
Uncertainty

Example (St Petersburg paradox, Bernoulli 1738)

How much would you pay for a gamble where one tosses a fair coin
until one wins and after each toss, the prize money doubles?

The paradox: one is usually(!) willing to pay only limited price
for the lottery whereas the expected monetary value is

2 · 1
2
+ 22 · 1

22
+ 23 · 1

23
+ ... = 1+ 1+ 1+ ... = ∞

...hence one has to maximize the expected utility value of the
money

For example, with utility function u(x) = log2 x , then the
value of the gamble is 1



Under uncertainty, the decisions concern the feasible lotteries,
and hence the preference relation should be defined over them

How?

The lottery space (assume finite X )

L =

{
p ∈ R

|X |
+ : ∑

x∈X
p(x) = 1

}



For any two lotteries p and q, and parameter λ ∈ [0, 1],
denote by λ · p + (1− λ) · q is mixed lottery such that

(λp + (1− λ)q)(x) = λ · p(x) + (1− λ)q(x), for all x ∈ X

L is a mixture space is a mixture space: p, q ∈ L implies
λ · p + (1− λ) · q ∈ L for all λ ∈ [0, 1]
Denote the degenerate lottery that puts all the probablity
mass on choice x by 1x
The observable choices % are now defined over L, i.e.
%⊂ L× L



Expected utility maximization

The von Neumann-Morgenstern axioms are

NM1 (Weak order) % is a complete and transitive

That is, % is a preference relation on L

NM2 (Continuity) For all p, q, r ∈ L, if p � q � r , then there are
λ, µ ∈ (0, 1) such that
λ · p + (1− λ) · r � q � µ · p + (1− µ) · r

Equivalently, the upper and lower contour sets of % are closed

Continuity axiom is occasionally called the Archimedean axiom



The following condition implies that such α is unique

NM3 (Independence) For all p, q, r ∈ L and λ ∈ (0, 1), if p % q
then λ · p + (1− λ) · r % λ · q + (1− λ) · r

A direct implication of independence is that if p ∼ q, then
λ · p + (1− λ) · r ∼ λ · q + (1− λ) · r , for any λ ∈ (0, 1)

Lemma

If % satisfies weak order (NM1) and independence (NM3), then

p % q if and only if

λ · p + (1− λ) · q % λ′ · p + (1− λ′) · q, for all λ ≥ λ′
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Proof.

By independence, for any λ ∈ (0, 1)

λ · p + (1− λ) · q % λ · q + (1− λ) · q = q.

Applying this with respect to µ ∈ (0, 1),

λ · p + (1− λ) · q % µ · (λ · p + (1− λ) · q) + (1− µ) · q
= µλ · p + (1− µλ) · q.

By choosing µ = λ′/λ, the result ensues.



Lemma

If % satisfies weak order (NM1), continuity (NM2), and
independence (NM3), then for any p � q � r there is α ∈ (0, 1)
such that α · p + (1− α) · r ∼ q

Proof.

Consider sets {λ ∈ [0, 1] : α · p + (1− α) · r � q} and
{λ ∈ [0, 1] : q � α · p + (1− α) · r}. By construction, the sets are
disjoint. By the previous lemma, they are intervals and, by
continuity, open. Hence they do not cover [0, 1], and there is a
point α ∈ [0, 1] not in {λ ∈ [0, 1] : α · p + (1− α) · r � q} or
{λ ∈ [0, 1] : q � α · p + (1− α) · r}. By construction,
α · p + (1− α) · r ∼ q. By the previous lemma, α is unique.



Theorem

Let X be a finite set. Then % satisfies NM1-NM3 if and only if
there is a function u : X → R such that

∑
x∈X

p(x)u(x) ≥ ∑
x∈X

q(x)u(x) if and only if p % q.

Moreover, the function u is unique up to positive linear
transformation



Proof.

Identify x∗ and x∗ such that

1x ∗ % 1x % 1x∗, for all x ∈ X

By Lemmata 4 and 3 there is, for any x ∈ X , a unique αx such that

1x ∼ αx · 1x ∗ + (1− αx ) · 1x∗

Any lottery p can be rewritten as a mixture

p = p(x) · 1x + (1− p(x)) · px

where

px (y) =
p(y)

1− p(x) , for all x ∈ X\{x}



Proof.

