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Abstract

We study repeated prize allocation when the discount factors of the agents are unequal. The feasible set of payoffs behaves badly: the Pareto
frontier is everywhere discontinuous and there is an open subset of (high) discount factors under which the feasible set is totally disconnected.
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1. Introduction

A handy way to model infinitely repeated interaction is to
assume discounting. The special case of equal discount factors is
well studied in the literature. An often cited and useful property
of the feasible set of payoffs is that it coincides with the convex
hull of stage game payoffs. While one justification for this might
be public randomization, the more fundamental one relies on the
repeated structure itself. Fudenberg and Maskin (1991) and
Sorin (1986) demonstrate that any convex combination of stage
game payoffs can be induced by alternating pure actions with the
appropriate frequencies. This result constitutes a building block
of the folk theorem by Fudenberg andMaskin (1986, 1990): Any
individually rational feasible payoff configuration can be
implemented in subgame perfect Nash equilibrium, even
without public randomizing device.

Lehrer and Pauzner (1999) show that, when discount factors
differ and when players have access to a public randomizing
device, the set of feasible payoffs is larger than the convex hull
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of stage game payoffs.1 They also assert that public random-
ization is without loss of generality — as it is under equal
discount factors. We demonstrate that this assertation is not true.

The aim of this note is to problematize the unequal discount
factors case.Weallocate a fixedprize infinitelymany times between
a patient and an impatient player, and abstract from strategic issues.

The feasible set of payoffs is difficult to characterize. As after
any finite history the continuation feasible set is a discounted
version of the period zero feasible set, there is no finitary method
to completely describe the feasible set— as opposed to the case
of equal discount factors (cf. Fudenberg and Maskin, 1991).2

However, we show that in a large class of discount factors the
feasible set is totally disconnected. Whether this holds for all
games under unequal discount factors remains an open question.

Pareto-optimality is the key criterion of successive collective
decision making. The problem is that with any unequal discount
factors the Pareto frontier of the feasible set is nowhere
continuous. It is not obvious how bargaining takes place over
Pareto domain that has such complex characteristics.
1 The reason for this is that player's trade-off between consuming today versus
later differ when their discount factors differ. Hence there may exist mutually
beneficial “payoff trades”.
2 The feasible set of a repeated game is a fractal whose self-similar components

happen to overlap.
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We assert that our results extend to a general class of repeated
games. Some simulation excercises concerning the feasible set
of other repeated games are provided in the final section.

2. The set up

There is an infinite sequence of indivisible prizes of consumption
value unity, to be allocated either to player P (patient) or I
(impatient). The discount factors of the two players are δp and δI,
respectively, with 1NδpNδIN0. Denote by sk∈{0,1} the stage k
allocationwith sk=1 if the prize goes toP and 0 otherwise. A stream
is denoted by s=(s0,s1,…), and the set of streams by S={0,1}

∞.
Normalized payoffs from stream s to P and I are, respectively,

up sð Þ ¼ 1� dp
� �Xl

t¼0

std
t
p;

uI sð Þ ¼ 1� dIð Þ
Xl
t¼0

1� stð ÞdtI :

Denote the value of s at period t by u(s:t). That is,

up s : tð Þ ¼ 1� dp
� �Xl

s¼t

ssd
s�t
p ;

uI s : tð Þ ¼ 1� dIð Þ
Xl
s¼t

1� ssð Þds�t
I :

For any A⊆S, denote u[A]={up(s),uI(s)): s∈A}, and the i-
projection of u[A] by ui[A], for i= I, P. By our normalization, u
[S]⊂ [0,1]2. Denote the set of Pareto-optimal sequences by

PO ¼ s : ui sVð ÞNui sð ÞZuj sVð Þbuj sð Þ; for all sV∈ S
� �

:

The P- and I-maximal payoffs are generated by streams
1= (1,1,…) and 0= (0,0,…), respectively. Denote by by
1t ¼ ð0; N ;|ffl{zffl}0

t � 1

; 1; 0; 0; N Þ the sequence that gives P only the t'th

prize. Use the notation s−s′=(s0−s0′, s1−s1′,…) if st−st′∈{0,1}
for all t. Then 1−s is the mirror image of s: it gives the prize to P
whenever s gives it to I and vice versa. Moreover, s±1t is the
stream that differs from s only in that it changes the allocation of
t'th prize in s.

