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Consumer with preferences

Up to now, all discussion concerning the economic agent has
been completely general

Now we turn to an economically important special case: the
consumer, who makes choices over feasible combinations of
commodities

In these notes, we lie down the standard axioms imposed on
consumer behavior and study their implications

The model is used when we turn to modeling markets
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We take X = RL
+, the set of all possible combinations of L

distinct commodities indexed by ` = 1, ..., L

An element x1, ..., xL of X is called a bundle, where x` is the
quantity of good `

In addition to those implied by rationality (transitivity,
completeness), we impose some extra conditions on
preferences that facilitate meaningful comparison between the
bundles and guarantee the induced choice is "well behaved"
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Monotonicity

Monotonicity is the condition that gives the commodity the
meaning of a "good": more is better

Axiom (Monotonicity)

Preferences % are monotonic if, for all x , y ∈ X ,

x` > y`, for all ` imply x � y
x` ≥ y

`
for all ` imply x % y

It is important that monotonicity does not restrict preferences
at all in cases where the quantity of at least one good
decreases
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Graphically, monotonicity precludes the possibility that
indifference set I (x) such that

I (x) = {y ∈ X : y ∼ x}

does not contain segment that "bends upward" and that I (x)
lies above I (y) whenever x � y

Examples

Let L = 2. Monotonic preferences:

(x1, x2) % (y1, y2) if min{x1, x2} ≥ min{y1, y2} (Leontief)
(x1, x2) % (y1, y2) if xα

1 x
β
2 ≥ y α

1 y
β
2 , α, β > 0 (Cobb-Douglas)

(x1, x2) % (y1, y2) if v(x1) + x2 ≥ v(y1) + y2, for increasing
v(·) (quasi-linear)
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A weaker axiom with similar spirit:

Axiom (Nonsatiation)

Preferences % are locally nonsatiated if for all x ∈ X and for all
δ > 0, there exists y ∈ X such that

‖y − x‖ < δ and y � x .

Local nonsatiation is implied by monotonicity but not vice
versa

Graphically, local nonsatiation implies that the indifference set
I (x) = {y ∈ X : y ∼ x} is in fact a curve, containing no
L−dimensional balls
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Convexity

Rationality, continuity, and monotonicity guarantee that
indifference curves are downward sloping but may have kinks,
i.e. moving towards a preferred bundle may actually make the
agent worse off

The next condition guarantees this will never happen

Axiom (Convexity)

Preferences % are convex if for all x , y ,∈ X and for all λ ∈ [0, 1],

x % y implies (λx + (1− λ)y) % y

They are strictly convex if for all x , y ,∈ X and for all λ ∈ (0, 1),

x % y implies (λx + (1− λ)y) � y
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Characterization

Recall the notion of continuous preferences

Axiom (Continuity)

Preferences % are continuous if, for all x ∈ X, the upper and
lower contour sets % (x) and - (x) are closed

Continuity implies that the indifference curves are continuous

Debreu’s Theorem states the existence of a continuous utility
function when preferences are continuous
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A useful way to construct a continuous utility function when
preferences are also monotonic: find (exercise), by continuity,
a function t(x) such that x ∼ (t(x), ..., t(x)) for all x

Proposition

Let rational preferences on X be continuous, convex and
monotonic. Then u(x) = t(x) for all x represents the preferences.

Proof.

Let x % y . Then (t(x), ..., t(x)) % (t(y), ..., t(y)). By
monotonicity t(x) ≥ t(y), i.e. u(x) ≥ u(y).

In particular, the constructed u is also continuous
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Consumer’s problem

We have constructed the consumer preferences on the set of
consumption bundles X = RL

+

We are mainly interested choices in "economic domains",
where the consumer’s feasible sets are characterized by his
consumable income w , and prices p1, ..., pL (nonnegative
numbers) of the commodities

Formally, given an income w of the consumer and a price
vector p = (p1, ..., pL) ∈ RL

+, the budget set of the
consumer is defined by

B(w , p) =
{
x ∈ RL

+ : ∑L
`=1 p`x` ≤ w

}
B(w , p) is a compact (= closed and bounded) and convex set
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The task of finding the % −optimal consumption bundle from
B(w , p) is referred as the consumer’s problem
When the preferences are monotonic, then any optimal
consumption bundle x∗ satisfies Walras’Law: lies in the
budget line ∑` p`x

∗
` = w

Remark

If % is continuous, then there is an optimal consumption bundle x
in B(w , p)

Proof.