[(cont.)] By independence,

p ∼ p(x)[αx · 1x ∗ + (1− αx ) · 1x∗ ] + (1− p(x)) · px

By induction on the cardinality of X ,

p ∼∑
x
p(x)[αx · 1x ∗ + (1− αx ) · 1x∗ ]

or, equivalently,

p ∼
(

∑
x
p(x)αx

)
· 1x ∗ +

(
1−∑

x
p(x)αx

)
· 1x∗

By choosing u(x) = αx for all x ∈ X , and by Lemma 3,

p % q if and only if ∑
x
p(x)u(x) ≥∑

x
q(x)u(x).



Proof.

[(cont.)] To see the uniqueness, note that for any representation v
of preferences %,

v(x) = αxv(x∗) + (1− αx )v(x∗), for all x ∈ X

Find a ∈ R++ and b ∈ R such that

v(x∗) = au(x∗) + b and v(x∗) = au(x∗) + b

Since also

u(x) = αxu(x∗) + (1− αx )u(x∗), for all x ∈ X

it follows that

v(x) = αx [au(x∗) + b] + (1− αx )[au(x∗) + b]

= a[αxu(x∗) + (1− αx )u(x∗)] + b

= au(x) + b



Provides a definition of a utility function

The cost is that identification of u requires many observations
- all pairs of lotteries over X

The proof suggests an elicitation method: ask the DM to
identify the probability αx of winning x∗ relative to losing x∗
under which he is indifferent with choice x

Gives a justification for the expected utility maximization
(rather than, say, median)

Normative argument: if the axioms are accepted, there has to
be a utility function



In the proof we used an induction argument

Without finiteness of X , the indictive step requires further
assumption

The sure thing principle: if lottery p is concentrated on a set
A, and every prize in A is at least as good as lottery q, then p
is a good as q

This additional property (almost) restores the vNM theorem
in any choice set



Example (Kahnemann and Tversky 1979)

(orignal idea due to Allais, 1953) There are two choice scenarios:

1 Choice between lotteries

1 0.33 · 2500+ 0.66 · 2400+ 0.01 · 0
2 1 · 2400

2 Choice between lotteries

1 0.33 · 2500+ 0.67 · 0
2 0.34 · 2400+ 0.66 · 0

Of the subjects, 82% chose 1a and 83% chose 2a which
means that at least 65% chose both 1b and 2a



Example (cont.)

However, there is no utility function u that is consistent with
the choices

0.33 · u(2500) + 0.66 · u(2400) + 0.01 · u(0) < u(2400)

and

0.33 · u(2500) + 0.67 · u(0) > 0.34 · u(2400) + 0.66 · u(0)

i.e.

0.66 · (u(2400)− u(0)) < 0.66 · (u(2400)− u(0))



Application: Risk Aversion

Assume that X = R+, and interpret x as "money"

Let vNM preferences % over simple lotteries L (with finite
support, for simplicity) be represented by a utility function
u : R+ → R

What are plausible assumptions concerning u?
More money is strictly better: u(x) > u(y) if x > y



Expected value of lottery p is

e(p) = ∑ p(x)x ∈ R+

Preferences % exhibit risk aversion if u(e(p)) ≥ ∑ p(x)u(x)
for all simple lotteries p, and he strict risk aversion if the
inquality is strict for all simple lotteries p

Theorem

% exhibit (strict) risk aversion if the associated u is (strictly)
concave

Proof.

By Jensen’s inequality



A certainty equivalent outcome c(p) ∈ R+ of a lottery p is
defined by the condition

u(c(p)) = ∑ p(x)u(x)

If u is strictly increasing and concave, then c(p) is well
defined (exists, is unique)

The risk premioum associated to lottery p is then defined by
R(p) = e(p)− c(p)



Preferences % are decreasingly (increasinly, constantly)
absolute risk averse if R(p + 1x ) is nondecreasing
(nonincreasing, constant) in x

If % are constantly risk averse, then the DM’s wealth level
does not affect his risk behavior (why?)

