) on 8(G, \ C;) since

g:|0C; = cap 4(Cs, G2) Y1) > cap 4 (Ci, G4) M (17P)
=1 =g((y)[0C;.

As in the proof of 3.19 we deduce that there exists a subsequence, denoted again
by (g:), converging locally uniformly in G;\ {y} to a function g which satisfies
(3.10) - (3.12). We shall next prove that the condition (3.13) holds. Write

By the comparison principle, g; > ¢1(-,y) in Gy \ C; and hence also in G\ C;.

a; = cap4(C;, Go) /17
and let ¢ > 0. For every 1 > ¢

cap4({z € G2 : gi(z) > ¢},G2) = cap,({z € G2 : gi(2)/as > ¢/a;}, G,)
cap4(Ci, Ga)
(c/ai)p—t
since g;/a; is the A-potential of (C;,G3) and a; > 1 > c. Let ¢ €]0, ¢[ and write

C ={z € G,:g(z) > c}. Since g; — g uniformly in ¢g~*(c), there exists ¢, > c+¢
such that

= glP

c—e<g(z)<c+te
for all z € g~ *(c). Hence

(c—e)t"?=cap({z€Gr:gi(z) > c— £}, Ga) > cap4(C, Ga)
=capy({r € Gaig,(7) > c+e},Gy) = (c+e)t7F.

Letting ¢ — 0 we obtain
cap 4(C,Gy) = 7P

T —
D e
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and thus g satisfies also (3.13). The theorem is thereby proved since ¢ is a Green
function in Gy and ¢ > ¢;(-,y). ©

We shall next define Green function on M. Let (G;), 1 =1, 2, ..., be
an exhaustion of M by regular domains G; such that y € G|, G; C G;4; and
M = U;G;. Then there exists a Green function g; = ¢g(-,y) in G; such that (g;) is
increasing. By Harnack’s principle, lim;.. o, g; is identically +oco or A-harmonic
in M\ {y}. In the latter case the limit g = lim;—. g; is said to be a Green
function on M. If p = n, the Green function on M is unique by 3.22.

Suppose that cap,(D(r), M) >0 and thus also cap4(D(r), M) > 0, see 3.19
for the notation D(r). Let (g;) be as above. By (3.23),

. " 1/(1-p) = 1/(1-p)
argl(xz) g: <capy (D(r), G;) "< cap g (D(r), M) g

and a Green function exists on M.

Let ¢ > 0 be so large that the set C = {z € M : g(z) > ¢} is compact. We
shall next show that

(3.26) capy(C, M) = 77,
Choose a function ¢ € C§ (M) such that ¢ = ¢ in a neighborhood U of C. Then

/ <A$(Vg),Vg> dm = / <ﬂx(Vg),Vgo> dm
M\C

spt e\l
= lim (A2(Vg:), Vp)dm = c
200 Jept o \U
by [HK, 2.32]. Since g/c is the A-potential of (C, M), (3.26) follows. Similarly,
one can show that the condition (3.13) and 3.15 hold for g, too.

We say that the ideal boundary of M is of positive p-capacity if there exists a
compact set C C M such that cap,(C, M) > 0. In this case we write cap, M >
0.

We have already proved the following existence theorem.

3.27. Theorem. There exists a Green function on M if and only if
cap, M > 0.

We close this section by stating without proof the following invariance prop-
erty of a Green function under BLD-homeomorphisms and quasiconformal map-

pings.

3.28. Theorem. Let M and N be Riemannian n-manifolds and A an
operator in TN satisfying (2.1} - (2.5} with a constant p. Suppose that f :
M - N is a BLD-homeomorphism and that ¢ is a Green function on N for
div 4,(Vu) = 0. Then go f is a Green function on M for div f#4,(Vu) =0. In
the case p = n it suffices to assume that f is quasiconformal.
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The proof is based on the following observation: Let E = (C,G) be a con-
denser on M such that C C G is compact. Then fC C fG is compact. Moreover,
if u is the A-potential of fE = (fC, fG), then uo f is the A-potential of E and

capsp g £ =capy E.
4. Singular solutions

In this section we study solutions of (1.1) with several singularities. For
example, we shall construct an A-harmonic function in R™\ {a,, by, az, bz, ...}
which has positive singularities at every a; and negative singularities at every b;.
In this example {a;, az, ...} and {by, bz, ...} are assumed to be compact and
A € A, (R"™). Recall the notation A,(R") from section 2.

We shall start with the following lemma. Here and in the sequel ¢y, ¢3, ...
are positive constants depending only on n, p, o and S.

4.1. Lemma. Let C = {a1, a2, ...} be a compact subset of a regular
domain D CC M. Then there exists an A-harmonic function w in D\ C such
that

(4.2) lim u(z) = o

Tt Y
for every y € C, and

(4.3) lim u(z) =0

L+ Z

for every z € 8D.

Proof. Let (v;) be a sequence of positive numbers such that 3 72, v; = 1.
Let

1/{p—1
9; = '73'/(1) )9('va3')
where g(-,a;) is a Green function in D with the pole at a;. For ¢, 7 =1, 2, ...,
write
p
Cri= U {z € D:gp(z) >1}.
fomz i
Then C;; C D is compact and

J
cap4(Cji, D) < eycap,(Cji, D) < ey ZC&’{) ;fz € D:gulz) > i},D}

< £p anpg{{x €D :gi(z) > i},i}} e Z";’:c
k=i =]
‘E égib‘ﬁ

A P GOR G
s
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by (3.5) and (3.13). Hence
(4.4) i < czcapy4(Cyq, D) P),

Let u;; € C(D) be A-harmonic in D\ C;; such that u;; =0 on dD and Uy =1
in C;;. By the comparison principle,

(4.5) Ui 2 max gi(z)

for every z € D\ C;;. In particular, uj;4; > u;; on (D \ Cy;) and thus the
sequence u;;, t =1, 2, ... , is increasing for every j.