% (x) ∩ B(p,w) is nonempty compact set for all x ∈ B(w , p) and
% (x) ∩ B(p,w) ⊆% (y) ∩ B(p,w) for all x % y . If
∩x∈B (p,w ) % (x) ∩ B(p,w) is empty, there a finite collection
x1, ..., xk of elements in B(p,w) such that
∩x∈{x 1,...,x k } % (x) ∩ B(p,w) is empty (this follow from B(p,w)
being a compact set). But then % (x∗) ∩ B(p,w) would be empty
for x∗ that is % −maximal in {x1, ..., xk}, a contradiction.
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Remark

If % is continuous, monotonic, and convex, then the set of optimal
consumption bundles in B(p,w) is convex

Proof.

Suppose that x and y are optimal, and hence x ∼ y . Since
preferences are convex, λx + (1− λ)y % x . Since ∑` p`x` ≤ w
and ∑` p`y` ≤ w , also λ ∑` p`x + (1− λ)∑` p`y` ≤ w , and hence
∑` p`[λx` + (1− λ)y`] ≤ w . Thus λx + (1− λ)y ∈ B(p,w),
implying that also λx + (1− λ)y has to be optimal.

Remark

If % is continuous, monotonic, and strictly convex, then there is a
unique optimal consumption bundle in B(w , p)
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Denote by x(w , p) the optimal consumption bundle in
B(w , p), referred as Marshallian demand under w , and p
Further, x(·, ·) is the Marshallian demand function,
specifying the optimal consumption bundle for each w and p

An important property of the demand function is that it is not
sensitive to small changes in the underlying environment, i.e.
it is continuous in p and w

Proposition

Let % is continuous, monotonic, and strictly convex and x(p,w)
optimal consumption bundle under p,w . Then the Marshallian
demand function x(·, ·) is continuous in p and w .
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Proof.

[Sketch] Suppose that x is not continuous in p. Then there is
pk converging to p∗ such that x(pk ,w) converges to
y ∗ 6= x(p∗,w). Since, by continuity, y ∗ ∈ B(p∗,w), and since
x(p∗,w) is an optimal choice in B(p∗,w), x(p∗,w) � y ∗. For
suffi ciently high k, also x(p∗,w) � x(pk ,w). Choose a bundle z
close to x(p∗,w) such that z � x(pk ,w) for all suffi ciently high k
and such that Σ`p`z` < w . For suffi ciently high k, also
Σ`pk` z` < w . This contradicts the assumption that x(p

k ,w) is the
optimal choice in B(pk ,w).
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Optimal consumption

Our next task is to find the optimal consumption bundle
Let consumer preferences % be rational, monotonic, strictly
convex, and continuous
Then the consumer’s problem can be represented as utility
maximization problem

max
x∈B (p,w )

u (x) .

or, equivalently,

max
x≥0

u (x)

s.t.
L
∑
`=1
p`x` ≤ w .

By the remarks made in the previous slide, this problem has a
unique solution x(p,w)
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How to derive the Marshallian demand x(p,w)?
Construct a Lagrangean

L(x ,λ) = u (x)− λ
(

∑L
`=1 p`x` − w

)
,

where λ ∈ R is the Lagrange multiplier
Let x (p,w) := x∗ > 0 maximize the Lagrangean (assuming
that u is differentiable)

The first order conditions (FOC) are

∂u (x∗)
∂x`

− λp` = 0, for all `

L
∑
`=1
p`x
∗
` = w
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Thus
∂u (x∗) /∂x`
∂u (x∗) /∂xk

=
p`
pk

The ratio p`/pk is the marginal rate of substitution
between goods ` and k at x∗ : the rate at which x` should
increase when xk decreases (or vice versa) for the agent’s
utility to remain intact
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Example