Theorem

The DM is decreasingly (increasinly, constantly) absolute risk
averse if the Arrow-Pratt measure −u′′(x)/u′(x) of risk aversion
is nondecreasing (nonincreasing, constant) in x



The family of utility functions exhibiting constant absolute
(strict) risk aversion (CARA) is given by the following
conditions: there is a constant λ such that
λ = −u′′(x)/u′(x) for all x , and there are a > 0 and b such
that for all

u(x) = −ae−λx + b

Example (Rabin’s paradox)

Assume weak risk aversion, e.g. DARA with

1
2
u(x − 10) + 1

2
u(x + 11) ≤ u(x), for all x ∈ R+

i.e. gamble of losing 10€ and winning 11€ with equal probability
is weakly rejected at all wealth levels

Often observed in calibration excercises



Example

But then

u(x − 10)− u(x) ≤ u(x + 11)− u(x)

or
u(x − 10)− u(x)

10
≤ 10
11
· u(x + 11)− u(x)

11

Thus the marginal utiloity u′ drops by at least 10/11 in every
21€



Example

By extrapolation, adding 1000€ to the DM’s wealth would
mean that the DM’s marginal value of a € drops by proportion(

10
11

)1000/21

= 0.012

Moreover, there is no compensating prize M that would
render acceptable a gamble where one loses 100€ with
probability 1/2 and wins prize M with probability 1/2!

5

∑
t=1

(
10
11

)t
≤

T

∑
t=6

(
10
11

)t
, for all T

The importance of reference dependence



De Finetti and the Dutch books

In gambling, a Dutch book is a set of odds and bets which
guarantees a profit, regardless of the outcome of the gamble

Consider the situation where the DM chooses a portfolio or a
gamble whose value depends on the realized state s in some
finite set S

That is, the gamble is an element x in RS (denote a generic
coordinate by s)

Which gamble should the DM choose?



Let %⊂ RS ×RS be a binary relation that represents the
DM’s preferences

F1 (Weak order) % is complete and transitive

F2 (Continuity) {y : y � x} and {y : x � y} are open for all x

That is, the graph of % is closed

F (Additivity) x + z % y + z if and only if x % y , for all x , y , z

Additivity implies neutrality to risk - the DM’s choice between
two portfolios x and y is idependent of the underlying, ’old’,
portfolio



Proof.

To prove the suffi ciency, note that, by Additivity, x % y if and only
if x − y % 0. Let A = {y : y % 0} and B = {y : 0 � y}. We show
that A and B are convex sets. First note that x % y implies
x % (x + y)/2 % y by Additivity and Transitivity. Hence, by
repeatedly applying this property, x % `2−kx + (1− `2−k )y % y ,
for all `, k ∈N. By Continuity, then, x % λx + (1− λ)y % y for
all λ ∈ (0, 1) (since (0, 1) is dense in binary rationals). Thus A
and B are convex sets.
Since A and B are convex sets, and A∩ B = ∅, there are
b ∈ RS\{0} and c ∈ R such that x ∈ A iff

∑
s∈S

b(s)x(s) ≥ c .

Since 0 ∈ A, c ≤ 0. By Monotonicity, −ε ∈ B for all ε > 0 which
implies that c 6< 0.



Proof.

[(cont.)] Thus x % y if

∑
s∈S

b(s)(x(s)− y(s)) ≥ 0.

Then p such that

p(s) =
b(s)

∑s ′∈S b(s ′)
, for all s ∈ S ,

is the desired probability vector.



If x % y , then the DM would be willing sell y for a lower price
than x , and buy x for a higher price than y

A Dutch book is a collection of pairs of portfolios
(x1, y1), ..., (xm , ym) ∈ RS such that (i) x i % y i for all
i = 1, ...,m, and such that (ii) ∑m

i=1 x
i (s) < ∑m

i=1 y
i (s), for

all s ∈ S
That is, a Dutch book (y1, ..., ym) can be traded against
(x1, ..., xm) with the DM that (i) would not require extra
funding for the trader and (ii) generates profit with certainty
in the future



Corollary

If % satisfies F1-F4, then a Dutch book does not exist

Proof.

Suppose that x i % y i for all i = 1, ...,m. By the theorem, there is
p such that

∑
s∈S

p(s)x i (s) ≥ ∑
s∈S

p(s)y i (s), for all i .

Thus
m

∑
i=1

∑
s∈S

p(s)x i (s) ≥
m

∑
i=1

∑
s∈S

p(s)y i (s)

or

∑
s∈S

p(s)

(
m

∑
i=1
x i (s)−

m

∑
i=1
y i (s)

)
≥ 0,

which violates part (ii) of the definition of a Dutch book.