To estimate u;; from above, let B; = B(y,r), r > 0, be a ball such that
B(y,2r) ¢ D\ Cj; for all j if ¢ is sufficiently large. Fix such { and J. Let v be
the A-potential of (Cj;, D). We write m for the minimum of v in B,. By 3.6
and 3.8,

1/(p~1) _'
m = cap4(Cj4, D) - (M)l/(v 1)
capy ({z € D :v(z) > m},D) = \ cap4(B,, D)

since v > m in B;. This together with Harnack’s inequality implies

cap4(B1, D)

(4.6) v(z) < c4
for every 2 € By. On the other hand, uj; = 1v and hence by (4.4) and (4.6),
u;; < escapy(By, D)/ (1-7)

in B;. It follows now from Harnack’s principle that

(4.7) uy = lim u,;
1-“*00
is A-harmonic in D\ {ay, a3, ..., a;}. Moreover, the sequence (u,) is increasing

since uj4;; > u;;. Hence

(4.8) u= lim uy

oo

is A-harmonic in D\ C. Now u is a desired function since (4.2) is clear by the
construction and (4. 3) follows from the boundary estimate [Mz1, p. 236]. o

s
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4.9. Lemma. Let C = {ay, ay, ..., a;} be a subset of a regular domain
D and let 4; >0, i =1, 2, ..., j. Then there exist an A-harmonic function w
in D\ C and constants ¢ and r > 0 such that

(4.10) ix_{nz w(z) =0

for every z € 8D,

(4.11) 71" Vg(z,0) < w(z) < /" Vg(z,a0) + e

for every = € B(a;,r), 1 =1, 2, ..., j, where g(-,a;) is a Green function in D

with the pole at a;, and
p
(4.12) Tw = Z’ﬁém.
=l

Proof. We may assume that ZJ'-—.:{W = 1. We claim that u, in (4.7) is a
desired function. The condition (4.10) is clear and the left hand side of (4.11)
follows from (4.5). Let r > O be so small that the balls B(a;,2r) C D, ¢ =
1, 2, ..., j are disjoint and let

¢ = max{u;(z) : £ € dB(a;,7), i=1, 2, ..., j}.

It follows from the construction of u; that the right hand side of (4.11) holds if ¢
and r are chosen as above. To prove (4.12), let € C§° (D). We write p = ¢ +1n
where ¢, n € C§°(D) such that sptn C {z € D : u;(z) > ¢} and ¢ = 0 in the
set {z € D : uj(z) > 2c}. Theset {z € D : uj(z) > c} is a union of disjoint
neighborhoods U; of the points a;, i =1, 2, ..., j. Then

/(ﬂqu,—),Vgo}dm:/ <ﬂx(Vuj),Vt,[)>dm+/(ﬂx(Vuj),Vﬂdm
D D D ’
= ;ﬁfi(ﬁx(VuJ-), Vn> dm = ;%n(a;)

I
= Z%fp(ai)-
il

The equality
L (42(Vuz), V) dm = vin(as)

, 1/(1- y _ ,
follows from the fact that ~; / p;{&j — ¢} is a Green function in U;. The lemma
is thereby proved. o

Vel

From now on we assume that A is an operator in R"™ x R™ which satisfies
(2.1) - (2.5) with the constant p = n.
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4.13. Theorem. Let Ct = {aj, az, ...} and C~ = {by, bo, ...} be
disjoint compact subsets of R™. Suppose that A € A,(R™). Then there exists an
A-harmonic function e in R™*\ (Ct U C™) such that

(4.14) lim e(z) = oo

E: 2uad 7}
for every y € Ct, and

(4.15) lim e(z) = —o0

e A1

for every y € C~ U {o0}.

Proof. Let D CC R" be a regular domain such that G = R™\ D is also a
domain and that 8D = dG. Suppose, moreover, that Ct C D and C~ C G. Let
u be A-harmonic in D\ C* such that (4.2) and (4.3) hold. We may assume that

capy({z € D:u(z) > b},{z € D:u(z) >a}) = (b—a)'™"
for all b > a > 0, see the proof of 3.16. As in 4.1 we can prove that there is an A-

harmonic function v in G such that lim,—, v(z) = —oo for every y € C~ U {co}
and lim,_,, v(z) = O for every z € 3G. Again we can assume that

cap,({z € G:v(z) > b},{z € G :v(z) >a}) = (b—a)' ™™
forall a<b<0. Foreach t =1, 2, ..., write

C; ={z € D:u(z) 21},
Gi={ze€G:v(z)>X\N}uUD

and
E; = (Cy,G3)

where A; € R will be specified later. Let e; € C(R") be A-harmonic in G; \ C;
such that

e;|C; = capy EYUT

Y E

and

U S—

[T —
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e;|R™\ G; = —capy E‘.l/(l*n)/l

25

Choose A; such that m; = min{e;(z) : z € D} = 0. Let M; be the maximum of

e; on 8D, Then

caps({z € Gi : &;(z) > M}, {z € G; : ei(z) > 0})
> inf aMn(A(Fl,Fg;Gl)) >0
F1,F;

where Fy; and F, are two continua which join 4D and C*, and 8D and 4G 1,
respectively, and Mn(A(Fl,Fg; Gy)) is the n-modulus of the family of all paths

which join F} and F; in Gy. The function
cap 4 Eil/(”*l) (e + capy E}"“’"’/z)
is the A-potential of E;. Applying 3.8 to this function yields

capy Eil/(1~n)/2 — M; = capy (C,-,{a: € G; : e;(z) > M;})l/(l’“)
< capA(C‘,-,D)l/(l"n) -

On the other hand,
M; =cap,({z € G; 1 es(z) > My}, {z € G; : e;(z) > 0}) L/i=n) <k
where « do not depend on ¢. Hence
cap g E}/““"’/z <1t +k,
and similarly
capy Eilf(l'”)/’z > 1.
By the comparison principle,

u<e<u+k

in D\ C;. To estimate ¢; in G;\ D, we shall first compare A; with cap 4 pl/ti-n)

i
As above we obtain

cap 4 Ejfii“n}gz = capy({z € G; : e;(z) > 0},G;) 1/{1-n}
g Capg(ﬁ} G{)ii{i”ﬁ) Pt m}‘{’
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and similarly

M; + capy E:/{l'“)/iz = capy ({x € G;:efz) > Mg},G;)i’j“”n}

> capy (D, Gi) /) = =),

Hence
Ai < —capy E}/(I_n)/Z <A+ k.