Let preferences be charcatcerized by a Cobb-Douglas utility
function

u(x1, x2) = xα
1 x
1−α
2 , where α ∈ (0, 1)

We derive the Marshallian demand x∗1 , x
∗
2 . First order conditions for

optimality:

α

(
x∗2
x∗1

)1−α

− λp1 = 0

(1− α)

(
x∗2
x∗1

)−α

− λp2 = 0

p1x∗1 + p2x
∗
2 = w

We have
x∗2
x∗1
=
(1− α)p1

αp2
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Example

(cont.) and solving for x∗1 and x
∗
2

x∗1 =
αw
p1
, x∗2 =

(1− α)w
p2
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Indirect utility

We are mainly interested in understanding the effect of price
changes on consumption and welfare

Define the indirect utility function by

v (p,w) = u (x (p,w))

What are the properties of v (p,w) implied by utility
maximization?
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Let u represent monotonic and continuous preferences %
Then the indirect utility function v (·, ·) is:
i homogenous of degree 0 (v (p,w) = v (tp, tw) for all t > 0)
ii strictly increasing in w , strictly decreasing in p`
iii continuous

An important tool in analysing the indirect utility (or any
value function resulting from maximization) is the envelope
theorem: only the direct effect of a parameter change
matters when evaluating the effects of changes in the
environment
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To see this, recall first that by the FOC,

∂

∂x`
L(x(p,w),λ) = ∂u (x(p,w))

∂x`
− λp` = 0, for all `

Thus

∂v (p,w)
∂p`

=
∂

∂p`
L(x (p,w) ,λ)

=
∂

∂p`
[u (x (p,w))− λ (∑` p`x` (p,w)− w)]

= ∑
k

∂xk (p,w)
∂p`

(
∂u (x(p,w))

∂xk
− λpk

)
− λx` (p,w)

= −λx` (p,w)

where the third equality follows by the chain rule and the last
one from the FOC of the Lagrangean
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Similarly,

∂v (p,w)
∂w

=
∂

∂w
L (x (p,w) ,λ)

=
∂

∂w
[u (x (p,w))− λ (∑` p`x` (p,w)− w)]

= ∑
`

∂x` (p,w)
∂w

(
∂u (x(p,w))

∂x`
− λpk

)
+ λ

= λ

The second equality follows by the chain rule and the last one
from the FOC of the Lagrangean

Thus Lagrange multiplier λ gives the marginal (shadow) value
of relaxing the constraint, i.e. the marginal value of wealth w
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Since

∂v (p,w)
∂p`

= −λx` (p,w) and
∂v (p,w)

∂w
= λ

we have:

Proposition (Roy’s Identity)

The Marshallian demand x (p,w) can be recovered from indirect
utility function v (p,w) by

x` (p,w) = −
∂v (p,w) /∂p`
∂v (p,w) /∂w
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Example

(cont.) With Cobb-Douglas utility function u(x1, x2) = xα
1 x
1−α
2 ,

the Marshallian demand is

x1(p,w) =
αw
p1
, x2(p,w) =

(1− α)w
p2

The indirect utlity is

v(p,w) = x1(p,w)αx2(p,w)1−α

=

(
αw
p1

)α ( (1− α)w
p2

)1−α

= w
(

α

p1

)α (1− α

p2

)1−α
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Example

With quasilinear utility function u(x1, x2) = φ(x1) + x2, φ
increasing, differentiable and concave, the optimization problem is

max φ(x1) + x2
s.t. p̄x1 + x2 ≤ w̄

where p̄ is the price ratio p1/p2 and w̄ is the ratio
w/p1.Marshallian demand depends only on p̄ and w̄ and hence we
may denote it x(p̄, w̄) (assume > 0). It satisfies

φ′(x1(p̄, w̄)) = p̄

p̄x1(p̄, w̄) + x1(p̄, w̄) = w̄

Since φ is a concave function, x1(p̄, w̄) is a decreasing function of
p̄ (why?)
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Duality

The problem with the utility function and the indirect utility
functions is that they are not observable, only x , p and w are

An important property called duality of consumption
transforms the problem into language of the observables, and
hence allows us to make emprically testable predictions

Given the utility function u(·), denote by h (p, u) the choice
that solves the expedinture minimizing problem subject to
the utility being at least u (a number):

min
x`≥0

L
∑
`=1
p`x`

s.t. u (x) ≥ ū.

