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Introduction

A group of people often have to choose collectively an
outcome in a situation in which unanimity about the the best
outcome is lacking

Need to negotiate under conflicting interests

How we as outside observers should see the situation?

How is the outcome determined?
Is the outcome objectively good?
How do the extrenal factors affect the outcome?
Where does the bargaining power come from?
How will the number of participants affect the outcome?
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Two leading approaches, both inititated by Nash 1953

Cooperative: evaluate the outcome directly in terms of the
conditions, "axioms", that a plausible outcome will satisfy
Non-cooperative: apply non-cooperative game theory to
analyse strategic behavior, and to predict the resulting outcome

An advantage of the strategic approach is that it is able to
model how specific details of the interaction may affect the
final outcome

A limitation, however, is that the predictions may be highly
sensitive to those details
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Nash Program

Nash (1953): use cooperative approach to obtain a solution
via normative or axiomatic reasoning, and justify this solution
by demonstrating that it results in an equilibrium play of a
non-cooperative game

Thus the relevance of a cooperative solution is enhanced if
one arrives at it from very different points of view

Similar to the microfoundations of macroeconomics, which
aim to bring closer the two branches of economic theory, the
Nash program is an attempt to bridge the gap between the
two counterparts of game theory (axiomatic and strategic)

Aumann (1997): The purpose of science is to uncover
“relationships”between seemingly unrelated concepts or
approaches
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Axiomatic approach

Let there be n players, a joint utility profile from a utility set
U ⊆ Rn

++

U comprehensive, compact, and convex

Collection U of all utility sets
Solution f : U →Rn

++ such that f (U) ∈ U
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Denote the (weak) Pareto frontier by
P(U) = {u ∈ U : u′ ≥ u implies u′ /∈ U}

Pareto optimality (PO): f (U) ∈ P(U), for all U ∈ U

Use the notation aU = {(a1u1, ..., anun) : (u1, ..., un) ∈ U},
for a = (a1, ..., an) ∈ Rn

Scale Invariance (SI): f (aU) = af (U), for all a ∈ Rn
++, for all

U ∈ U .
Independence of Irrelevant Alternatives (IIA): f (U ′) ∈ U and

U ⊆ U ′ imply f (U ′) = f (U), for all U,V ∈ U .

Thus if pair f (U) is ”collectively optimal” in U, and feasible
in a smaller domain, then it should be optimal in the smaller
domain, too

Let π be a permutation π : {1, ..., n} → {1, ..., n}
Symmetry (SYM): If π(U) = U, for any permutation π, then

fi (U) = fj (U) for all i , j
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Theorem

A bargaining solution f satisfies PO, SI, IIA; and SYM on U if and
only if f is the Nash bargaining solution:

f (U) = argmax
u∈U

u1 · · · un
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Strategic approach

There is a set 1, ..., n of agents, distributing a pie of size 1

Time preferences of i has the representation ui (xi )δ
t , where

xi is i’s consumption at period t, and ui is increasing,
concave, and continuously differentiable and δ ∈ (0, 1)
Unanimity bargaining game Γ: At any stage t = 0, 1, 2, ...,

Player i(t) ∈ N makes an offer x ∈ S , and players j 6= i(t)
accept or reject the offer in the ascending order
If all j 6= i(t) accept, then x is implemented, if j is the first
who rejects, then j becomes i(t + 1)
i(0) = i
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Focus on the stationary subgame perfect equilibria where:

1 Each i ∈ N makes the same proposal x(i) whenever he
proposes.

2 Each i’s acceptance decision in period t depends only on xi
that is offered to him in that period.
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Define a function vi such that

ui (vi (xi )) = ui (xi )δ, for all xi

By construction, vi (xi ) < xi , for all xi
By the concavity of ui , u′i (xi )/ui (xi ) is decreasing, strictly
positive under all xi > 0, and hence

v ′i (xi ) ∈ (0, 1)
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Lemma

There is unique x ∈ Rn
++ and d > 0 such that

xi = vi (xi + d), for all i
n
∑
j=1
xj = 1− d

Let
ci (xi ) := v−1i (xi )− xi , for all xi

ci (·) continuous and monotonically increasing and hence there
is c∗i ∈ (0,∞] such that

sup
xi≥0

ci (xi ) = c∗i
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Since ci (·) is continuous and monotonically increasing, also its
inverse

xi (y) := c−1i (y) = vi (xi (y) + y), for all y ∈ [0, c∗i ],

is continuous and monotonically increasing

Moreover, since 0 = xi (0) and ∞ = xi (c∗i ), there is, by the
Intermediate Value Theorem, a unique d > 0 such that