Again by the comparison principle,
v<eg<v+k

in G;\ D. As in the end of the proof of 3.19 we find a subsequence which converges
locally uniformly to a function e which satisfies the conditions of the theorem. o

The next theorem will partly generalize [K, Theorem 1].

4.16. Theorem. Let z; € R™ andlet ;€ R, 1=1,2, ... , m, be such
that 370 v = 0. Suppose that A € A,(R"). Then there exists an A-harmonic
function u in R*\ {z1, ... , m} such that lim;— u(z) = 0 and

Tu = f:"{,'&wi.
=31

Proof. If 4; = O for all ¢, then u = 0 is a desired function. Suppose that
~ # O for some 1. Let zo € R*\ {z;, ... , =m} and let f be a Mdbius
transformation such that f(zo) = oo and f(o0) = z;, for some i with ~;, <O.
Let Ct = {f~Yz:) : v >0} and C~ = {f7}=z) : % < 0, ¢ # 1o} and let
D and G = R"\ D be regular domains such that C* < D, €~ C G and
8D = 3G. By 4.9, there exist f# A-harmonic functions w; and wy in D\ ct
and in G\ C~, respectively, which satisfy (4.10) - (4.12) with a; = f~'(z;). If
i = 19, (4.11) is supposed to be true outside some compact set. By assumption,
S = Y A7 where 4 = max(v;,0) and 47 = min(y;,0). As in the
proof of 4.13 we can construct an f# A-harmonic function v in R™*\ (C* UC™)
such that v(zo) = 0 and that v — w; is bounded in D\ C%t if =1 orin G\ C~
if 1 = 2. The function v = vo f~! is then a desired function. ©

5. Classification

The classification theory of Riemann surfaces is an interesting and important
part of the classical function theory. In this theory one classifies surfaces according
to the nonexistence of certain harmonic functions on them and one proves inclu-
sions between these classes. The most interesting part of the theory is to study
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the strictness of these inclusions. For a thorough discussion of the classification
theory we refer to [AS], [SN] and [Sa].

In this section we shall study the corresponding classification problem in the
nonlinear case. We do not study the strictness of inclusions very deeply, but this
will be discussed in details in a forth-coming paper. Recall the notation Ap(M)
from section 2.

5.1. Definition. We say that M belongs to the class O%, if there is no
Green function on M for any A € 4,(M).

5.2. Theorem. The following conditions are equivalent:

(5.3) M e OF,,
the ideal boundary of M is of p-capacity zero,
every positive A-superharmonic function on M is constant
for all A € A,(M).

Proof. The equivalence of (5.3) and (5.4) is already stated in 3.27. The
condition (5.5) implies (5.3) since a Green function on M is positive and A-
superharmonic on M. It remains to prove that (5.4) implies (5.5). Suppose that
the ideal boundary of M is of p-capacity zero and that u is a positive nonconstant
A-superharmonic function on M. Let zo € M be such that u(zo) < oo and let
€ > 0 be such that u(zo) — & > 0. Since u is lower semicontinuous, there exists a
ball By = B(zo,r) CC M such that u(z) > u(ze) — € for all z € By. Let (Gi)
be an exhaustion of M by regular domains G; CC M. Suppose that By C G,
and G; C G;4;. Then there exists a function h; € C(M) such that h; is A-
harmonic in G; \ By, h|M \ G; = 0 and hi|By = u(zo) — €. The function
lim;— o0 hi/(u(z0) —€) is the A-potential of (By, M) and since the ideal boundary
of M is of p-capacity zero, lim;_ ., hi(z) = u(zy) —€ for all z € M. On the other
hand, u > h; on the boundary of G; \ By. By the comparison principle, u > h;
in G;\ Bo. Hence u > u(zo) —& on M for all £ > 0 small enough. Letting ¢ — 0
we obtain u > u{zy). Since u is nonconstant, there exists a point z; € M with
u(z1) > u(zo). By the same argument as above we obtain > u{z;). Thisis a
contradiction and thus u is constant. o

5.6. Definition. A Riemannian manifold M belongs to the class O% p
(O%p) if every positive (resp. bounded) A-harmonic function on M is constant
forall A€ A,(M).

5.7. Theorem.
v, 7, P
On COLp C Okp-

Proof. Suppose that M & OP, and that u is a positive 4-harmonic and thus
also A-superharmonic function on M. By 5.2, u is constant which proves the
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first inclusion. Let then M € O% , and let u be a bounded A-harmonic function
on M. Then u + A is positive and A-harmonic on M for some constant A € R.
By assumption, v + A and hence also u is constant. o

5.8. Definition. We say that M belongs to the class O%, (0% 5p) if
every (bounded) A-harmonic function u € L1(M) is constant for all 4 € 4,(M).

The proof of the following theorem can also be found in [Ki, p. 273].

5.9. Theorem.
Okp C Ofp = Ohpp-

Proof. Suppose that M € O, and that u € LL(M) is A-harmonic in M.
Foreach 1 =1, 2, ..., we write

u; = max(—i, min(i, u)).