Notice that even though the feasible set is not bounded, the
problem has a solution when p ∈ RL

++
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h (p, ū) is called the Hicksian or compensated demand
function
Denote the value function under the minimizer by e (p, ū), the
expenditure function

e (p, ū) =
L
∑
`=1
p`h` (p, ū)

Since e (p, ū) minimizes costs under the constraint that utility
ū is generated, and since ū can be generated under w such
that ū = v (p,w), we have

w ≥ e (p, v (p,w))

Similarly,
u ≤ v (p, e (p, ū))
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The duality between the indirect uitlity function v(·, ·) and
the expenditure function e(·, ·) manifests itself in the
following parity:

Proposition

Let preferences be continuous, monotonic, and strictly concave.
For any price vector p ∈ RL

++,

w = e (p, v (p,w)) and ū = v (p, e (p, ū))
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Proof.

Suppose that w > e (p, v (p,w)) . Then there is a less costly way
to attain utility u = v (p,w) than x (p,w) , say y . Thus
∑` p`y` < w . But by strict convexity of preferences,
λx (p,w) + (1− λ)y � x (p,w) , for all λ ∈ (0, 1). Moreover,
since

λ ∑
`
p`x`(p,w) ≤ λw and (1− λ)∑

`

p`y` < (1− λ)w

also
∑
`
p`[λx` (p,w) + (1− λ)y`] < w

and hence λx (p,w) + (1− λ)y belongs to the budget set. But
this contradicts the assumption that x (p,w) is an optimal choice.
Similar argument rules out ū < v (p, e (p, ū)).

Hannu Vartiainen University of Helsinki Decisions and Market



Then we also get a parity between the Marshallian demand
function x(·, ·) and the h(·, ·) Hicksian demand function

x (p,w) = h (p, v (p,w)) and h (p, ū) = x (p, e (p, ū))

The underlying force behind the duality is that any two
disjoint convex sets can be separated by a hyperplane
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A counterpart of Roy’s Identity can now be stated in the
context of expedinture functions a Hicksian demand functions

Proposition (Shephard’s Lemma)

The Hicksian demand h (p,w) can be recovered from the
expenditure function e (p, ū) by

h` (p, ū) =
∂e (p, ū)

∂p`
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To see this, observe that e (p, ū) is the value of the
Lagrangean

L(x ,λ) =
L
∑
`=1
p`x` − λ[u(x)− ū]

at the minimizer x = h (p, ū)

By FOC,

p` − λu′(h (p, ū)) = 0, for all `

u(h (p, ū))− u = 0
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Thus, using again the envelope argument,

∂e (p,w)
∂p`

=
∂L(h (p, ū) ,λ)

∂p`

=
∂
{

∑L
`=1 p`h` (p, ū)− λ[u(h (p, ū))− ū]

}
∂p`

= h` (p, ū) +
L
∑
k=1

∂hk (p, ū)
∂p`

[pk − λu′(h (p, ū))]

= h` (p, ū)
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Example

(cont.2) With Cobb-Douglas utility function u(x1, x2) = xα
1 x
1−α
2 ,

the FOC for the Hicksian demand h∗ is

p1 − λα

(
x∗2
x∗1

)1−α

= 0

p2 − λ(1− α)

(
x∗2
x∗1

)−α

= 0

(x∗1 )
α(x∗2 )

1−α − ū = 0

We have
h∗2
h∗1
=
(1− α)p1

αp2

and solving for x∗1 and x
∗
2

h∗1 =
(

αp2
(1− α)p1

)1−α

ū, h∗2 =
(
(1− α)p1

αp2

)α

ū
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Example

(cont.3) With Hicksian demand

h1(p, ū) =
(

αp2
(1− α)p1

)1−α

ū, h2(p, ū) =
(
(1− α)p1

αp2

)α

ū

The expedinture function

e(p, ū) = p1

(
αp2

(1− α)p1

)1−α

ū + p2

(
(1− α)p1

αp2

)α

ū[(
α

1− α

)1−α (p1−α
2

p−α
1

)
+

(
(1− α)

