
Prospect theory

Despite its elegance, the expected utility theory does not
survive experimental tests

Problems:

1 People are bad with probabilities
2 Decisions are reference dependent

Prosect theory of Kahnemann and Tversky (1979) aims to
descriptive plausibility

Requires relaxation of the axioms - or meta-axioms - of the
expected utility theory



Rank dependent utility

Under expected utility model, risk aversion captured by the
concavity of the utility function

Concavity is a local phenomenon, reflected by the sensitivity
of the DM to additional money

But risk aversion seems to be something else than just
psychophysics of money - it is related to optimism and
pessimism

Problem with the unreasonably large degree of risk aversion
under small bets (=> Rabin’s paradox)



Consider a preference elicitation procedure over outcomes
x ∈ [0, 100]
By the construction in the proof of the vNM theorem, choose
u(0) = 0 and u(100) = 1, and let u : [0, 100]→ [0, 1]

Then u(x) = p reflects the probability p under which the DM
is indifferent between x and a lottery p · 1100 + (1− p) · 10



Risk aversion is reflected by the concavity of u

Equivalently, risk aversion is reflected by the convexity of the
function p 7→ w(p) such that w = u−1

The new interpretation: the DM has risk neutral utility
function but his probability assesment is distorted => as if
risk averse behavior due to distorted probability assesments



Example

(Allais reconsidered) There are two choice scenarios:

1 Choice between lotteries

1 0.33 · 2500+ 0.66 · 2400+ 0.01 · 0
2 1 · 2400

2 Choice between lotteries

1 0.33 · 2500+ 0.67 · 0
2 0.34 · 2400+ 0.66 · 0



Example (cont.)

No function reflecting expected utility maximization is consistent
with choices 1b and 2a - what about function w?

w(0.33) · 2500+ w(0.66) · 2400 < 2400

and
w(0.33) · 2500 > w(0.34) · 2400

i.e.
w(0.34) + w(0.66) < 1

which holds true for any strictly convex w



But nonlinearity of w implies nonadditivity: there are p and q
such that w(p + q) 6= w(p) + w(q)
A problem: violation of the first-order stochastic dominance
(i.e. monotonicity): shifting probability mass from an
outcome to a preferred outcome may decrease the desirability
of the lottery

Example

Let p, q ∈ [0, 1] be such that w(p + q) > w(p) + w(q)
1 Consider the choice between lotteries

1 p · 10+ q · 10+ (1− p − q) · 0
2 (p + q) · 10+ (1− p − q) · 0



Example

The value of the lotteries are 10(w(p) + w(q)) and
10w(p + q) and hence 1b is chosen

Observe that lottery p · (10+ ε) + q · 10+ (1− p − q) · 0 has
value (10+ ε)w(p) + 10w(q)

Since 1b is chosen it follows, for small enough ε, that also
p · (10+ ε) + q · 10+ (1− p − q) · 0 is inferior to
(p + q) · 10+ (1− p − q) · 0
But this violates the first-order stochastic dominance as
p · (10+ ε) + q · 10+ (1− p − q) · 0 stochastically dominates
(p + q) · 10+ (1− p − q) · 0



Adding risk aversion to the utility function would not change
the conclusion: distortion of the probability weights opens the
door for violation of the first-order stochastic dominance

The key problem: probabilities and outcomes cannot be
replaced 1-1 when one distorts probabilities rather than
utilities - probabilities and wealth are evaluated in different
scales as probabilities are atoms whereas wealth is a
cumulative number

The way to avoid the problem: focus on rank dependent utility

Let the outcomes be drawn from a finite set
x0 < x1 < ... < xn
Then expected value of lottery p can be written

n

∑
i=0
pixi =

n

∑
i=0

(
n

∑
j=i
pj

)
(xi − xi−1)



Denote the rank of lottery p at i by

ri =
n

∑
j=i
pj

i.e., the probability of a reward at least xi
The expected value of a lottery p can then be written
compactly

n

∑
i=0
ri (xi − xi−1)

Generalizing this, define the rank dependent utility for a given
probability weighting function w by

V (p) :=
n

∑
i=0
w (ri ) (xi − xi−1)



A lottery p first-order stochastically dominates p′ if ri ≥ r ′i ,
for all i = 0, ..., n (where ri is the ith rank of p and r ′i is the
ith rank of p′)

Rank dependent utility satisfies the first-order stochastic
dominance -criterion: if p first-order stochastically dominates
p′, then

V (p)− V (p′) =
n

∑
i=0
(w (ri )− w

(
r ′i
)
)(xi − xi−1)

≥ 0

where the inequality follows since xi+1 ≥ xi and w is
increasing



Note that ri+1 = ri − pi and rn = 0, r0 = 1
Writing the decision weight of an outcome i by

πi (p) = w(ri )− w(ri+1)

the rank dependent utility has the form

V (p) =
n

∑
i=0

πi (p)xi



When w is linear πi (p) = w(ri )−w(ri+1) = pi , and the rank
dependent utility is simply the expected value of the lottery

V (p) =
n

∑
i=0
pixi

With rank dependent utility function, we can capture
behavioral tendencies that are not consistent with expected
utility maximization

Optimism: differences in low ranks larger than in high ranks
=> concave w (e.g.