Let (G;) be an exhaustion of M by regular domains G; C G,4; CC M. Then
there exist functions v; ; € C(M) N L}(M) such that v, ; is A-harmonic in G,
and v;,; = u; in M\ G;. Moreover, v; ; —u; € Lé,O(M) and =i <v; ; <7. Asin
the proof of 3.19 we find a subsequence, denoted again by (vs,5), which converges
locally uniformly to a function v;. Then v; is a bounded A-harmonic function on
M and thus it is constant. It follows that u; € L} (M) since u; —v; € Ll o(M).
Thus

f (A2(Vu), Vu)dm = lim | (4,(Vu),Vu;)dm =0

M i—oo S

and Vu = 0 a.e. Hence u is constant and M € O%p- To prove the equality
Okp = Ofpp, let M € Ofpp, and let u € LL(M) be A-harmonic on M.
We claim that the function v;, constructed as above, is constant. Since v; is a
bounded A-harmonic function on M, it suffices to prove that ||Vu;||, < co. Let
w; ; € C(M) be p-harmonic in G; such that w;; = v;; in M\ G,. Then

/ (ﬂg(Vv;J-), Vv,-d-> dm = / <A1(Vv;,3~), Vw;ﬁ,—) dm.
M M

This together with Holder’s inequality, (2.2) and (2.3) imply
/ [Vv; ;" dm < (,’3/&)”/ (Vw; ;|7 dm.
M M

Since ||[Vw; ;ll, is decreasing in j, the sequence ||[Vu; i, 7 = 1, 2, ..., is
uniformly bounded and hence ||Vu,]|, < co. It follows from the assumption M €
O% pp that v; is constant. As above we conclude that u is constant and M ¢
O%p- On the other hand, 0%, ¢ O% , and thus OYgp =O%p. ©

In the rest of this section we shall study the strictness of inclusions in 5.7. We
start with the following simple consequence of removability theorems in [Sell.
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5.10. Lemma. Suppose that M € O% .\ O, Let M’ = M\{y}, ye M,
equipped with the induced Riemannian structure. Then M’ ¢ O%p \O%p.

Proof. Let A € A,(M’') be an operator in TM’. We extend it to TM
by setting Ay(h) = |h|P %k for all h € TyM. By assumption, there exists a
Green function g(-,y) on M. Itis a positive A-harmonic function on M’. Hence
M' ¢ Ofp. Let then u be a bounded A-harmonic function on M’. By [Sel,
Theorem 10], there exists an A-harmonic function u* on M with u M =y,
Since u* is bounded and M € 0%, (C O%p), u* is constant. Hence M & O%p
and the lemma follows. o

In the case 1 < p < n the strictness of the inclusions O COLp COhp is
trivial.

5.11. Theorem. If1 < p < n, then R" € OLp \OF and R™\ {y} €
Okp\Okp.

Proof. Since cap,(B"(0, r),R") > 0, (see e.g. Mz1]), R™ ¢ O%,. Let then
v be a positive nonconstant A-harmonic function in R™. We may assume that
infu = 0. It follows from Harnack’s inequality [Tr| that supu = 0. This is a
contradiction and thus R"™ € O% p. The second claim follows then from 5.10.

On the other hand, [Ki, 1.8] shows that there are no domains & in R" such
that G € OFp \ O%. Indeed, we have

5.12. Theorem. If G ¢ R™ is a domain such that G € O%p, then
G e 0%.

The first thing which comes to mind in studying the strictness of the inclusion
OF, C O% p is to use Harnack’s inequality just as we did in the proof of 5.11. We
shall next give Harnack’s inequality in a form which is very useful in the above
mentioned problem. The idea of the proof of 5.14 is essentially due to S. Granlund,
[Gr].

Suppose that D CC M is a domain and that C ¢ D is compact. For
n—1<p<n we write

(5.13) A (C, D) = inf M, (A(F;, Fy; D))
fy.ry

where Fy and F, are continua which join ¢ and M \' D and Mp(é(Fth;D})
is the p-modulus of the family of all paths which join F, and F, in D.

5.14. Theorem. Let C and D be as above and let 4 ¢ A (MY, n—1<
p < n. Then there exists a constant ¢, depending only on p and /e such that

i i/p
M';n ca D, M )
log =< < ¢4 (_.EEL_J)

(5.15)
1229 me »(C, D)
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whenever u is a positive A-harmonic function on M. Here My = max{u(z):z €
C} and mg = min{u(z) : z € C}.

Proof. We may assume that Mo > me. Let € > 0 be so small that Me—¢e >
me +e. The sets {z € M : u(z) > Mc — €} and {z € M : u(z) < me + €}
contain continua F; and Fy, respectively, which join C and M \ D. Write

w = logu — log(me + €)
 log(Mc — €) — log(me + €)

Then
/D |Vw[” dm > M, (A(Fy, Fo; D)) > A,(C, D).

On the other hand,
(5.16) / [V logul” dm < ¢(p,B/a) cap, (D, M)
D

by [HK, 2.24]. Hence

- 1/p
- D,M
log Mo —e¢ < ¢o (ca‘pp( ))

meo +€ )\p(C, D)

and the theorem follows by letting ¢ — 0. o

The inequality (5.16) also proves the inclusion 07, C O%p since the right
hand side vanishes if M € OZ,.

Let us illustrate how we can use 5.14 in studying the strictness of the inclusion
0%, C O%p. Suppose that M ¢ O?, and we want to show that M € Ohp Ifuis
a positive nonconstant A-harmonic function on M we may assume that infu = 0.
Then
Mc
sup log —= = oo

c me
where the supremum is taken over all compact sets C © M. If we can find for
every compact set C C M a domain D such that the right hand side in (5.15)
is uniformly bounded, we are done. Unfortunately, cap,(D,M) — oo as D gets
larger and larger and thus A,(C, D) has to grow at least as fast as cap,(D, M)
does. Usually it is difficult or even impossible to obtain any good estimate for
Ap(C, D). However, we think that the inequality (5.15) tells us something essential
about the geometry of M € O, .\ O%, near the infinity. We can, for example, give
a very short proof for the strict inclusion 0% C O%P for Riemann surfaces just by
using 5.14, see e.g. [SN, p. 304] for the classical proof. Moreover, we can construct



Nonlinear potential theory and quasiregular mappings on Riemannian manifolds 31

quite simple examples in any dimensions n to prove the strictness of the inclusion
O% C O} p. These questions will be discussed in details in a forth-coming paper.

