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Choice under uncertainty

Uncertainty an unsepararable part of individual decision
making

But what is uncertainty?

This far, there has no need to distinguish actions and
consequences
Undcertainty does, by definition, separate the two: the
correspondence between actions and consequences is going to
be stochastic

How should a "rational" decision maker value different
lotteries over consequences?
Not an obvious thing to do
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Example (St Petersburg paradox, Bernoulli 1738)

How much would you pay for a gamble where one tosses a fair coin
until one wins and after each toss, the prize money doubles?

The paradox: one is usually(!) willing to pay only limited price
for the lottery whereas the expected monetary value is

2 · 1
2
+ 22 · 1

22
+ 23 · 1

23
+ ... = 1+ 1+ 1+ ... = ∞

...hence one has to maximize the expected utility value of the
money

For example, with utility function u(x) = log2 x , then the
value of the gamble is 1
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Uncertainty

The aim here is develop systematically a theory that allows us
to assess the value of different lotteries

Let there be a set X (finite, for simplicity) of consequences or
outcomes

Uncertainty is reflected by a lottery p over X , which is just a
probability distribution such that

p(x) ≥ 0, for all x ∈ X and ∑
x∈X

p(x) = 1

For any two lotteries p and q, and parameter λ ∈ [0, 1],
denote by λ · p + (1− λ) · q the mixed lottery such that

(λp + (1− λ)q)(x) = λ · p(x) + (1− λ)q(x), for all x ∈ X
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Denote the degenerate lottery that puts all the probablity
mass on the consequence x by 1x
The decisions then concern feasible lotteries, and hence the
preference relation should be defined over the lottery space

L =

{
p ∈ R

|X |
+ : ∑

x∈X
p(x) = 1

}

The observable choices % are now defined over L, i.e.
%⊂ L× L
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Expected utility maximization

Rationality implies that the decision maker’s preferences % are
complete and transitive
In particular, the agent has well defined preferences over the
pure outcomes {1x : x ∈ X}
But all complete and transitive preferences plausible?
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Examples

(bad examples)

Preference for certainty: p % q iff maxx p(x) ≥ maxx q(x)
But this is independent of the consequences!

Avoidance of the worst case: p % q iff
minx{1x : p(x) > 0} % minx{1x : q(x) > 0}

But this is very sensitive to changes in probabilities and ignores
what happens to the probablilities of outcomes other than the
worst case!

Comparing most likely consequences: p % q iff
1x (p) % 1x (q) where x(p) = maxx p(x) and x(q) = maxx q(x)

But this is again very sensitive to changes in probabilities and
ignores what happens to the probabilities of the outcomes
other than x(p) and x(q)!
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Objective: to impose conditions on preferences that avoid the
obvious pitfalls in evaluating lotteries

NM1 (Continuity) For all p, q, r ∈ L, if p � q � r , then there are
λ, µ ∈ (0, 1) such that
λ · p + (1− λ) · r � q � µ · p + (1− µ) · r

Equivalently, the upper and lower contour sets of % are closed

Continuity axiom is occasionally called the "Archimedean
axiom"
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The following condition implies that a choice between two
lotteries should be independent from the probability that this
comparison is actually conducted

If two lotteries are changed in the same way, their relative
ranking should not change

NM2 (Independence) For all p, q, r ∈ L and λ ∈ (0, 1), if p % q
then λ · p + (1− λ) · r % λ · q + (1− λ) · r

A direct implication of independence is that if p ∼ q, then
λ · p + (1− λ) · r ∼ λ · q + (1− λ) · r , for any λ ∈ (0, 1)
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Lemma

If a preference ordering % satisfies independence (NM2), then

p % q if and only if

λ · p + (1− λ) · q % λ′ · p + (1− λ′) · q, for all λ ≥ λ′
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Proof.

By independence, for any λ ∈ (0, 1)

λ · p + (1− λ) · q % λ · q + (1− λ) · q = q.

Applying this with respect to µ ∈ (0, 1),

λ · p + (1− λ) · q % µ · (λ · p + (1− λ) · q) + (1− µ) · q
= µλ · p + (1− µλ) · q.

By choosing µ = λ′/λ, the result ensues.
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Lemma

If a preference ordering % satisfies continuity (NM1), and
independence (NM2), then for any p � q � r there is a unique
α ∈ (0, 1) such that α · p + (1− α) · r ∼ q

Proof.