n
∑
i=1
xi (d) = 1
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Theorem

A stationary equilibrium of Γ exists. Moreover, it is unique

In a stationary SPE all proposals are accepted

Time does not matter: i’s offer (x1(i), ..., xn(i)) is accepted
by j if

xj (i) ≥ vj (xj (j)), for all j 6= i
Player i’s equilibrium offer x(i) maximizes his payoff with
respect to this and the resource constraint
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At the optimum, all constraints bind:

xj (i) = vj (xj (j)), for all j 6= i ,

and
n
∑
i=1
xi (j) = 1, for all j

Since i’s acceptance not dependent on the name of the
proposer, there is xi = xi (j) for all j 6= i
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Define d such that
d = 1−

n
∑
i=1
xi

Since
xi (i) = 1− ∑

j 6=i
xj = xi + d

it follows that

xi = vi (xi + d), for all i
n
∑
j=1
xj = 1− d
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Uniqueness

Stationarity needed for the result when n ≥ 3
For high enough δ, any allocation x can be supportted in SPE
Any deviant player is punished rejecting his offer
Rejection rewarded by giving the whole pie to to the rejecting
player

Rubinstein (1982): in n = 2 case, stationarity not needed
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Krishna-Serrano (1996)

Allow accepting players leave the game with their endowment
Solution must be consistent (Lensberg 1983): the equilibrium
outcome for 1, ..., k remains unchanged when k + 1, ..., n leave
with their equilibrium shares
-> Since stationary not needed for 2-player problems, by
consistency, it is not needed for 3-player problems, etc.

Stationarity can be motivated by complexity considerations
(Chatterjee-Sabourian 2000)
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Relationship to the Nash solution

For any i ,

ui (xi + d)∏
i 6=j
uj (xj ) = δ−1 ∏ ui (xi )

Thus, depending on the initial proposer i , all stationary SPE
outcomes lie in the same hyperbola

Binmore-Rubinstein-Wolinsky (1986): Since d → 0 as δ→ 1 :

Theorem

The stationary SPE outcome of Γ converges to the Nash solution
as δ→ 1
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General utility set

Let bargaining take place in a comprehensive utility set
U ⊆ Rn

++

Let boundary of U be smooth

Britz-Herings-Predtetchinski (2010), Kultti-Vartiainen (2010):
stationary SPE converge to the (asymmetric) Nash solution

Hannu Vartiainen Mechanism Design view to the Nash Program



Time preferences

Utility functions represent preferences

But what kind of preferences do the intertemporal utilities
represent? Does the Nash solution have an interpretation in
terms of them?

Let pie be divided at any point of time T = R+ and denote
by X = {(x1, x2) ∈ R+ : x1 + x2 ≤ 1} the possible allocations
of the pie

Let (complete, transitive) preferences over X × T satisfy, for
all x , y ∈ S , for all i ∈ N, and for all s, t ∈ T , satisfy
(Fishburn and Rubinstein, 1982):

A1. (x , t) �i (0, 0)
A2. (x , t) �i (y , t) if and only if xi ≥ yi
A3. If s > t, then (x , t) �i (x , s), with strict preference if xi > 0
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A4. If (xk , tk ) �i (y k , sk ) for all k = 1, ..., with limits
(xk , tk )→ (x , t) and (y k , sk )→ (y , s), then (x , t) �i (y , s)

A5. (x , t) �i (y , t + ∆) if and only if (x , 0) �i (y ,∆), for any
t ∈ T , for any ∆ ≥ 0
Under A1-A5, there is function vi such that (y , 0) ∼i (x , t) if
vi (xi , t) = yi , for all x , y

For any δ ∈ (0, 1) there is also ui such that (y , 0) ∼i (x , t) if
and only if ui (yi ) = ui (xi )δ

t
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A6. xi − vi (xi , t) is strictly increasing in xi
Alternative interpretation of the Nash solution (cf.
Rubinstein-Safra-Thomson 1992): x is the Nash solution if for
any y and for any t > 0 it holds true that vi (yi , t) > xi
implies vj (xj , t) ≥ yj
Under A1-A6, the Nash solution does exist and is equivalent
with there being a maximizer of the product u1(x1)u2(x2),
where (u1, u2) is the representation of the intertemporal
preferences

Note that this does not require that ui concave -> A1-A6
weaker set of assumptions than the concavity of ui s, usually
assumed in the literature

Convergence without additional assumptions concerning the
utility representation
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Exact implementation

But the convergence result approximate: only holds when
δ→ 1 (or the time span betnween offers vanishes)

Exact implementation of the Nash solution: Howard (1992)

Implementing the other solutions

Kalai-Smorodinsky: Moulin (1984)
Shapley: Gul (1989), Perez-Castrillo-Wettstein (2001)
The Core: Serrano-Vohra (1997), Lagunoff (1994)
Bargaining set: Einy-Wettstein (1999)
Nucleoulus: Serrano (1993)
etc...