We close this section by asking whether we can replace the phrase ”for all

A € A,(M)” in 5.1, 5.6 and 5.8 by "for some A € A,(M)” and still get the same

classes. It follows from 5.2 and from the proof of 5.9 that the answer is yes for

the definitions 5.1 and 5.8. On the other hand, for the definitions of 0%, and
0% g, n =2, the answer is no by [Ly]. The other cases remain open.

6. The Heisenberg group

In this section we shall give estimates for the modulus of certain path families
on the Heisenberg group H;.

The Heisenberg group H, is the Lie group consisting of all points (z,y,2) €
R3 with the operation

(z,9,2)(2,¢,2") = (z + 2,y + ¢/, 2 + 2’ + 22"y — 22¢/").
It is easy to see that

o 17} a8 2 a
B = — 2y—, E:_“‘z"“'i Ey = —
15 TGy BT, "%, Ba=3;
form a basis of left-invariant vector fields on H;. Let (, ) be a left-invariant
Riemannian metric on H; such that E;, E, and E5 are mutually orthonormal.
The associated Riemannian volume form is

(6.1) dm = dz A dy A dz.

We also define a singular Rxemanman metric (, )o on Hy such that E; and E,
are orthonormal and that {ng (E3,E3)o = co. We say that a vector h is
horizontal if ||, < co. A C‘-path ¥ = (z,y,2) is said to be horizontal if 4(t) is
a horizontal vector for all t. Note that 4 = z'E; +y'E, + (2' — 2yz' +2zy')E3 and
thus v is horizontal if and only if 2’ = 2yz’ — 2zy’. Since E, and E, together
with their commutator [Ey, E,] = —4E4 span TH,, it is possible to join any two
points ¢, g2 € H; by a horizontal path «. The distance d,, defined by

b
(a1, 02) = nf [ [4(0)], at

is called the Carnot-Carathéodory metric. Here the infimum is taken over all
horizontal paths « : [a,b] — H; such that v(a) = ¢; and ¥(b) = ¢5.

In the first part of the section we shall prove using ideas of [ReK] that the
ideal boundary of H, is of positive 3-capacity. This was first proved by P. Pansu,
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[Pa], by means of isoperimetric inequalities. As in [ReK] we define a norm N(q)
of a point ¢ = (z,y,2) by

N(g) = ((z*+ %)% + z2)1/4.
The horizontal gradient of N is given by
VoN = (EN)E, + (E;N)E;

in Hy \ {0}. Then

22 4 y?
VoN B = (BN)? + (B2N)? = 24
If 22 + y? > 0, we define
N2

We write = pcos ¥,y = gsind and use (g,9,z2) as coordinates on H;. Then

o a .
32 —cosﬁ-é—é——gsmﬁgg
o . .0 3
—é—l; —smﬂé—é—%gcos&—é—?;
and we have 1. 5 5
V = ']—V-(Q'é—g' — Z‘a—g +2Z'é';).

Fix a > 0. If ¢ is not on the z-axis and if N(g) = a, we can write

1/2 2

qg= (acosl/zacoscp,acos asinp,a’sin @)
where —7m/2 < a < n/2 and 0 < ¢ < 27. Let v, = (z,y,2) be an integral curve
of V such that v,(a) = g. Then N(v,(r)) = r for every r > 0 since VN = 1.

Writing

{ z' = —pd' sind + p'cos?
y' = pd cosd + o' sind
we get that
a d a
B T ST S
=T Y dy iy
a é , 8
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It is now easy to verify that Ve = (ecos¥,pcos 9, 2) is given by

0=0(r) = rcos/2 o
(6.2) # = 9(r) = p — tanalog(r/a)

z=2z(r) =r’sinc.
We can use the numbers r, o and © as coordinates of any point ¢ = (z,y,2), 22+
y% > 0. In these coordinates

2
N _ -1
3 5 = Cos™  a.
4+ y

vVis =

The Riemannian volume form (6.1) can now be written as

dm=r3dr/\da/\dgo.

Let then f‘a,b, b > a, be the family of all paths Yolla,b] — Hy where ~, is
given by (6.2) and ¢ runs over ¥, = {g € H, : N(q) = a}. All the paths in Tap
are horizontal, hence |4,(t)| = |4,(t)|, = cos~!/2 q. Moreover, they join £, and

Ty ={g € H : N(g) = b}. Let g € F(Ta3), be admissible for Ty, see [Va,
Section 6] for notation. By Hélder’s inequality,

1< ([yqedS)s-': (/aba(’rq(r)) ¥a(r)] dr)3
< 4(a=t/2 6'1/2)2cos'3/2a (/:Q(’Yq(r))sr"’ dr)

for every v, € f‘a,b. Hence

b
r 37’3 r
[ elutey’rtar = -

cos3/2 o

(a=1/2 — b-1/2)2

and

n/2
/ B dm > ?i'fg cesa'jzafi;:ze
Hy {&—1;2 — 5-152)

It follows that ; ,
Ms(Lap) 2 ey (a2 — p=1/2)"

/2 ; Ce L.
where ¢y = :rff} ™ cos?? ada. Letting b ~ oo we obtain

}»1351’;&?%} > eia > 0.
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Finally, if I'y o is the family of all paths which join X, to infinity, then
M3(Ta,m) 2 Ms(fa,oo) 2 cia.
Let then u be a function defined by

1 ifN({g)<a

N(q)~1/2 —p~1/2
i~)112~b-11'2 ifa<N(g)<b

0 if N(q) > b.

Then go = |Vu| € F(T4,5) where T'yp is the family of all paths which join X,
and Zj. Since

u(q) =

|[VN[? = (E\N)? + (E2N)? + (EsN)?
22 4 y2 22
Nz ' INe
sin? &
472 °

=cosa+

we get that
sin® 1/2
4r2 )

(cosa +
eo(r, o, ) = 2r3/2(a“1/2 _ b-l/z)

sin’ o 1/2
)

< 0

-= 2,3/2(‘1-—1/2 _ b“l/?)

