Advanced Microeconomic Theory Fall 2014

Problem Set 1

- 1. Show that if preferences \succeq on \mathbb{R}^L_+ satisfy continuity, and $x \succeq z \succeq y$, then there is an m in the line segment connecting x and y such that $m \sim z$
- 2. Show that if preferences \succeq on \mathbb{R}^L_+ satisfy continuity and monotnicity, then the function t such that $x \sim (t(x), ..., t(x))$ is continuous.
- 3. Let preferences \succeq on \mathbb{R}^2_+ be of Leontief form: $(x_1, x_2) \succeq (y_1, y_2)$ if $\min\{x_1, x_2\} \ge \min\{y_1, y_2\}$. Find a utility representation for these preferences. Identify the Marshallian demand function x(p, w) and the indirect utility function.
- 4. Let concumer's preferences be represented by a utility function u reflecting constant elasticity of substitution (CES)

$$u(x_1, x_2) = (x_1^{\rho} + x_2^{\rho})^{1/\rho}$$
, where $\rho \in (0, 1)$

Let product prices be p_1 and p_2 and income w.

- (a) Construct a Lgrangean that reflects the consumer's optimization problem.
- (b) Find the first order conditions for optimality.
- (c) Identify the Marshallian demand function.
- (d) Construct the indirect utility function.
- (e) Identify the Hicksian demand function.
- (f) Construct the expediature function
- 5. Preferences \succeq are *homothetic* if $x \succeq y$ implies $tx \succeq ty$ for all consumption bundles x, y. Let $x(\cdot, \cdot)$ be the Marshallian demand function. Show that:
 - (a) x(p,tw) = tx(p,w), for all t > 0 (homogenous of degree 1 in w)
 - (b) $x(tp, w) = t^{-1}x(p, w)$, for all t > 0 (homogenous of degree -1 in p)
 - (c) x(tp,tw) = x(p,w), for all t > 0 (homogenous of degree 0 in (p,w))

- 6. The government finances public expenditure of magnitude g by collecting taxes. In this question, you are invited to think about the optimal ways of collecting taxes. Suppose that there are goods x and y. The government can finance g by choosing either a tax on income t_w or by taxing consumption of good x by rate t_x . The government budget constraint for the two cases reads: $t_w w = g$ and $t_x x (p_x, p_y, t_x) = g$. Show that the consumer prefers an income tax in this case.
- 7. Let preferences \succeq be represented by utility function u. Show \succeq are convex if and only if the utility function u representing \succeq is quasiconcave:

$$u(tx + (1-t)y) \ge \min[u(x), u(y)]$$

for every $x, y \in X$, and $0 \le t \le 1$.

8. Preferences are said to be additively separable if they can be represented by a utility function of the form;

$$u\left(x\right) = \sum_{i=1}^{L} u_i\left(x_i\right).$$

- (a) If $u_i''(x_i < 0)$ for all i and for all $x_i \ge 0$, show that all goods are normal.
- (b) Show also that

$$\frac{\partial x_{i}\left(p,w\right)/\partial p_{k}}{\partial x_{j}\left(p,w\right)/\partial p_{k}} = \frac{\partial x_{i}\left(p,w\right)/\partial w}{\partial x_{j}\left(p,w\right)/\partial w}.$$

(c) Suppose that $u_1(x_1) = x_1$ and $p_1 = 1$ (i.e. the consumer can save her wealth by consuming x_1). What happens to consumption of goods when w becomes large $(\geq \max\{p_2, ..., p_L\})$?