Decision Theory

Hannu Vartiainen FDPE

Spring 2011

Hannu Vartiainen FDPE Decision Theory

æ

Main material:

- Lectures
- Gilboa (2009), Kreps (1986)
- Selected articles
- Excerises in both Fridays
- Time table
 - First week: Classical theory
 - Second week: Modern variations
- Requirements
 - Exam/problem sets
 - Term paper

- The goal of decision theory is to understand human behavior, and to operationalize this understanding to the more general use
- Techniques formal but the emphasisis is in capturing empirical regularities

- Recent experimental and empirical evidence on human decision making, which often comes from psychology or neuroscience, has fostered much research in decision theory
- Many familiar behavioral patterns, e.g. temptation, time inconsistency or reference dependence, are seemingly in conflict with the standard decision theoretic framework
- This course surveys the central pieces of classical decision theory and some of the important recent developments
- The aim is to provide a cohesive and integrated view of the methods and arguments

- The dimensions of decision making that we are particularly interested in are its observable implications, choice under uncertainty, and intertemporal choice
- Our emphasis will be in the "rational" modeling of economic decision making which is a particularly useful approach from the perspective of applications
- We shall demonstrate that many of the seeming "biases" can be explained in this framework
- We will, however, also discuss the recent development in neuroeconomics and its potential contribution to the discipline of economics

What is rationality? Precludes delusions

What is rationality? Precludes delusions

Example (Aesop's fox)

The fox was wandering in the forest and spotted a buch of grapes hangin in a high branch. The fox jumbed but failed to reach them. Giving up, the fox lifted its nose and said "they are probably sour anyway"

What is rationality? Precludes delusions

Example (Aesop's fox)

The fox was wandering in the forest and spotted a buch of grapes hangin in a high branch. The fox jumbed but failed to reach them. Giving up, the fox lifted its nose and said "they are probably sour anyway"

Example (Groucho Marx)

I never care to join a club that accepts people like me as its members

What is rationality? Precludes delusions

Example (Aesop's fox)

The fox was wandering in the forest and spotted a buch of grapes hangin in a high branch. The fox jumbed but failed to reach them. Giving up, the fox lifted its nose and said "they are probably sour anyway"

Example (Groucho Marx)

I never care to join a club that accepts people like me as its members

Example ("Modus Ponens")

If P implies Q, and Q is fun, then P is true

What is rationality? Precludes delusions

Example (Aesop's fox)

The fox was wandering in the forest and spotted a buch of grapes hangin in a high branch. The fox jumbed but failed to reach them. Giving up, the fox lifted its nose and said "they are probably sour anyway"

Example (Groucho Marx)

I never care to join a club that accepts people like me as its members

Example ("Modus Ponens")

If P implies Q, and Q is fun, then P is true

= > desirability independent from feasibility

Can choice be predicted?Determinism vs. free will

æ

- Can choice be predicted?
- Determinism vs. free will
- Free will may be illusion, but useful illusion
- Logical positivism: any used concept in theory should be related to observables

- Popper: any theory should be falsiable => a theory should state what cannot happen (universal quantifiers)
- But then: theories are always wrong

- Popper: any theory should be falsiable => a theory should state what cannot happen (universal quantifiers)
- But then: theories are always wrong
- Postmodern view of economics (science!): objective, accurate reality is not reachable and theories rethorical devices, stories
- Communication is the key

- To convey information, one should be clear what one means
- Behavioral assumptions behind DT:
- Revealed preference
 - Maximization
 - Context independence
- Decision matrix

- Why characterization?
- Since theories are not accurate, their representation matters
- Simplicity
- Testability
- "Scientific approach"
- Consistency and independency

- Normative approach
 - A mode of behavior that people would like to see themselves following, once exposed

- Normative approach
 - A mode of behavior that people would like to see themselves following, once exposed
- Descriptive approach
 - Mode of behavior that we see people following
 - Tversky: "Given me an axiom and I'll design an experiment that refutes it"

■ Set of alternatives X and a binary relation R ⊂ X × X written often xRy and having interpretation "x stands in relation to y" if xRy