Consider sets {λ ∈ [0, 1] : α · p + (1− α) · r � q} and
{λ ∈ [0, 1] : q � α · p + (1− α) · r}. By construction, the sets are
disjoint. By the previous lemma, they are intervals and, by
continuity, open. Hence they do not cover [0, 1], and there is an
element α of [0, 1] not in {λ ∈ [0, 1] : α · p + (1− α) · r � q} or
{λ ∈ [0, 1] : q � α · p + (1− α) · r}. By construction,
α · p + (1− α) · r ∼ q. By the previous lemma, α is unique.
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Theorem

(von Neumann and Morgenstern 1944) Let X be a finite set. Then
If a preference ordering % satisfies NM1-NM2 if and only if there is
a function u : X → R such that

∑
x∈X

p(x)u(x) ≥ ∑
x∈X

q(x)u(x) if and only if p % q.

Moreover, the function u is unique up to positive linear
transformation
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Proof.

Identify x∗ and x∗ such that

1x ∗ % 1x % 1x∗, for all x ∈ X

By Lemmata 4 and 3 there is, for any x ∈ X , a unique αx such that

1x ∼ αx · 1x ∗ + (1− αx ) · 1x∗

Any lottery p can be written as a mixture

p = p(x) · 1x + (1− p(x)) · px

where

px (y) =
p(y)

1− p(x) , for all y ∈ X\{x}
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Proof.

[cont.] By independence,

p ∼ p(x)[αx · 1x ∗ + (1− αx ) · 1x∗ ] + (1− p(x)) · px

By induction on the cardinality of X ,

p ∼∑
x
p(x)[αx · 1x ∗ + (1− αx ) · 1x∗ ]

or, equivalently,

p ∼
(

∑
x
p(x)αx

)
· 1x ∗ +

(
1−∑

x
p(x)αx

)
· 1x∗

By choosing u(x) = αx for all x ∈ X , and by Lemma 3,

p % q if and only if ∑
x
p(x)u(x) ≥∑

x
q(x)u(x).
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Proof.

[cont.] To see the uniqueness, note that for any representation v of
preferences %,

v(x) = αxv(x∗) + (1− αx )v(x∗), for all x ∈ X

Find a ∈ R++ and b ∈ R such that

v(x∗) = au(x∗) + b and v(x∗) = au(x∗) + b

Since also

u(x) = αxu(x∗) + (1− αx )u(x∗), for all x ∈ X

it follows that

v(x) = αx [au(x∗) + b] + (1− αx )[au(x∗) + b]

= a[αxu(x∗) + (1− αx )u(x∗)] + b

= au(x) + b
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Provides a definition of a utility function (sometimes called
Bernoulli utility function); it represents preferences over
lotteries

Now also the intensities, or the curvature of u, matters

However, again, no conclusion about "real" utilities should be
drawn, there are infinitely many representations

Gives a justification for the expected utility maximization
(rather than, say, median)

Normative argument: if the axioms are accepted, there has to
be a (Bernoulli) utility function
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In the proof we used an induction argument

Without finiteness of X , the indictive step requires further
assumption

The expected utility theory is very useful for modeling
purposes and for normative argumentation

However, it does less well in experiments
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Example (Kahnemann and Tversky 1979)

(orignally due to Allais, 1953) There are two choice scenarios:

1 Choice between lotteries

1 0.33 · 2500+ 0.66 · 2400+ 0.01 · 0
2 1 · 2400

2 Choice between lotteries

1 0.33 · 2500+ 0.67 · 0
2 0.34 · 2400+ 0.66 · 0

Of the subjects, 82% chose 1a and 83% chose 2a which
means that at least 65% chose both 1b and 2a
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Example (cont.)

However, there is no utility function u that is consistent with the
choices and expected utility maximization:

0.33 · u(2500) + 0.66 · u(2400) + 0.01 · u(0) < u(2400)

and

0.33 · u(2500) + 0.67 · u(0) > 0.34 · u(2400) + 0.66 · u(0)

i.e.
0.66 · (u(2400)− u(0)) < 0.66 · (u(2400)− u(0))
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Application: Risk Aversion

Assume that X = R+, and interpret x as "money"

Let vNM preferences % over simple lotteries L (with finite
support, for simplicity) be represented by a utility function
u : R+ → R

What are plausible assumptions concerning u?
More money is strictly better u(x) > u(y) if x > y
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Risk

From now on, consequences are monetary amounts: x ∈ R+

is the final wealth of the decision maker

Analyze different u : R+ → R

p denotes the distribution function of a monetary lottery
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By the expected utility theorem:

U(p) = ∑
x≥0

u(x)p(x),

When do the integrals and sums above converge? (cf.
St.Petersburg’s paradox)
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When considering expected utility, we can consider variations
in each of these two components.