Do strategic considerations put any restrictions on what can
be implemented?
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Implementation foundations

The most natural notion of strategic interaction: the Nash
equilibrium

Which solutions can be implemented in Nash equilibrium?

Implementation theory: studies general conditions under
which an outcome functions - e.g. a bargaining solution - can
be implemented non-cooperatively
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Nash implementation - impossibility

Let n = 2

There is a pie of size 1, to be shared among the two players
with x ∈ [0, 1] denoting a typical share of player 1, and 1− x
the share of player 2

U comprises all continuous and strictly increasing vNM utility
functions ui : [0, 1]→ R normalized such that ui (0) = 0 for
all ui ∈ U
Denote the set of lotteries on [0, 1] by ∆
Expected payoff from a lottery p ∈ ∆

u1(p) =
∫
[0,1]

p(x)u1(x)dx

u2(p) =
∫
[0,1]

p(x)u2(1− x)dx
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Bargaining solution (BS) f : U2 → [0, 1] specifies an outcome
for each pair of utility functions where f (u) is the share of
player 1 and 1− f (u) the share of 2 under profile u = (u1, u2)
A game form Γ = (M1 ×M2, g) consists of strategy sets
M1 and M2, and an outcome function g : M1 ×M2 → ∆
Given u = (u1, u2), the pair (Γ, u) consititues a normal form
game with the set of Nash equilibria NE (Γ, u)
Mechanism Γ Nash implements bargaining solution f if, for all
u ∈ U2,

g(NE (Γ, u)) = f (u)
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Denote the lower contour set of i at q ∈ ∆ under u ∈ U2 by

Li (q, u) = {p ∈ ∆ : ui (q) ≥ ui (p)} ,

BS f is Maskin monotonic if for all pairs u, u′, if x ∈ f (u′)
and Li (x , u′) ⊆ Li (x , u), for i = 1, 2, then x ∈ f (u)
Maskin (1999, first version 1977): f Nash implementable only
if it is Maskin monotonic

Which bargaining solutions are Maskin monotonic?
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Maskin monotonicity implies that there has to be a preference
reversal from u to u′ if x ∈ f (u)\f (u′)
BS f is scale invariant if f (u) = f (αu), for all α ∈ R2

++, for
all u ∈ U2

Lemma

Any Maskin monotonic BS f is scale invariant

Thus BS f Nash implementable only if it scale invariant
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BS f is symmetric if u1(f (u1, u2)) = u2(1− f (u1, u2))
whenever (w1,w2) = u(x) for some x implies that there is x ′

such that (w2,w1) = u(x ′)
Note that, as we require that no pie is wasted, our BS f is
automatically Pareto optimal: f1(u) + f2(u) = 1 for all
u ∈ U2
Nash bargaining solution

f N (u) = argmax
[0,1]

u1(x)u1(1− x)

Lemma

Let f be a (Pareto optimal and) symmetric BS. If f can be Nash
implemented, then f N (u) = f (u) for all u ∈ U2.

Proof: Given that f must be scale invariant, replace IIA with
Maskin monotonicity in the proof of Nash’s theorem (see
Vartiainen 2007 for details)
Can the Nash bargaining solution be Nash implemented?
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Let u1(x) = x and u2(1− x) = 1− x
Then f N (u) = 1/2
Perform a Maskin monotonic transformation of 1’s utility by
choosing uε

1(x) = x for x ∈ [0, 1/3], and
uε
1(x) = 1/3+ ε(x − 1/3) for x ∈ (1/3, 1]
For small enough ε > 0, f N (uε

1, u2) = 1/3

Lemma

The Nash bargaining solution f N cannot be Nash implemented

Theorem

No Pareto optimal and symmetric BS f can be Nash implemented
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Virtual implementation - possibility

We construct a canonical mechanism (cf. Moore-Repullo
1988; Dutta-Sen1988) ) that Nash implements any strictly
individually rational BS

Let Γ∗ = (M∗, g ∗) satisfy M∗1 = M
∗
2 = U

2 × ∆×N with
typical elements (u1, q1, k1) and (u2, q2, k2), respectively, and

1 g∗(m1,m2) = f (u) if u1 = u2 = u
2 g∗(m1,m2) = qi if qi ∈ Li (f (uj ), uj ), u1 6= u2, and k i > k j
3 g∗(m1,m2) = 1 if k1 > k2 and g∗(m1,m2) = 0 if k2 > k1

4 g∗(m1,m2) = (0, 0), in all other cases
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We claim that Γ∗ Nash implements any Maskin monotonic BS
Let u = (u1, u2) be the true utility profile