(cos o+

ifb>r>a>ag>0. Hence

0
M3(Tas) < 0
3(Tap) < (a=1/2 — 5-1/’2)2

. 2
sin“ o
wf”lg(cosa%— _4&_5_)3/265&

We have proved:

6.3. Theorem. Letb> a> ag> 0 and let T, be the family of all paths
which join £, and L. Then

cl(a'lfg . b~1;2)~2 < Ms(Tap) < 62(‘2-—1/2 . b-—i/z)-z

where
nj2
¢y :?r/ cos’? ada
5

and

i

®/2 tn2
’ sin” @, 5/2
ca =7 (cos o + 5 ); da.
o a3

In particular, ¢q — ¢y if ag — 00.

by I

not
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As a consequence we get the following results. Corollary 6.4 was first proved
by P. Pansu. The proof of 6.5 can be found for example in [Ri, I11.2.12].

6.4. Corollary. The ideal boundary of H, is of positive 3-capacity.
6.5. Corollary. Every quasiregular mapping f : R® — H, is constant.

Corollary 6.4 says that H; ¢ O2,. It would be interesting to know whether
H, € O?, p- The rest of this section is devoted to this question although we can
not give any answer to that.

Let ¥ = 44,9 = (z,y,2) be a path

z(t) = Zasin(ﬁ%) cos(d — 5%)

y(t) = Zasin(gz) sin(d - 5%)

t
z(t) = 2at — 242 sin(;) — 2ma?,

where 0 < ¥ <27, 0 <a < oo and 0 <t < 2wa. Then v, is a horizontal path
joining the points (0,0,27a?) and (0,0, —2ma2). Moreover, |4| = 1. If @ and ¢
are fixed, ¥ + ~4,9(t) is a circle on a plane z = z(a,t) with a center on z-axis.
Let a be fixed. It follows from the formula

(1) = z(t)? + y(t)?

(6.6) -

that ¢ — z(a,t) is strictly increasing and therefore the paths 7,9, 0 < ¢ < 27, do
not intersect. Suppose that az > a; > 0. Write v; = 74,9, = (zi, s, 2), 1 = 1, 2,
and let 4; = (z;,y:,0) be the projection of v; to the (zr,y)-plane. Then #; is a
circle with radius a;. Since ; is horizontal and |4;| = 1, both the length of ~;|[s, r]
and the euclidean length of #;|[s,r] are equal to r — s for all 0 < s < r < 27a;.
Suppose that §1(ty) = J2(t2) for some ¢; €]0,27ra;[. Then t; > t; if t; < waz, and
2mag—ty < 2ma; —ty if ty > way. It follows now from (6.6) that z;(¢;) # 22(t2) in
both cases. We have proved that through every point (z,y,2), z2 + y2 > 0, goes
exactly one path <, 4. Thus we can use (¥,a,t) as coordinates of ¢ = v, 4(t).
We write

d(z,y, 2)

_ Y
J{a,t) = W&?(a}ﬁ,t]‘

After an elementary calculation we get

, t, . ¢ . t
J{a,t) =4a®*((r - E}sm; + 4sin® 5;)
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Let 0 < a < 8 < oo and let I, 5 be the family of all Ya, €< a< B, 0<d <27,
Let g € F(T'y g). Then for every v = ~, 4 € | A

3

1< ( [ edS)s - ( / 7 o) 0] T, 0) 2 T 0, 1) 8 dt)

< (/Ozm e(~())%J(a,1) dt) (/:m J(a,t)"1/? dt)z.

/Ozm o) e > (/02”0 J(a,t)= /2 dt> )

forevery y€T, 5. If a € [0,7/2], it follows from an estimate sin a > a/2 that

Hence

(7 — @)sina + 4sin*(e/2) > 1- (1 - «/2)%.

Hence )
/ J(a,t) 2 dt = 2/ J(a,t)"2dt = ¢5 < 00
0 0

where ¢35 does not depend on a. Thus we get
B 2mra 3
/ o®dm > 27r/ daf o(7(t)) I (a,t) dt
Hy a 0

> Zw/ﬁ (/zm.f(a,t)*’lﬂdt) - da
@ 0
cs(f — @)

where ¢4 is a positive constant. We have proved

v

(6.7) Ms(Ta ) > ca(B — a).

Note that the paths of ' 4 lie in a set D = {qg € H, : N(q) < v2#p} and
thus
Ms(ﬂﬁ(Fquép)) > cs(B - a)

where F; and F, are the line segments joining the points (0,0,270%) and (0,0,
274%) and the points (0,0, -27a?) and (0,0, ~273%), respectively. In order to
use 5.14 we should know corresponding estimates for all continua F ; and Fy which
join {¢ € Hy: N{(q) < V27a} and H, \ D. Since we do not have such estimates
at the moment, we can not give any answer to the question whether H, € O3, .
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7. Comparison lemma and the Picard type theorem

SRS

In this section we shall first prove a generalization of the Comparison lemma
[Ri, IV.1.1]. This lemma is an essential tool in the proof of the Picard type theorem
for quasiregular mappings and in the value distribution theory, see [Ri, Chapter
IV and V]. The Picard type theorem says that a nonconstant K -quasiregular
mapping of R™ into R™ can omit at most go distinct points where ¢o depends
only on n and K. In this section we shall also give a partial answer to a question,
posed by M. Gromov, whether a similar result holds for quasiregular mappings of
R™, n > 3, into S"\{ay,... ,a.} if "\{ay,... ,a,} has an arbitrary Riemannian
metric.

Let D be a domain in M with a C* boundary o which is homeomorphic to
an (n — 1)-sphere. Suppose that there exists a function g € C(D) which satisfies
the following conditions: g is n-harmonic in D, g = 0 on Lo, for every m > 0
there exists a compact set C C D such that g > m in D\ C,and

cap,({zr€D:g(z) 2 b},{z€D: g(z) >a}) =(b—a)*™"

for all b > a > 0. We say that g is a Green function in D for the n-Laplacian
with the pole at infinity. We shall restrict ourselves to the case where g € C*(D)
and |Vg| > 0. Let ({, )) be a Riemannian metric in D defined by

() =199 (, ).

