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a b s t r a c t

We study the existence of undominated elements of acyclic relations. A sufficient condition for the
existence is given without any topological assumptions when the dominance relation is finite valued.
The condition says that there is a point such that all dominance sequences starting from this point are
reducible. A dominance sequence is reducible, if it is possible to remove some elements from it so that the
resulting subsequence is still a dominance sequence. Necessary and sufficient conditions are formulated
for closed acyclic relations on compact Hausdorff spaces. Reducibility is the key concept also in this case.
A representation theorem for such relations is given.
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1. Introduction

The existence of undominated (or maximal) members of
acyclic relations has interested economists for a long time. These
kind of relations appear e.g. in preference theory and in social
choice theory (see Alcantud, 2002; Bergstrom, 1975; Campbell
and Walker, 1990; Walker, 1977). The interpretation of being
undominated in such applications means that there exists a choice
for which there exist no strictly better choices. Since acyclicity
seems quite natural in consumer choice theory for example, it is
clear why such relations interest economists.

Acyclic relations have applications also in equilibrium theory
and in the analysis of dynamic systems. Equilibrium existence
results are always some kind of fixed point theorems. Existence
of fixed points and existence of undominated members of a
relation in turn are closely related problems. If a relation describes
a dynamical process, then undominated elements could be the
instances when the process stops. A game tree is a representative
example.

A sufficient condition for the existence of undominated
members is given in the general case without any topological
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assumptions (Theorem 1). We assume in this case that the
dominance relation is acyclic and finite valued (dominance relation
is the asymmetric part of a relation). The key assumption is that
there is a point x0 such that every dominance sequence starting
from this point is reducible. Reducibility means that if we have
a dominance sequence {xm}

∞

m=0, i.e., xm+1 dominates xm, then for
some m the element xm is dominated also by another member
xk, k > m+ 1. Transitivity would imply that xm is dominated by xk
wheneverm < k, so reducibility is a much weaker condition.

Necessary and sufficient conditions for the existence of
undominated elements are given also for closed relations on a
compact Hausdorff space. It turns out (Example 2) that the simple
reducibility condition is too weak in this case since relations
need not be finite valued. However, reducibility condition can be
strengthened to proper reducibility that guarantees the existence
of undominated elements (Theorem 2). Proper reducibility means
that a dominance sequence has a subsequence that is smaller in a
topological sense than the original sequence. More precisely, the
closure of the subsequence is a proper subset of the closure of
the original sequence. The (simple) reducibility says only that a
dominance sequence can be made shorter, but the subsequence
could still be as large (in a topological sense) than the original
sequence.

The results of Bergstrom (1975), Walker (1977), Campbell and
Walker (1990), Peris and Subiza (1994) and Alcantud (2002) are
based on different assumptions than our results. In these papers it
is usually assumed that relations are ‘‘lower continuous’’, which
means that the lower contour sets are open (see Campbell and
Walker, 1990; Alcantud, 2002, forweaker continuity assumptions).
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We analyze closed relations, and the lower contour sets are
not open in general. Bergstrom (1975) and Walker (1977) prove
that a lower continuous, acyclic and asymmetric relation has
undominated elements. Alcantud (2002) gives sufficient and
necessary conditions for the existence of undominated elements.

We prove a representation theorem for closed acyclic relations
on compact Hausdorff spaces. Functions that represent relations in
this paper are ‘‘one-way’’ in the sense that if x dominates y then the
value of the utility function is strictly higher at x, but a higher utility
value does not necessarily imply dominance. We show that if a
closed asymmetric and acyclic relation has undominated elements
in every uncountable closed subset space, then this relation can
be represented by a lower semicontinuous function (Theorem 3).
This function has a maximizer in every nonempty subset, and
maximizers are undominated in that subset.

Peleg (1970) shows that an irreflexive, transitive, separable,
lower continuous, and spacious relation on a topological space
has a continuous one-way representation. A relation is spacious if,
when a lower contour set A is a subset of another lower contour
set B, then the closure of A is also a subset of B. The maximizers of
this function are undominated elements. Peris and Subiza (1995)
replace transitivity by acyclicity and show that to each subset
of the space there exists a function that represents the relation
restricted to this subset. Moreover, themaximizers of that function
are precisely the elements that are undominated in this subset.We
assume neither separability nor spaciousness in Theorem 3.