α

)α ( pα
1

p1−α
2

)]
ū

=
(p1

α

)α
(

p2
1− α

)1−α

ū
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An interesting feature of the expedinture function is that it is
concave in p

Proposition

For any prices p and p′, and for any λ ∈ (0, 1),

λe(p, ū) + (1− λ)e(p′, ū) ≤ e(λp + (1− λ)p′, ū)

Concavity implies that ∂2e/(∂p`)2 ≤ 0 for all `
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Proof.

Since h(p, ū) minimizes costs to achieve ū under p and h(p′, ū)
minimizes costs to achieve ū under p′ we have, for any p′′,

∑
`
p`h`(p, ū) ≤ ∑

`
p`h`(p

′′, ū)

∑
`
p′`h`(p

′, ū) ≤ ∑
`
p′`h`(p

′′, ū)

Since the inequalities hold for any p′′, they hold particular if
p′′ = λp + (1− λ)p′. Multiplying the first inequality with λ and
the second with (1− λ) and summing side by side,
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Proof.

(cont.)

λ ∑
`
p`h`(p, ū) + (1− λ)∑

`
p′`x`(p

′, ū)

≤ ∑
`
p`h`(λp + (1− λ)p′, ū)

Since ∑` p`h`(p, ū) = e(p, ū) etc., the result follows.
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Income and substitution effects

We are ultimately interested in how the environment affects
the behavior of the consumer, i.e. how the changes in income
and prices modify her consumption

Instinctively, we tend to think that a decrease of a good’s
price will increase its demand

To verify whether this holds true, we need to decompose the
effects of a price change into substitution effect and income
effect
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Substitution effect: relatively cheaper goods become more
attractive

Income effect: increased income permits optimization, cannot
say much about the direction for a particular good

Normal good’s demand increases as income increases
Inferior good’s demand decreases as income increases

"Local" properties; may depend on the current level of prices,
income and consumption
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Total effect of a price change on goods demand?

Proposition (Slutsky decomposition)

Let ū be value of the indirect utility at (p,w). The effect of price
change of good ` on good k can be written

∂xk (p,w)
∂p`

=
∂hk (p, ū)

∂p`︸ ︷︷ ︸
Substit. eff.

− x` (p,w)
∂xk (p,w)

∂w︸ ︷︷ ︸
Income eff.
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Proof.

By duality, for all p,

h (p, u∗) = x (p, e (p, u∗))

By differentiating both sides,

∂hk (p, ū)
∂p`

=
∂xk (p, e (p, ū))

∂p`
+

∂e (p, u)
∂p`

∂xk (p, e (p, ū))
∂w

Rearranging,

∂xk (p, e (p, ū))
∂p`

=
∂hk (p, ū)

∂p`
− ∂e (p, ū)

∂p`

∂xk (p, e (p, ū))
∂w
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Proof.

(cont.) Using Shephard’s Lemma,

∂xk (p, e (p, ū))
∂p`

=
∂hk (p, ū)

∂p`
− h` (p, ū)

∂xk (p, e (p, ū))
∂w

Noting that, by duality, h (p, ū) = x (p, e (p, ū)) and e (p, ū) = w ,
the result follows.
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In particular,

∂x` (p,w)
∂p`

=
∂h` (p, ū)

∂p`
− x` (p,w)

∂x` (p,w)
∂w

Since e is a concave function in p, and by Shephard’s Lemma

h` (p, ū) =
∂e (p, ū)

∂p`

it follows that ∂h` (p, ū) /∂p` = ∂2e (p, ū) /(∂p`)2 must be
nonpositive

A good is normal if ∂x` (p,w) /∂w is nonnegative and inferior
otherwise
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Proposition

(Law of Demand) If a good is normal, then its consumption
increases as its price decreases. If the good’s consumption
decreases as its price decreases (= "Giffen good"), then the good
must be inferior.
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