√
p)

Pessimism: differences in low ranks smaller than in high ranks
=> convex w (e.g. p2)



Common finding: w concave in (0, 1/3), convex in (1/3, 1)

Possibility effect - overweighting the small probability events/
best outcomes
Certainty effect - overweighting the high probability events/
worst outcomes

Explains the coexistence of gambling and insurance



More general formulation: a utility function u : R→ R and
rank-dependent utility function V such that

V (p) =
n

∑
i=0

πi (p)u(xi )

Let % be a binary relation on the set L of simple lotteries on R

RDU1 (weak ordering) %⊆ L2 is transitive and complete
First-order stochastic dominance means that
shifting of probability mass from an outcome to
a higher outcome

RDE2 (stochastic dominance) If p first-order stochastically
dominates q, then p % q

RDU3 (continuity) {q : q % p} and {q : p % q} are closed for all
p ∈ L

RDU4 (consistency) Rank-tradeoff consistency



Theorem

Binary relation %⊆ L2 satisfies RDU1-RDU4 if and only there is
aprobability weight function w and utility function u such that the
induced V represents %

Local properties of w can be tested by looking at small
changes in p, and letting the rank r vary in the range [0, 1]



The sure thing principle, requiring that if, under two lotteries
(prospects), a certain outcome is chosen with the same
probability, then this outcome will not affect the comparison of
the two lotteries, is the most important assumption of Savage

Any reasonable theory of choice under uncertainty should pass
this test

Example

Take four prospects p, p′ and q, q′such that pi = p′i = qj = q
′
j ,

and pk = qk and p′k = q
′
k for all k 6= i , j , then, by the sure thing

principle, p is preferred to q if and only if p′ is preferred to q′.
Rank dependent utility does satisfy this.



Reference dependence

The second aspect of prospect theory concerns reference
dependence

Models based on binary preferences, whose interpretation
relies on the revealed preference argument, are as if -theories

I psychology, descriptive models seek to predict choices that
are made

Theories which seek to simulate decision making processes
=> procedural theories

Agents draw on decision heuristics
Rules of thumb

Which procedures are followed?



Kahnemann and Tversky (1979): two stage procedure

1 Prospects (lotteries) are edited using heuristics
2 Prospects are evaluated against a reference point by using
(some version of) the rank ordered utility - wins and lossess
have distinct meaning

Reference point can be thought as the status quo wealth level

Framing effect



Heuristics

Rank ordered utility fits the inverted s-shaped w function
Diminishing sensitivity and loss aversion
Reflection effect
Deminance heuristic
Etc.

Wakker (2010): "More than half of the observed risk aversion
has nothing to do with utility curvature or probability
weighting - it is generated by loss aversion"



Example

Consider three choice scenarios

1 A choice between gain-prospects

1 50
2 0.5 · 100+ 0.5 · 0

2 A choice between loss-prospects

1 −50
2 0.5 · 0+ 0.5 · −100

3 A choice between loss-propects, with a side payment

1 100− 50
2 100+ 0.5 · 0+ 0.5 · −100



Example (cont.)

Majority of repondents choose 1a (exhibiting risk aversion), 2b
(exhibiting risk seeking)

3b depends on the frame: if fixed income 100 is seprated from
the rest of the problem, subjects behave as in 2(= b), but in
the subjects are consequentalists, then they choose as in 1(=
a)

Thus procedures matter



Bounded rationality prevens from taking all relevant
infomation into account

Too much risk aversion or too much risk loving in reality, to
be plausible

Asset integration + isolation



Loss aversion defined: there is a basic utility function u and a
loss aversion parameter λ such that the overall utility v from
(changes in) wealth x is v(x) = u(x) if x ≥ 0 and
v(x) = λu(x) if x < 0

u captures the intrinsic value of outcomes

We assume that u is smooth and increasing, and use
normalization u(1) = 1, u(0) = 0

Loss aversion (gain seeking) holds if λ > 1

Example: Rabin’s paradox



Reference point is the point from which changes in wealth are
evaluated

Given the reference point x∗, the expected value of a (finite)
prospect p is

∑ p(x)v(x− x∗) = ∑
x≥x ∗

p(x)u(x− x∗)+λ ∑
x<x ∗

p(x)u(x− x∗)



To apply rank ordering to this model, let there be two
probability weighting functions w+ and w−, the first
desrcibing probability distortion conditional on x − x∗ ≥ 0,
and the latter desrcibing probability distortion conditional on
x − x∗ < 0
Denote by π+(p, r) and π−(p, r) the corresponding decision
weight functions

Then the value of a prospect p, given u, is

Vu(p) = ∑ πi (p)(x)v(x − x∗)
= ∑

x≥x ∗
πi (p)(x)u(x − x∗) + λ ∑

x<x ∗
πi (p)(x)u(x − x∗)

Denoting V+u (p) and V
−
u (p) the value of the prospect

conditional on postive and negative wealth changes, it follows
that

Vu(p) = V+u (p) + V
−
u (p)



Value of a prospect satisfies the first-order stochastic
dominance criterion as well as the sure-thing principle