The paper is organized in the following way. In Section 2 some
notation is introduced. In Section 3 we give examples of situations
when undominated members do not exist. Examples are simple
but reveal something essential about what goes wrong when
undominated members do not exist. The results are presented in
Section 4.

2. Preliminaries

Let X be a nonempty set, and R a binary relation on X , so R
is a subset of X × X . The set X is called the field of R. We may
denote (x, y) ∈ R by xRy as usual. We will now define quickly the
most important properties of relations we need, see Aleskerov and
Monjardet (2002) for a more detailed analysis and comparison of
these properties.

A relationR is reflexive, if xRxholds for every x ∈ X .R is transitive,
if xRy and yRz imply xRz, for all x, y, z ∈ X . R is antisymmetric,
if xRy and yRx implies x = y, for every x, y ∈ X . A relation
satisfying reflexivity, transitivity and antisymmetry is a partial
order. A relation R is irreflexive, if xRx does not hold for any x. R is
asymmetric, if xRy implies that yRx does not hold for any x, y ∈ X .
A relation satisfying transitivity and asymmetry is a strict partial
order. The asymmetric part of any partial order is a strict partial
order.

The inverse R−1 of a relation is a relation defined by yR−1x
iff xRy, for all x, y ∈ X . We define formally the asymmetric or strict
part P of any relation R by P = R\(R∩R−1).We say that y dominates
x if xRy but not yRx. That is, the asymmetric part P of R represents
dominance. An element is undominated, if there is no element that
dominates it.

A finite subset {x0, . . . , xn} ⊂ X such that xiRxi+1 for i =

0, . . . , n−1, is called a path in R. A path {x0, . . . , xn} is a dominance
path if xi+1 dominates xi for all i = 0, . . . , n − 1. If it is clear what
relation R is in question, we may simply say that {x0, . . . , xn} is a
(dominance) path. R is acyclic, if x0 ≠ xn for every dominance path
{x0, . . . , xn}, n > 0.

A sequence {xm}
∞

m=0 is a dominance sequence starting from x0,
if all of its initial segments {x0, . . . , xk}, k > 0 are dominance
paths. We say that a dominance sequence {xm}

∞

m=0 is reducible, if
xiRxk holds for some i and k such that k > i + 1. That is, some
member of the dominance sequence is dominated by at least two
members of the sequence. If this does not hold for any xi, then
the dominance sequence is irreducible. A subsequence {xmk}

∞

k=0 of
a dominance sequence {xm}

∞

m=0 is called a reduction of {xm}
∞

m=0,
if {xmk}

∞

k=0 is a also a dominance sequence starting from x0, and
{xmk}

∞

k=0 ≠ {xm}
∞

m=0.
If X is a topological space, we say that a dominance sequence

{xm}
∞

m=0 is properly reducible if it has reduction {xmk}
∞

k=0 such that
cl {xmk}

∞

k=0 is a proper subset of cl {xm}
∞

m=0, where cl Z denotes the
closure of any Z ⊂ X . In this case we may say that {xmk}

∞

k=0 is a
proper reduction of {xmk}

∞

k=0. (We abuse the notation slightly by
denoting the set of members of a sequence {xm}

∞

m=0 with the same
symbol as the sequence itself.)

IfR is a relation on a nonempty setX , and Y is a nonempty subset
of X , define the restriction of R to Y by R|Y = R∩ (Y × Y ). The field
of the relation R|Y is Y . Then R|Y has no undominated members, if
and only if for each y ∈ Y there is y′

∈ Y such that yRy′. We say
that y ∈ Y is undominated in Y , if yRy′ does not hold for any y′

∈ Y ,
i.e., if R|Y has undominated elements.

Given a nonempty Y ⊂ X , let YR = {x ∈ X | yRx for some y ∈

Y }, and RY = {x ∈ X | xRy for some y ∈ Y }. YR is called the image
of Y , and RY is called the inverse image of Y . RX is the domain of R,
and XR is the range of R. In case of singleton sets {x}, wemay simply
denote its image and inverse image by xR and Rx.

If R is asymmetric, it has undominated members if and only
if the domain is not the whole X , and in this case X \ RX is the
set of undominated members. So undominated members of an
asymmetric R exist precisely when the domain of R is a proper
subset of the field of R.

Let X be a topological space. A relation R on X is closed if R is
a closed subset of the product space X × X which is equipped
with the product topology. If X is compact Hausdorff and Z ⊂ X
is closed, then both ZR and RZ are closed. A relation R on X is lower
continuous, if Px is open for any x ∈ X . A relation is spacious, if xPy
implies cl (Px) ⊂ Py for all x, y ∈ X (Peleg, 1970).