2.1. Characterization

The set S={0,1}∞ is a compact metric space (“the Cantor
space”). Hence the function u:S→ [0,1]2, for u(s)= (uI(s),up(s)),
is a continuous function on a compact metric space and,
consequently, u[S] is a compact subset of [0,1]2.

Proposition 1. Let δpb1/2. Then S=PO.

Proof. First we claim that s′≠ s implies up(s)≠ up(s′) and
uI(s)≠uI(s′). Let t be the least index such that st≠st′, and, without
loss of generality, st=1, st′=0. If, say, up(s)=up(s′), then also up
(s:t) =up(s′:t). In the extreme case, st′=0 and s′t′=1 for all t′=
t+1,t+2,…, i.e. up(s:t)≥1−δp and up(s′:t)≤δp. But since δpb1/2,
we have 1−δpNδp. Thus up(s:t)Nup(s′:t), a contradiction.

Take any s∈S, and suppose that s′∈S Pareto dominates s.
By the previous paragraph, s′ is strictly better for both P and I
than s. Let t be the least index such that st≠ s′t. By the argument
of the previous paragraph st=1 implies that up(s)Nup(s′), which
is not possible. Hence st=0. But then, by the same argument,
uI(s)NuI(s′), a contradiction. □

The following result is well known (e.g. Fudenberg and
Maskin, 1991; Sorin, 1986).

Lemma 2. If δi≥1/2 then ui[S]= [0,1], for i= I, P.

This does not yet say much about the feasible set u[S] in [0,1]2.
However, in the special case of δp=δI the set u[PO] coincides with
the interval [(1,0),(0,1)] the convexhull of the “stagegame”payoffs.
We now argue that this does not generalize to the δpNδI case.

A closed subset U of an Euclidean space is connected if it
cannot be partitioned into two disjoint closed sets. The maximal
connected subsets of U are called components of U. Now U is
totally disconnected if all its components are one point sets.

The recursive structure of u[S] implies that it is self-similar.
Define u[S:t]=u[S] and let, for all t=0,1,…,

u S : s0; N ; st½ �
¼ xþ st 1� dp

� �
; yþ 1� stð Þ 1� dIð Þ� �

: x; yð Þ∈ u S : s0; N ; st�1½ �� �
:

Then, for all t=0,1,…,

u S : s0; N ; st�1½ � ¼ [st∈ 0;1f gu S : s0; N ; st�1; st½ �:

Proposition 3. For any δpN1/2 there is d such that u[S] is
totally disconnected if δp≥dNδIN1/2.

Proof. First we show that u[S] is totally disconnected when
δpNδI=1/2. By the self-similarity of u[S], it suffices to
show that u[S:0] and u[S:1] are disjoint. Thus we need that
u(1,s1,s2,…)≠u(0,s1′,s2′,…), for all s1,s2,… and s1′,s2′,… .

Suppose, to the contrary, that u(1,s1,s2,…)=u(0,s1′,s2′,…) for
some s1,s2,… and s1′,s2′,… . Then, since uI(1,s1,s2,…)=uI(0,s1′,
s2′,…) we have

dI ¼
Xl
t¼1

dtI sVt � stð Þ:

Since δI=1/2, necessarily st=0 and st′=1 for all t=1,2…. But
this implies, since also up(1,s1,s2,…)=up(0,s1′,s2′,…), that δp=1/2,
a contradiction.

That the desired dN1/2 exists follows from the continuity of
uI(·) in δI. □

Fig. 1a below depicts a fractal that is induced by discount
factors δp=0.7 and δI=0.55. It is easy to see that u[S] is
disconnected. By the self-similarity of the components, it is also
totally disconnected. Fig. 1b depicts u[S] when δp=0.8 and
δI=0.7. Now it is no longer clear whether u[S] is connected or not.

We leave open the question of when exactly is the feasible set is
totally disconnected. What is clear is that there are discount factors
underwhich the feasible set is connected (when the discount factors
are equal and above 1/2). Whether this holds in general when the
discount factors are close and/or high is a difficult problem.