We get the following new formulae for the gradient of a function, for the Rieman-
nian volume form, etc. associated to the metric ((, )):

(7.1) o =|Vg| 2V, din=|Vg|" dm, |k|=][Vgllhl,
4§ = |Vg| ds, ™! =|Vg[* " d¥~t,

Now g is (2-)harmonic in D with respect to the metric ((, }) since

/{(@g,@'@})dﬁz:f }Vg{2—4+n <Vg,‘§7<p> dm
D D

= /D{}Vgin“g Vg,Vp)dm =0

for every p € C§°(D). Since g € C%, div(f?fg} = 0. By the definition of the
divergence, A

Ly, (dm) = (divVg)dm =0
where Lg, (dn) is the Lie derivative of drn with respect to Vg. This means that

the volume is invariant under the flow of Vg, see e.g. [AMR, 6.5.18].
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Let £; = ¢g7!(1). In the sequel Yy : [0,00[— D, y € ,, will be a path such
that +,|]0, 00| is an integral curve of Vg and v,(1) =y. Let A C £, be a Borel
set. For every t > 0 we write

Ac={n(t) :y € 4},

and

A%t = |J 4.

s<r<t
Since the volume is invariant under the flow of ‘A?g,
m(Ae,a-}—s) — m(At,t+c)

whenever t, s, € > 0. On the other hand, IVg| =1 and the co-area formula [Fe,
3.2.12, 3.2.46] implies

s-+e
jn—1 —1 -1
H""HA,) = 611_13(1) l/s[ ( . di™"1) dr
(7.2) = lim ??A?(A”H")/E — lirr(l) r?l(At’t+‘)/E
&

£~+0

= H""1(4,).
We define a measure y on Borel subsets of ¥, by
(7.3) u(E) = 4" Y(E).

Note that

p(E) = [ wt et
g-(1)

by 3.14 and the co-area formula.

The next lemma is a counterpart of 3.8 for the modulus of a path family.

7.4. Lemma. Let A C I, be a Borel set, b > a > 0, and let I'%® be the
family of all paths ~ = Yylla,bl, vy € A. Then

M) =
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Proof. The conformal change of the metric does not change Mn(ri’z’} , thus

we can calculate M, (I'4") with respect to {(,)). Let pe F(I'%"). Then Hélder’s
inequality implies

(7.5) 1< ( L gdé‘)n = ( /a bg(v(i))ﬁ*zfi)ﬂ dt)n

<(b-a)t f be('r(t))”dt

for every v € I'Y®. Note that 19(®)ll = 1. Every point z € D can be written
uniquely in the form z = (v,t) € Z; x [0, oo[ such that z = 7y(t). Fubini’s
theorem together with (7.2) and (7.5) then imply

/1; o™ dm > /(;b(-/g.“llt} g"d)?”"l) dt > /j(/‘;t g(:c)”d)?”“l(z)) dt
= /a b( /,4 e(y,t)" du(y)) dt = L ( /a be(y, t)™ dt)du(y)

u(4)
ST
Hence (A)
M5 2 s

To complete the proof, let
_ X(A x [a,8])
e b—a -

n g — — M(4)
o=

Let then f: R™ — M be a nonconstant quasiregular mapping. For z € M
and for a Borel set E such that £ is a compact subset of R™ we set

n(E,z) = Z t(z, f)
z&€f ~{zINE
where i(z, f) is the local index of f at z, see [Ri, L.4]. Now n(E, 2) is finite and
z++n(E,z) is a Borel function. The average of n(E,z) over g~1(s), s > 0,is

(7.6) V(B,s) = / n(E,z) di™=1(2)
g7 s}

Then g € F(I'%") and

- / n(E, (y,5)) du(y).
By

We write n(r, z) for n(B"(r), z) and call it the counting function of f. Similarly,
we abbreviate v(r,s) = (B"(r), s).
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7.7. Theorem. Let§>1, z€R", andr, b, a > 0. Then

Krwn_y|b—al*™?
(log )1

v(B"(z,6r),b) > v(B"(z,7),a) —

Proof. We may assume that z = 0 and b > a. For every m = 1, 2,
write

E, = {y €% n(ér, (y,b)) = n(r, (y,a)) — m},

E=|JE..

Then

/;: n(fr,(y,b)) du(y) = n(6r, (v,5)) du(y)

T\E

+3° / n(0r, (y,b)) du(y)
> /E,\ n(r, (y,a)) duly —{»Z/ n(r, (y,a) m) du(y)
:Ll (r, y, Zmﬂ

Let Ty, = I‘%’Z be as in 7.4 and let y € E,,. Then there exists a sequence
Bi, ..., Bi, k= n(r, (v, a)) of maximal f|B™(fr)-lifts of «, starting at points
in f~(y,a) N B™(r) such that

card{j : §;(t) = z} < i(z, f)

for all z and t (which make sense), see [Ri, IL.3]. Since y € E,,, at least m of
Bi, «.., Bx end in S”~1(fr). Let T'% be the family of all these lifts when y runs
over E,,. By Viisild’s inequality [Ri, I11.9.1] and [MaR],

M. (T,n) < KM, (T})/m.

Since the path families I',, are separate, so are the families '}, and thus
Wy 1
M,.(T7) r*
Z U } - og g)}n 1

On the other hand,
#(Em)

M, (T,) = e
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by 7.4. The theorem now follows since
Z mu(Ep) = (b—a)*! Z mM,(T,,)
m 113

wan._ 1(b - a)““‘
<
= (logf)™t

[w]

In the rest of this section we let M = S™\ {ay,... ,a,} where ay,... a4, ¢ >
2, are distinct points in 8™, n > 3. Let

D;={zeS":0<o(z,a;) <op}
where o is the spherical metric on S™ and

oo = lgrjnégsqo(aj, ax)/4.