3. Examples

Let us give next two examples of acyclic relations in which
undominated members do not exist.

Example 1. Let X ⊂ R2 be the boundary of the closed unit ball
with center at the origin. Define a relation R on X such that xRy, if
the distance along X from x to y is 1, when we move from x to y
clockwise. Since for all x there is a y such that xRy, no undominated
members exist. Further R is acyclic: there are no points x1, . . . , xn
such that xiRxi+1, i = 1, . . . , n−1, and xnRx1. This follows from the
fact that X has length 2π . Clearly, the relation R is also asymmetric
and closed. In fact, there is a homeomorphism f : X −→ X such
that R is the graph of f : y = f (x) iff xRy.

So acyclicity and closedness alone do not guarantee the
existence of undominated members, even when the relation is
‘‘single valued’’. The relation in Example 1 has the feature that all
dominance sequences are irreducible.

The existence of irreducible sequences from any initial value
x in fact precludes the possibility that there are undominated
members.We show a partial converse in Theorem1. Suppose there
is some initial value x0 such that all dominance sequences are
reducible. Then there are undominatedmembers, if R is acyclic and
xP is finite for every x. In this result, no topological assumptions are
needed.

However, if we drop the assumption that xP is finite, then there
need not exist undominated elements even when there are initial
points from which all dominance sequences are reducible.
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Example 2. Let X be as in Example 1, and let relation R̄ be as the
relation R in Example 1, except that x0 = (1, 0) is dominated by
infinitelymany elements as follows. Let x1 be the second element of
the dominance sequence {xm}

∞

m=0. Let z1 ≠ x1 be the first member
of this dominance sequence lying on the short segment between
x0 and x1 such that the distance to x1 is shorter than the distance
to x0.

Given that z1, . . . , zk−1 have been chosen, k > 1, let zk ≠ x1
be the first element of the dominance sequence lying on the short
segment between zk−1 and x1 and being closer to x1 than to zk−1.

In this way we get a sequence {zk}∞k=1 converging to x1. Define
relation R̄ so that x0R = {x1} ∪ {zk | k = 1, . . .}, and elsewhere R̄ is
like R. By construction, R̄ is acyclic, asymmetric and closed. All the
dominance sequences of R̄ starting from x0 are reducible. But even
this relation has no undominated elements.

Note that in Example 2, cl {xm} = X for alldominance sequences
in X . In particular, none of the dominance sequences has a proper
reduction. In fact, to guarantee the existence of undominated
elements in X , it would suffice that there is at least one point x0
such that some dominance sequence starting from x0 has a proper
reduction (Theorem 2).

4. Undominated elements

Theorem 1. Suppose that R is acyclic and xP is finite for every x ∈ X.
There are undominated elements, iff there exists x0 ∈ X such that
every dominance sequence starting from x0 is reducible.

Proof. If x0 is undominated, then there are no dominance
sequences starting from x0, and therefore all dominance sequence
starting from x0 are reducible.

Let x0 ∈ X be such that every dominance sequence starting from
x0 is reducible. Assume that there are no undominated elements
in X . Then there exists at least one dominance sequence {xn}n≥0
starting from x0. Construct a reduction {xnk}k≥0 of {xn}n≥0 in the
following way.

Let xn0 = x0. Let n1 be the highest indexm > 0 such that x0Pxm.
A highest index exists since xP is finite for all x. Hence xn1 has been
defined. Suppose xnk is defined for k ≥ 1. Let nk+1 be the highest
index m > nk such that xnkPxm. A highest index exists since xP is
finite for all x.

By construction {xnk}k≥0 is a dominance sequence starting from
x0. By assumption also this dominance sequence is reducible. So
there exists nk andm ∈ {nk+2, nk+3, . . .} such that xnkPxm. But nk+1
is the highest indexm such that xnkPxm, a contradiction.

Hence there cannot exist dominance sequences starting from
x0. Let Y be the set of all elements belonging to some dominance
path {x0, . . . , xm}. If Y is finite then the acyclicity of R implies that
undominated elements exist. Suppose then that Y is infinite. Now
the set of all dominance paths starting from x0 is a finite branching
treeΓ having infinitelymany nodes. The treeΓ can be constructed
in the following way.