1 Risk attitudes: Fix p and compare different u
2 Riskiness of lotteries: Fix u and compare different p

Definition

The certainty equivalent c(p, u) of a lottery p for a decision
maker with utility function u is defined by

u(c(p, u)) = ∑
x
u(x)p(x)
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We can discuss attitudes towards risk by comparing the
certainty equivalents of a fixed lottery under different utility
functions

Definition

A decision maker with a utility function u is risk averse if, for all p,

c(p, u) ≤∑
x
xp(x)

Proposition

Utility function u is risk averse if and only if it is concave
(exercise, use Jensen’s inequality)

Risk loving attitudes are defined with the opposite inequalities
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Can second derivatives be used to measure risk aversion? But
not robust against linear transformations of u!

Definition

The Arrow-Pratt measure of absolute risk aversion, rA(x , u) of
utility function u at wealth level x is given by:

rA(x , u) = −
u′′(x)
u′(x)

.

rA(x , u) reflects the curvature of u at x without accounting
linear transformations

The following results shows that rA(x , u) is a good measure of
risk aversion
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When is u1 unambigiously more risk averse than u2?

Proposition

The following are equivalent:
i) rA(x , u2) ≥ rA(x , u1) for all x
ii) c(p, u2) ≤ c(p, u1) for all p
iii) There is a concave function φ(·) such that u2(x) = φ(u1(x))

The more-risk-averse-than relation is a partial ordering of
utility functions: it is not possible compare all u and u′ in this
sense
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Do wealthier individuals take bigger risks than others?

Definition

u exhibits decreasing (constant) absolute risk aversion, DARA,
(CARA, resp.) if rA(x , u) is a decreasing (constant, resp.) function
of x

If u exhibits DARA, then the decion maker is less sensitive
towards risk when his wealth increases, i.e. he is willing to pay
less to get rid of risk as his wealth increases

The family of utility functions exhibiting CARA is given by the
following conditions: there is a constant λ such that
λ = −u′′(x)/u′(x) for all x , and there are a > 0 and b such
that for all

u(x) = −ae−λx + b
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If u exhibits DARA, then , for any x2 < x1 there is a concave
function φ(·) such that φ(u(x1 + z)) = u(x2 + z) for all z

Alternatively, if ux (z) = u(x + z) for all z , then
x − c(p, ux ) is decreasing in x , for any p
Thus a person with DARA utility function is less risk-averse
when richer
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A stronger condition: u exhibits decreasing (constant)
relative risk aversion, DRRA, (CRRA, resp.) if
rR (x , u) := xrA(x , u) decreases in x
Requires decreasing risk aversion subject to proportional
gambles: e.g. willingness to risk all ones wealth to double it

Strong condition, DRRA implies DARA:
r ′A(x , u) < −rA(x , u)/x for all x
Plausible and often verified empirically

But: Rabin’s paradox
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Example (Rabin’s paradox)

Assume weak risk aversion, e.g. DARA with

1
2
u(x − 10) + 1

2
u(x + 11) ≤ u(x), for all x ∈ R+

i.e. gamble of losing 10€ and winning 11€ with equal probability
is weakly rejected at all wealth levels. Often observed in calibration
excercises. Can this be a general phenomenon?
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Example

If yes, then, for all wealth levels x

u(x − 10)− u(x) ≤ u(x + 11)− u(x)

or
u(x − 10)− u(x)

10
≤ 10
11
· u(x + 11)− u(x)

11
.

Thus the marginal utility u′ drops by at least 10/11 in every
additional 21€.
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Example

But then, adding 1000€ to the DM’s wealth would mean that
the decision maker”s marginal value of a € drops by
proportion (

10
11

)1000/21

= 0.012.

Moreover, there is no compensating prize M that would
render acceptable a gamble, where one loses 100€ with
probability 1/2 and wins prize M with probability 1/2!

5

∑
t=1

(
10
11

)t
≤

T

∑
t=6

(
10
11

)t
, for all T

Hence global risk aversion is not a plausible story

The importance of reference dependence
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How do changes in the distribution affect expected payoff?

Distribution p first order stochastically dominates q if
∑x≤y p(x) ≤ ∑x≤y q(x) for all y

This is equivalent to saying that, for all nondecreasing
functions u,

∑
x
u(x)q(x) ≥∑

x
u(x)p(x)

Thus if p first order stochastically dominates q, the expected
value from p is higher, i.e. shifting probability mass forward
increases expected payoff
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But first order stochastic dominance may concern the mean
values of the lotteries and hence be independent of their risk
properties

Distribution p second order stochastically dominates q if
they have the same mean

∑
x
xp(x) = ∑

x
xq(x),

and for all y ≥ 0 we have

∑
x≥y

p(x) ≥ ∑
x≥y

q(x)

Shift from p to q is a mean preserving spread, disliked by
any risk-averter
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