Lecture notes 3: Production

æ

・聞き ・ ヨキ・ ・ ヨキ

Producer theory

- Start with a single firm facing given prices
- Need to describe the technology of the firm
- Exogenous: prices
- **Endogenous**: output and input demands
- Aim to understand the optimal production decision of the firm
 - No attention to organizational nor stratgic aspects
 - Objective to have a model that can be transferred in it its pure form to general equilibrium framework
- Comparative statics involve only substitution effects

Primitives:

- Firm with one production good
- Input space \mathbb{R}^{K}
- Production function

$$f: \mathbb{R}_+^K \to \mathbb{R}_+$$

summarizes of the technologically feasibe output/input combinations

Axiom

Production function f is continuous, strictly increasing and quasiconcave

• With output price p > 0 and input prices $w = (w_1, ..., w_K)$, where $w_k > 0$ for all k, **profit** is

$$pf(y) - w \cdot y$$

for any $y \in \mathbb{R}^K_+$ (use the dot product notation $w \cdot y = \sum_k w_k y_k)$

The firm's objective is to maximize profits, i.e. to maximize the size of the owner's budget set

Optimal production

The problem reduces to

$$\max_{y \in \mathbb{R}^{K-1}_+} pf(y) - w \cdot y \tag{1}$$

• Letting y(p, w) denote the optimal choice(s) at prices (p, w),

$$\pi(p, w) = pf(y(p, w)) - w \cdot y(p, w)$$

is the profit function of the firm

Assuming an interior solution (y_k > 0 for all k = 1, ..., K),
 FOCs of the optimum y(p, w) can be written

$$\frac{\partial f(y(p,w))}{\partial y_k} = \frac{w_k}{p}, \quad \text{ for all inputs } k, j$$

Marginal rate of technological substitution:

$$MRTS_{kj} = \frac{\partial f(y(p, w)) / \partial y_k}{\partial f(y(p, w)) / \partial y_j}, \quad \text{for all inputs } k, j$$

signifies the slope of the isoquant $\{y \in \mathbb{R}_+^{K-1} : f(y) = q\}$ at q = f(y(p, w))

At the optimum,

$$MRTS_{kj} = rac{w_k}{w_j}$$
, for all inputs k, j

- Suppose one observes the profit of the firm and prices, can we deduce the production function and the optimal production?
- Using the envelope argument:

Proposition (Hotelling's Lemma)

$$\begin{array}{lll} \displaystyle \frac{\partial \pi(p,w)}{\partial p} & = & f(y(p,w)) \\ \displaystyle \frac{\partial \pi(p,w)}{\partial w_k} & = & -y_k(p,w), & \text{ for all inputs } k \end{array}$$

Hence the profit function π(p, w) is decreasing in w_k, increasing in p

• A function
$$g : \mathbb{R}^K \to \mathbb{R}_+$$
 is convex if $tg(x) + (1-t)g(x') \ge g(tx + (1-t)x')$ for all $x, x' \in \mathbb{R}^K$, for all $t \in (0, 1)$

Proposition

The profit function $\pi(p, w)$ is a convex function in (p, w)

Proof.

First, for any (p, w), (p', w') and (p'', w''),

$$\pi(p, w) = pf(y(p, w)) - w \cdot y(p, w)$$

$$\geq pf(y(p'', w'')) - w \cdot y(p'', w'')$$

and

$$\begin{aligned} \pi(p', w') &= p' f (y(p', w')) - w' \cdot y(p', w') \\ &\geq p' f (y(p'', w'')) - w' \cdot y(p'', w'') \end{aligned}$$

Proof.

(cont.) Hence

$$t\pi(p',w') + (1-t)\pi(p',w')$$

$$\geq t[pf(y(p'', w'')) - w \cdot y(p'', w'')] \\ + (1-t)[p'f(y(p'', w'')) - w' \cdot y(p'', w'')]$$

/₽ ► < ∃ ►

$$= [tp + (1-t)p']f(y(p'', w'')) -[tw + (1-t)w'] \cdot y(p'', w'')$$

Since this holds for any (p'', w'') it holds in particular when (p'', w'') = t(p, w) + (1 - t)(p', w'), which gives the result.

• Using Hotelling's Lemma, by the concavity of π ,

$$\begin{array}{lll} \displaystyle \frac{\partial f(y(p,w))}{\partial p} & = & \displaystyle \frac{\partial^2 \pi(p,w)}{(\partial p)^2} \geq 0 \\ \\ \displaystyle \frac{\partial y_k(p,w)}{\partial w_k} & = & \displaystyle -\frac{\partial^2 \pi(p,w)}{(\partial w_k)^2} \leq 0, \quad \text{for all } k = 1, ..., K-1 \end{array}$$

Interpretation:

- If the price of an output increases, then the supply increases: "Law of Supply"
- If the price of an input increases, the demand for the input decreases: "Law of Input Demand"

For each quantity of output, q, find the least costly input combination that yields q:

$$\min_{\substack{y \in \mathbb{R}_{+}^{K-1}}} w \cdot y$$
s.t. $q = f(y)$

- Denote the solution by z (w, q), i.e. the conditional factor demand function
- The value function, c(w, q), is called the **cost function**

$$c(w,q) = w \cdot z(w,q)$$

• z(w, q) is completely analogous to h(p, u) in consumer theory and c(w, q) is analogous to e(p, u)

Proposition

The cost function c(w, q) is increasing in q, concave in w, increasing in p, and homogenous of degree zero.

Proof.

We show that c is increasing in q. Note that c(w, q) minimizes the Lagrangian

$$\mathcal{L}(w,q) = w \cdot y - \lambda[f(y) - q].$$

Hence

$$c(w,q) = w \cdot z(w,q) - \lambda[f(z(w,q)) - q].$$

By the envelope theorem

$$\frac{\partial c\left(w,q\right)}{\partial q} = \lambda$$

Proof.

(cont.) Since, at the optimum,

$$w_{k} = \lambda \frac{\partial f(z(w,q))}{\partial y_{k}}$$

it follows that

$$\frac{\partial c(w,q)}{\partial q} = \left(\frac{\partial f(z(w,q))}{\partial y_k}\right)^{-1} w_k \ge 0$$

æ

- ● ● ●

...back to optimal production

- Given the notion of cost function, the problem of the firm simplies remarkably: just find the optimal level of output!
- That is, given p and w, the firm's objective is to solve

$$\max_{q\in\mathbb{R}_{+}}pq-c\left(w,q\right)$$

The first order condition for this the familiar:

1

$$p = rac{\partial c(w,q)}{\partial q}$$

i.e., at the firm's optimum, the marginal cost equals the price

- Once the cost minimizing input is determined, the problem of optimal production becomes one dimensional
- We can write by q^S(p) the optimal output of the firm, given the output price p (and the input prices w)
- Then $q^{S}(\cdot)$ is the firm's supply function

- The utility function *u* only represents preferences ≿ and cannot be observed even in principle: multiple respresentations
- Production function f is a unique description of the technology and, in principle, observable
- Conclusion: Not only ordinal but also cardinal differences have meaning under f, e.g. concavity of f matters!