7.8. Definition. We say that a Riemannian metric (, ) on M is admissible
if for every 1 < 7 < ¢ there exists a Green function g; € C*(D;) for the n-
Laplacian with the pole at a; such that |Vg;| > 0 in D;.

We are now ready to prove a generalization of the Picard type theorem [Ri,
v.2.1].

7.9. Theorem. For each n > 3 and K > 1 there exists a positive inte-
ger qo = qo(n, K) depending only on n and K such that every K -quasiregular
mapping f : R™ — M is constant whenever M is equipped with an admissible
Riemannian metric and ¢ > qo.

Proof. Let {( , ) be an admissible Riemannian metric on M. We write
¥ = g{l(l) where ¢; is as in 7.8. Let u; be the measure on Borel subsets of
¥; given by (7.3). Suppose that f: R™ — M is a nonconstant K-quasiregular
mapping. The average of n(E,z) over g7 !(s), s > 0, is denoted by v;(E, s), see
(7.8). We abbreviate v;(E) = v4(E,1). Then

v E) ::/ n(E, z) dp:(z)
M

since the support of u; is £;. Moreover, there exists a constant ¢; > 0 such that

wi(Blz,r)) < err™ ™t = h(r)
for all ¢ and for all balls B(z,r) C M. Since

i fz(r) 1/pn

4G r

dr < oo
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for all p > 0, we can use [MaR, 4.8]. Applying [MaR, 4.8] twice with the constant
8 = 2 yields

(7.10) v;(B™(z,4r)) > v;(B™(z,7)) — d

forallz€e R™, r >0 andforall 1 <4, j < g where d is a positive constant which
is independent on z, r, 7, and j, see also [MaR, Remark 5.12.6]. Note that the
constant ¢ > 1 in [MaR, 4.8] is unnecessary since we can prove [MaR, 4.8] using
the sharper form of the Comparison lemma than that in the original proof. Let
¢z = wy—1(log2)'~™. We shall next show that v(r) — oo as r — oo. Suppose
that lim, .o v1(r) = A < co. As in the proof of [MaR, 5.10] we can show that
lim,,oo n(r,2z) < A for all 2 € £;. It follows from 7.7 that the same is true for
all z€ D;. Let B; = {z € 8" :0 < o(z,a;) < 00/2}, i =1, 2. By [Rj, I11.2.12],
f can omit at most a set of n-capacity zero. Hence f~!B; # 0. Let C; be a
component of f~!B;. Since a; and a, are omitted, C; tends to infinity. Let T}
be the family of all paths + : [0,1] — R™ such that 4(0) € Cy and 4(1) € Cs.
For each v € T} there exists ¢, > 0 such that f(v(t,)) € £, and f (v(t)) € Dy
for all ¢ € [0,t,[. Let I'; be the family of all paths 4|[0,¢,], v € T,. Then

M, (T]) < Ma(T%) < AKoM,.(fT%) < oo,

by [Ri, IL.(2.6)]. This is a contradiction since M,,(I'}) = oo. Thus we can choose
r > 0 such that

(7.11) vi(r) > max(8Kcz, 2d)

and then b > 1 such that

(7.12) vi(r) = 4Kjea(b—1)"1,

The Comparison lemma 7.7 together with (7.10), (7.11) and (7.12) imply

vi(8r,b) > vi(4r) — Krea(b—1)"1
(7.13) >vi(r) —d— Krep(b—1)"t
> vy(r)/2 — Krep(b— 1)1
= Krea(b—1)""1 > 0.

Thus there exists for each i a component H; of f "z e M : gi(z) > b}
which meets B"(8r) and tends to infinity. Each H; contains a compact set
F; ¢ B*(16r) \ B™(8r) connecting S"(8r) and S8™(16r). Let I'; be the fam-
ily of all paths in B"(167) \ B"(8r) which join F; and F} = Ui Fy. We claim
that

?‘14} (M,;{?;} - X{}K;ﬁggn)ﬁggi’} < BKnKjeqry {}28?’)
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for all 7. To prove this, we define an admissible function g; € F(T;) by

(2) = IVai(2)]/(b—1) f1<gi(2)<b
e = 0 elsewhere.
Then by [Ri, I1.(2.6)] and the co-area formula,

M, () < Ko/ 0i(2)"n(16r, 2) dm
M
b
= Ko(b- 1)""/1 (/flw n(16r,2) [Vgi(2)[* ™" d¥™~1) dt

= Ko(b- 1)'"/6V;(16r,t) dt.
It follows now from 7.7 that l
M..(I:) < Ko(b - 1)_,;/1"(%(327.) + Kreat — 1)™1) dt
(

(7.15) = Ko(b~1)"""1(32r) + Ko Krca/n.

On the other hand, v;(32r) < 2v,(128r) by (7.10) and (7.11). This together with
(7.12) and (7.15) imply (7.14). There exists a positive integer ¢3 depending only on
n such that the ball B™(128r) can be covered by balls B”(xk,r/2), k=1,...,es,
such that z) € B"(128r) for all k. Since E s 1, (E) is a measure on Borel sets,

vi(128r) < ) vy (B™(2x,7/2)).
k=1

Hence
(7.16) vi(B™(zk,7/2)) > vy (1287)/cs

for some zx = z,. By [Ri, IV.2.16], there exists a constant ¢4 > 0 depending only
on n such that

(7.17) Mﬂ(r;) Z C4q1/(n’-1)
for some 7. Suppose that
(7.18) 9> (KoKreo(8ca + 1/n};’g)n~1,

It follows from (7.14), (7.16) and (7.17) that
yi{ﬁ"{z;,rﬂ}) > vy{r).

We can repeat by replacing the ball B*(r) by B™(z1,r/2) and continue similarly.
We obtain a sequence 0 = Zg, Zi, ... of points with 2z, & é”’(zm_iﬂs"mr}
such that vm = vi(B™(2m,27™r)) > v1(r) > 0. But the balls B™(2,,,27 ™)
converges to a point which implies v,, — 0. This is a contradiction and the
theorem is proved. g




Hkka Holopainen
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