Examples

$$X = \{1, 2, 3\} \text{ and } R = \{(1, 2), (2, 3), (3, 1)\}$$

$$X = \text{Finnish citizens, } R = \{(x, y) : x \text{ is married to } y\}$$

$$X = \mathbb{R}, R = \ge$$

$$X = \{\text{commodity bundles}\}, R = \{(x, y) : x \text{ is at least as desirable as } y\}$$

Properties:

P1 (Complete) Either xRy or yRx for all $x, y \in X$

- P2 (Transitive) If xRy and yRz, then xRz for all $x, y \in X$
- P3 (Asymmetric) If xRy and yRx, then x = y for all $x, y \in X$ P4 (Reflexive) xRx for all $x \in X$
- P5 (Acyclic) If $x_0 R x_1 R \dots R x_k$, then $x_0 \neq x_k$

- Binary relation ≿ is a **preference relation** (weak order) if it is complete and transitive
- But: peanuts
- \blacksquare Completeness of \succsim implies reflexivity
- The asymmetric part of ≿, denoted by ≻, is called **strict** preference
- The strict preference relation \succ is acyclic
- \blacksquare If \succsim is complete and \succ is acyclic, then \succsim is a preference relation

• We say that a binary relation \succeq on X is **represented** by a utility function $u: X \to \mathbb{R}$ if

$$u(x) \ge u(y)$$
 if and only if $x \succeq y$

Proposition Let X be a **finite** set. Binary relation \succeq is representable by a utility function if and only if it is a preference relation (P1&P2).

Proposition Let X be a **countable** set. Binary relation \succeq is representable by a utility function if and only if it is a preference relation (P1&P2).

Example (Lexigraphic preferences)

Let $X = [0, 1]^2$ and define preferences \succeq such that $(x_1, x_2) \succ (y_1, y_2)$ if $x_1 > y_1$ or $x_1 = y_1$ and $x_2 > y_2$. Then there is no utility function that represents preferences. For suppose that u is such function. Let $r(x_1)$ be a rational number such that $u(x_1, 1) > r(x_1) > u(x_1, 0)$ for all $x_1 \in [0, 1]$. Since u represents $\succeq, r(x_1) > u(x_1, 0) > u(x'_1, 1) > r(x_1)$ for all $x_1 > x'_1$. Thus r is an onto function from [0, 1] to a subset of rational numbers. But this is impossible since the cardinality of the set of rational numbers is countably infinite whereas and that of [0, 1] is continuum, i.e. uncountably infinite.

P6 (Separability) There exists a countable set $Z \subseteq X$ such that for all $x \succ y$ there is $z \in Z$ such that $x \succeq z \succeq y$

Theorem

Let X be a set. Binary relation \succeq is representable by a utility function if and only if it is a separable (P6) preference relation (P1&P2).

Proof.

Define, for any $x, Z^*(x) = \{z \in Z : z \succ x\}$ and $Z_*(x) = \{z \in Z : x \succ z\}$. Order the elements of Z by z_0, z_1, \dots . Define $r(z_k) = 2^{-k}$ for all $k = 0, 1, \dots$, and let

$$u(x) = \sum_{z_k \in Z_*(x)} r(z_k) - \sum_{z_k \in Z^*(x)} r(z_k).$$

Since $Z^*(x)$ and $Z_*(x)$ are enumerable, both sums are well defined. Since $x \succeq y$ implies $Z^*(x) \subseteq Z^*(y)$ and $Z_*(y) \subseteq Z_*(x)$, and, by P6, $Z^*(x) = Z^*(y)$ and $Z_*(y) = Z_*(x)$ only if x = y, u represents \succeq .

 Correspondence F from an Euclidean space to another is continuous if it is both upper hemi continuous and lower hemi continuous

P7 (Continuity) Preference relation \succeq is continuous on a metric space X if $\{y \in X : y \succeq x\}$ and $\{y \in X : x \succeq y\}$ are continuous correspondences of x

Theorem

Let X be a compact subset of an Euclidean space. Binary relation \gtrsim is representable by a utility function if and only if it is a continuous (P7) preference relation (P1&P2).

Proof.