Take x0 and all its successors x0P = {x01, . . . , x0k} of x0 as
nodes of the tree. Given any x0i ∈ x0P , take all its successors
x0iP = {x0i1, . . . , x0in} as nodes of the tree, where n may depend
on the string 0i. Proceeding recursively, suppose a node x0···j has
been constructed. Take the set of all its successors x0···jP =

{x0···j1, . . . , x0···jm} as nodes, where m may depend on the string
0 · · · j. Some of the subsets x0···jP may be empty, but there is a
node x0···t such that x0···tP is nonempty and the strings 0 · · · j and
0 · · · t are equally long. This follows since Y is infinite. Note that a
given y ∈ Y may belong to several dominance paths, but given a
dominance path {x0, . . . , z}, y appears in this path at most once.
To each node z of Γ there is a unique dominance path {x0, . . . , z}
starting from x0, soΓ is a finite branching treewith infinitelymany
nodes.
Then by König’s lemma Γ has an infinite branch, i.e., a
dominance sequence {xn}∞n=0, a contradiction. Therefore Y is finite
and undominated elements exist. �

The proof of Theorem 1 is non-constructive, since no construc-
tive way of finding the root x0 of the tree Γ was provided.

In the following,X is a compactHausdorff space and R is a closed
relation on it.

Lemma 1. If R is a closed asymmetric and acyclic relation on a
compact Hausdorff space X with no undominatedmembers, then there
is a minimal nonempty closed Y ⊂ X such that every y ∈ Y is
dominated in Y .

Proof. See the Appendix. �

Recall that a nonempty closed subset Y of a metric space is
called perfect, if Y contains no points that are isolated in Y , i.e.,
there is no y ∈ Y such that for some open neighbourhood V (y)
of y, Y ∩ V (y) = {y}. Perfect subsets are uncountable.

Lemma 2. Let R be a closed asymmetric and acyclic relation on a
compact Hausdorff space X with no undominated members, and let
Y ⊂ X be aminimal closed subset inwhich all elements are dominated
as in Lemma 1. Then Y is homeomorphic to a compact perfect metric
space, and Y = R|YY = YR|Y .

Proof. See the Appendix. �

Now we are ready to prove our second main result.

Theorem 2. Suppose R is a closed asymmetric and acyclic relation on
a compact Hausdorff space X. Every closed subset C of X has elements
that are undominated in C, iff in every uncountable closed Z ⊂ X
there is x0 such that a dominance sequence {xm}

∞

m=0 ⊂ Z starting
from x0 has a proper reduction.

Proof. If a closed subset C has an undominated element x, then
there are no dominance sequences starting from x. Hence any
dominance sequence starting from x has a proper reduction. We
show the implication to the other direction by proving the cases
when C is countable and when C is uncountable separately.

Case 1: C ⊂ X is closed and countable. If there were no
undominated members in C , then by Lemmas 1 and 2 there would
exist a nonempty subset Y ⊂ C such that Y is homeomorphic to
a compact perfect metric space. But the cardinality of such a set is
that of the continuum, a contradiction.

Case 2: C ⊂ X is closed and uncountable. If there were
no undominated members in C , then by Lemma 1 there would
exist a minimal closed Y ⊂ C such that all elements of Y are
dominated in Y . By Lemma 2, Y is homeomorphic to a compact
perfect metric space. We showed in the proof of Lemma 2 that
Y = cl {xm}

∞

m=0 where {xm}
∞

m=0 is an arbitrary dominance sequence
in Y . By assumption, there is x0 ∈ Y such that at least one
dominance sequence {xm}

∞

m=0 has a proper reduction, say {xmk}
∞

k=0.
By definition, this means that cl {xmk}

∞

k=0 is a proper subset of
cl {xm}

∞

m=0 = Y , a contradiction. �

We say that a function u : X −→ R is a one-way representation
of the strict part P of relation R, if xPy implies u(x) < u(y). That is,
if y dominates x then u(x) < u(y).

The idea of the proof of the following result is simple. We
eliminate iteratively undominated elements from the set X . It
turns out that this process converges after finitely many steps.
The process induces a finite partition of X , and members of this
partition are taken as indifference classes of a function u that
represents R.
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Theorem 3. Suppose R is a closed and acyclic relation on a compact
Hausdorff space X such that the strict part P of R is closed aswell. Each
uncountable closed Z ⊂ X contains members that are undominated
in Z, iff there is a lower semicontinuous function u : X −→ R with
finite range such that xPy implies u(x) < u(y) for all x, y ∈ X.