It cannot be the case that (1) holds under u1 = u2 = u′ 6= u
and k1 = k2 = 0 since, by (2), there would be
qi ∈ Li (f (u′), u′)\Li (f (u), u) such that k i > 0 that would
consistute a profitable deviation for i
It cannot be the case that (2) holds since, by (3), k j > k i

would consititute a profitable deviation for j
It cannot be the case that (3) holds since one of the players
would have a profitable deviation
It cannot be the case that (4) holds since, as a strictly
individually rational BS chooses f (u) ∈ (0, 1) and, hence, by
(1) i would have a profitable deviation ui = uj
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Thus the only possible Nash equilibrium is u1 = u2 = u which
implements f (u)

Lemma

Any strictly individually rational BS f can be Nash implemented if
it is Maskin monotonic
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Take any strictly individually rational f and let f ε satisfy

f ε(u) = implement f (u) with probability 1− ε

and the uniform lottery over [0, 1] with prob. ε

The expected payoff to i

u1(f ε(u)) = (1− ε)u1(f (u)) + ε
∫
[0,1]

u1(x)dx

u2(f ε(u)) = (1− ε)u2(f (u)) + ε
∫
[0,1]

u2(1− x)dx

We argue that f ε is Maskin monotonic for any ε > 0
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Since any implementable BS is scale invariant, we may
normalize the situation such that ui (0) = 0 and ui (1) = 1

Take u1 6= u′1 and find an open interval (a, b) ⊆ [0, 1] such
that u1(x) > u′1(x) for all x ∈ (a, b), or u1(x) < u′1(x) for all
x ∈ (a, b)
Assume, for simplicity, that a = 0 and b = 1 (otherwise,
modify f ε only under (a, b) and not under (0, 1))

We shall show that L1(f ε(u), u)\L1(f ε(u), u′1, u2) is not
empty, implying that f ε automatically satisfies Maskin
monotonicity

There are two cases to consider
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Case u1 > u′1 : Find ξ ∈ (0, 1) such that∫
[0,1]

u1(x)dx = u1(ξ)

Modify f ε by constructing a lottery

qξ = implement f (u) with prob. 1− ε and ξ with prob. ε

By construction qξ ∈ L1(f ε(u), u) and qξ 6∈ L1(f ε(u), u′1, u2)
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Case u1 < u′1 : Find π ∈ (0, 1) such that∫
[0,1]

u1(x)dx = π

Construct a lottery

qπ = implement f (u) with prob. 1− ε and 1 with prob. πε}

By construction qπ ∈ L1(f ε(u), u) and qπ 6∈ L1(f ε(u), u′1, u2)
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Thus in either case, f ε satisfies Maskin monotoncity

Since ε > 0 is arbitrariliy small, any strictly individually
rational BS can be virtually implemented - with arbitrary
precision

Problems:

Optimally small deviation from exact implementation?
Machanism uses an integer construction, and is hence
"unreasonable"
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Exact implementation with reasonable mechanism

Miyagawa (2002): simple mechanism that implements a large
class of solutions

Define a solution f W by

f W (u) = argmax
x∈X

W (u1(x), u2(x))

where W : [0, 1]2 → R is continuous, monotonic and
quasi-concave

The set of functions W satisfying these conditions is denoted
by W
The function W may be interpreted as the objective function
of the arbitrator

E.g. Nash, Kalai-Smorodinsky
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Mechanism ΓW

1 In stage 1, agent 1 announces a vector p ∈ [0, 1]2 such that
p1 + p2 ≥ 1

2 Having observed p, agent 2 makes a counter-proposal
p′ ∈ [0, 1]2 such that W (p1, p2) = W (p′1, p′2)

3 The agent who moves in the next stage, i , is then determined
based on whether 2 agrees (p = p′) or disagrees (p 6= p′)

If 2 agrees, then he moves next (i = 2)
Otherwise, 1 moves next (i = 1)

4 Agent i then chooses either "quit" or "stay," and then
announces a lottery ai

If he chooses to "quit," then the game ends with p′ai as the
outcome
If agent i chooses to "stay," then agent j 6= i either "accepts"
ai , in which case the outcome is ai , or he selects another
lottery a′j in which case the outcome is p

′
ja
′
j
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Theorem

For each W ∈ W , game form ΓW implements solution f W in
subgame-perfect equilibrium.

Thus any reasonable solution can be implemented

The true test is not whether a solution is consistent with
rational play, but whether its implementation can be justified
with a intuitively appealing (= simple, used in the real
world,...) mechanism

But then the question of finding a good solution is changed to
one finding a good mechanism - do the problems really differ
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