Denote by ||y - x|| the Euclidean distance between x and y, and let

$$u(x) = \int_{\{y:x \succeq y\}} dy - \int_{\{y:y \succeq x\}} dy$$

By transitivity and completeness of \succeq , $\{y : y \succeq x\} \subseteq \{y : y \succeq x'\}$ and $\{y : y \succeq x\} \subseteq \{y : y \succeq x'\}$ if $x' \succeq x$. Thus, since $\{y : y \succeq x\}$ and $\{y : x \succeq y\}$ are closed, u(x) > u(x') whenever x > x'. Thus u represents \succeq .

(Proof cont.)

Finally, since $\{y : y \succeq x\}$ and $\{y : x \succeq y\}$ are continuous correspondences, for any $\{x_k\}$ such that $x_k \rightarrow_k x$,

$$\int_{\{y:x_k \gtrsim y\}} dy \quad \to \quad k \int_{\{y:x \succeq y\}} dy$$
$$\int_{\{y:y \succeq x_k\}} dy \quad \to \quad k \int_{\{y:y \succeq x\}} dy$$

Thus *u* is continuous.

э

- The data concerning the behavior of the decision maker DM is captured by a choice function
- Prreferences, and hence utilities, can only be observed via choices
- A choice function reflects what the DM would choose in each context Y ⊆ X it is a mapping c : 2^X \Ø → 2^X such that c(Y) ⊆ Y for all Y ⊆ X
- That is, preferences are independent of the context, i.e. desirability independent of feasibility

 Define the optimal choices for the binary relation R (with asymmetric part P) by

$$c_R(Y) = \{x \in Y : \text{not } yPx \text{ for all } y \in Y\}$$

- *c_R* is a choice function if it is always empty
- Proposition Let X be a finite set. Then c_R is a choice function if and only if P is acyclic.
 - Thus observations as such do not imply completeness nor transitivity of R

What extra properties c_R need to satisfy for R to qualify as a preference relation?

Sen's α If $x \in c(Y)$ and $x \in Z \subseteq Y$ then $x \in c(Z)$

 This is equivalent to Nash's (1950) Independence of Irrelevant Alternatives and, when applied to the consumption set up

Sen's β If $x, y \in c(Y)$ and $Y \subseteq Z$ and $y \in c(Z)$, then $x \in c(Z)$

- The combination of Sen's α and β is called the Weak Axiom of Revealed Preference (WARP), after Samuelson (1938)
- Conditions are, in principle, testable

Theorem

Let X be a finite set. Choice function c satisfies Sen's α and β if and only if $c = c_{\succeq}$ for some preference relation \succeq . Moreover, this preference relation is unique.

Proof.

[Proof sketch] Define \succeq such that $x \succeq y$ iff $x \in c(\{x, y\})$. If $x \in c(Y)$, then $x \in c_{\succeq}(Y)$ by α . If $x \notin c(Z)$, then $x \notin c_{\succeq}(Z)$ by β .

Caveat: context independence the crucial meta-assumption

Example (Reference dependence)

Let preferences depend on the anticipatored choice x such that, when x is chosen preferences are $\succeq_x \subset X \times X$. Optimal choice need not exist.

- Dynamic considerations
- Behavioral economics: relax context dependence
- Multiple motivations => social choice

Example (Multi-attribute decisions)

Let DMs preferences concerning a care depend on the price, reliability, and coolness. Car x is preferred to y if x is better in terms of two of the criteria. Let preferences be

Rank	Price	Reliability	Coolness
1.	X	У	Ζ
2.	У	Ζ	X
3.	Z	X	У

No maximal choice exists.

- May's theorem: with two alternatives, the majority rule is the only anonymous with respect ti criteria, neutral with respect to the names of the alternatives, and monotone choice function
- But: Arrow!

- Recently it has become fashionable to evaluate human well being through reflect happiness measures
- Could utility functions be replaced with "happiness functions"?
- Problematic questionners
 - The order of questions
 - Correlation with weather but not when the weather is pointed out
 - Meaning of life not evaluated

- National well being is often measured through GDP or equivalent
- Can happiness be measured by wealth?
 - Easterlin paradox
 - Stimulus effect
 - Keeping up with the Joneses
- Neuroimaging