Proof (Necessity). Suppose each uncountable closed Z ⊂ X
contains members that are undominated in Z . Then this holds for
every nonempty closed Z by Lemma 2. Let X0 = X , and define
Xn+1 = PXn, n > 0. Then Xn+1 ⊂ Xn and each Xn is closed. Let
us show first that there is K > 0 such that Xn = ∅ for all n ≥ K .

If Xn ≠ ∅ for all n, then Z = ∩n Xn is a nonempty closed set.
If Z is uncountable then it has undominated elements, and if Z is
countable it also has undominated elements (seeCase1 in the proof
of Theorem 2). Let z ∈ Z be undominated. Since z ∈ Xn+1 for every
n, it follows that yR ∩ Xn ≠ ∅ for every n. Hence yR ∩ Z ≠ ∅, and
so y is dominated in Z , a contradiction. Hence there is K > 0 such
that Xn = ∅ for all n > K . Assume w.l.o.g. that K is the least such
integer.

Let Sn = Xn \ Xn+1, n < K , and SK = XK . Then Sn contains all
members of Xn that are undominated in Xn. Note that since each
Xn+1 is closed for n < K , the union S0 ∪ · · · ∪ Sn = X \ Xn is open,
and that subsets Sn and Sm are disjoint when n ≠ m. The union of
all subset Sn is X , so {Sn}Kn=0 is a partition of X .

Define a function u on X by u(x) = (K − n)/K , where n is the
unique number such that x ∈ Sn. Then xPz implies u(x) < u(z). To
see this, note that u(x) = k/K iff x ∈ SK−k. Since x is undominated
in XK−k, z ∈ Sn implies n < K − k. Hence u(z) = (K − n)/K > k =

u(x). Fix a ∈ R, and note that {x ∈ X | a < u(x)} is open, and so u
is lower semicontinuous.

Sufficiency. Suppose there is a lower semicontinuous function
u : X −→ Rwith finite range such that xPz implies u(x) < u(z) for
all x, z ∈ X . We may assume w.l.o.g. that u[X] = {0, 1/K , . . . , 1},
for some natural number K > 0. Let Tn = {x ∈ X | n− 1 < u(x) ≤

n}, and note that the unions Tk ∪ · · · ∪ TK are open for k ≤ K , and
that {Tn | 0 ≤ n ≤ K} is a partition of X .

Let Z be a nonempty closed subset of X , and let k be the largest
number n such that Z ∩Tn is nonempty. For each x ∈ Z ∩Tk, u(x) =

k/K , and xPy implies u(x) < u(y). But then y ∉ Z . So members of
Z ∩ Tk are undominated in Z . �

As demonstrated in the next example, Theorem 3 does not hold
if we drop the assumption that the strict part P of the relation R is
closed.

Example 3. Let λ be the cardinality of the set 2[0,1]. Consider the
interval X = [0, λ] of ordinal numberswith its usual well-ordering
≼. When X is equipped with the order topology, it becomes
a compact Hausdorff space (see Givant and Halmos, 2009, p.
309). (The sub-basis of the order topology consists of intervals
[0, α), (β, λ], α, β ∈ X .) Define a relation R on X by xRy iff y ≼ x,
i.e., R is the inverse of ≼. The order topology makes R a closed
relation. Since ≼ is a well-ordering, every nonempty subset Z ⊂ X
has a least element inf Z ∈ Z . So inf Z is the greatest element in
Z with respect to R, and hence inf Z is undominated (w.r.t. R) in
Z . Next we show that he strict part P of R is not closed. Take any
α ∈ X, α ≠ λ, and note that λPα. Since λ = inf[0, λ) (w.r.t. R),
P is not closed since λPλ does not hold. Note that all the other
assumptions of Theorem 3 are satisfied. But Theorem 3 does not
hold since the totally ordered set X has a strictly greater cardinality
than the set of real numbers R, and hence there cannot be any
function u : X −→ R representing P .

Note that since the range of the function u in Theorem3 is finite,
u has a maximum in every nonempty subset. The maximizers are
clearly undominated in this subset. Here is a simple example.
Example 4. Let X = [0, 3], and define an asymmetric relation P by

Px =

x − 1 1 ≤ x ≤ 3
{x − 1, x − 2} 2 ≤ x ≤ 3
∅ 0 ≤ x < 1.

Using the same notation as in the proof of Theorem 3, S0 =

(2, 3], S1 = (1, 2], S2 = (0, 1], S3 = {0}. Then S0 is the set of
elements that are undominated in X, S1 is the set of elements that
are undominated in X \ S0 = [0, 2], and so on. The function u that
represents P is given by u(x) = (3− n)/3 for x ∈ Sn, n = 0, 1, 2, 3.

Appendix

Proof of Lemma 1. Since R is asymmetric, xRy implies that y
dominates x. Partially order by set inclusion the set C of all
nonempty closed subsets Z of X , such that all members of Z are
dominated in Z . C is nonempty, since by assumption X ⊂ C. Let
T be a maximal totally ordered subset of C. Then T exists by the
Hausdorff Maximality Principle. Let Y be the intersection of the
members of T . Then Y is nonempty and closed, since every Z ∈ T
is nonempty and closed and X is a compact Hausdorff space. Since
every z ∈ Z is dominated in Z , we have Z ⊂ RZ for all Z ∈ T .

Choose y ∈ Y . Since y is dominated in Z, yR∩Z is nonempty and
closed for any Z ∈ T . Therefore yR ∩ Y is nonempty and closed,
and y is dominated in Y . Since y was chosen arbitrarily, we are
done. �

Proof of Lemma 2. By Lemma 1, R|Y has no undominated mem-
bers, and therefore Y = R|YY . Since R|Y is viewed as a relation on
Y , we have YR|Y ⊂ Y . Let Z = YR|Y , and note that Z consists of all
thosemembers of Y that dominate somemember of Y . Since every
z ∈ Z is dominated by some y ∈ Y , we must have y ∈ Z . Since Y is
minimal and Z is closed, we have Z = YR|Y = Y by Lemma 1.

Let {xm}
∞

m=0 ⊂ Y be any dominance sequence. Such a sequence
exists, since Y contains no undominated members. Since Y is
closed, cl {xm}

∞

m=0 ⊂ Y . Now {xm}
∞

m=0 = cl {xm}
∞

m=0 is impossible.
To see this, suppose {xm}

∞

m=0 = cl {xm}
∞

m=0, that is, {xm}
∞

m=0 is
closed. Then {xm}

∞

m=1 = {xm}
∞

m=0R ∩ {xm}
∞

m=0 would be closed
as well, since CR is closed for any nonempty closed C ⊂ Y .
By induction, for all natural numbers k, the dominance sequence
{xm}

∞

m=k starting from xk would be closed. Since {xm}
∞
m=n ⊂ {xm}

∞

m=k
when n > k, the intersection ∩k{xm}

∞

m=k must be nonempty,
because Y is a compact Hausdorff space. Then for some n, xn ∈

{xm}
∞

m=k for all k, a contradiction with acyclicity. Therefore {xm}
∞

m=0
is a proper subset of cl {xm}

∞

m=0.
The set {xm}

∞

m=0 is a compact Hausdorff space having a
countable dense subset {xm}

∞

m=0. Compact Hausdorff spaces are
normal: disjoint closed subsets have disjoint openneighbourhoods.
Urysohn’s metrizability theorem says that every normal space
with a countable dense subset is metrizable. Hence we may view
cl {xm}

∞

m=0 as a compact metric space.
Take any y ∈ cl {xm}

∞

m=0\{xm}
∞

m=0. Theremust be a subsequence
{xmk}

∞

k=0 of {xm}
∞

m=0 converging to y, since we may view cl {xm}
∞

m=0
as a compact metric space. For the same reason the sequence
{xmk+1}

∞

k=0 has a subsequence converging to z ∈ cl {xm}
∞

m=0.
Assume w.l.o.g. that {xmk+1}

∞

k=0 converges. Since R is a closed
relation, and xmkRxmk+1, it follows that yRz. Hence every member
of cl {xm}

∞

m=0 is dominated by some member of cl {xm}
∞

m=0. Since
cl {xm}

∞

m=0 is a subset of Y , we must have Y = cl {xm}
∞

m=0 by
minimality of Y .

Recall that {xm}
∞

m=0 ⊂ Y was an arbitrarily chosen dominance
sequence. If y ∈ Y were isolated, we could take a dominance
sequence {zm}

∞

m=0 ⊂ Y such that z0 dominates y. Then by acyclicity,
y cannot be a member of {zm}

∞

m=0. But then y cannot be a member
of cl {zm}

∞

m=0 either since y is isolated. Therefore y ∉ Y since
Y = cl {zm}

∞

m=0, a contradiction. Hence Y is perfect as desired. �
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