2.2. Pareto frontier

We first argue that a Pareto-optimal stream has a stage from
which onwards all prizes are given to the impatient player only
if the stream gives all the prizes to him.
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Lemma 4. Let δp≥1/2. If s∈PO|{0}, then s allocates infinitely
many prizes to P.

Proof. Suppose, to the contrary, that there is t such that st=1 and
st=0 for all t′N t. Then uI(s:t)=δI, and up(s:t)=1−δp. Let, without
loss of generality, t=0. By Lemma 2, there is s′ such that s0′=0 and
up(s′:1)=(1−δp)/δp. Since stδp≥ (1−st)δI, for all t=0,1,…, with
strict inequality when st=1 it follows that up(s′:1)NuI(1−s′:1).
Thus, since δpNδI, we have

1� dI N1� dp
¼ up sV: 1ð Þdp
NuI 1� sV: 1ð ÞdI
¼ uI 1� sV: 0ð Þ;

where the final equality follows by 1− s0′=1 By construction,
δIb1−uI(1− s′:0)=uI(s′:0). Thus, since move from s to s′ keeps
P indifferent but increases I's payoff, we have s∉PO. □
Fig. 1.
Thus any Pareto-optimal stream (other than 0) gives the prize
infinitely many times to the patient player. From this it follows
that any utility level of player P can be induced by some Pareto-
optimal stream.

Proposition 5. Let δp≥1/2. Then up[PO]= [0,1].

Proof. Take any closed interval [x,1]⊂ [0,1], xb1. By Lemma
2, there is a nonempty, compact subset A of S such that up(A)=
[x,1]. Since A is compact and uI continuous, the set
B=argmaxs∈AuI(s) is nonempty, compact subset of A, and
hence there is s⁎ such that s⁎∈argmaxs∈Bup(s). By construc-
tion, s⁎∈PO. It suffices to show that up(s⁎)= x. Suppose that
up(s⁎)−xN0. By Lemma 4, there is big enough t such that st⁎=1
and up(s⁎)−xN (1−δp)δpt . But then s⁎−1t∈Awhile uI(s⁎−1t )N
uI(s⁎), which contradicts the assumption that s⁎∈B. □

By Proposition 5, there is a function f:[0,1]→ [0,1] whose
graph coincides with the Pareto frontier, i.e. f (up(s))=uI(s) for
all s∈PO Then f (up(s))≥uI(s) for all s∈S. By construction,
f is a strictly decreasing function. Function f is nowhere
continuous if there is no open interval on which f is continuous.

Proposition 6. f is nowhere continuous.

Proof. Let, to the contrary of the proposition, there be an open
interval X⊂ [0,1] on which f is continuous. Since f is strictly
decreasing on X, the set of points where f is not differentiable has
Lebesque measure zero. Let f be differentiable on a set D⊂X
that has strictly positive Lebesgue measure. Denote by S(1t) the
set of sequences such that st′=1 for all t′≥ t. Since ⋃t= 0

∞ S(1t)
consists of countably many elements, set up[⋃t=0

∞ S(1t)] as zero
measure. Thus we may assume D⊂up[S\⋃t=0

∞ S(1t)].
Take x∈D, and find s∈PO\⋃t = 0

∞ S(1t)) such that u(s)=
(x,f (x)). By construction, there are infinitely many periods t
such that st=0 Thus, s+1t∈S, for all these periods t. For
any such t,

up sþ 1tð Þ ¼ up sð Þ þ 1� dp
� �

dtp;
uI sþ 1tð Þ ¼ uI sð Þ � 1� dIð ÞdtI :

Choosing {xt}={up(s+1t)}, we have, by the definitions of
derivative and f,

f V xð Þ ¼ lim
tYl

f up sð Þ� �� f up sþ 1tð Þ� �
up sð Þ � up sþ 1tð Þ

z lim
tYl

uI sð Þ � uI sþ 1tð ÞÞ
up sð Þ � up sþ 1tð Þ

¼ lim
tYl

� dI
dp

� �t 1� dI
1� dp

� �
¼ 0 ð1Þ

But (1) contradicts the fact that f is strictly decreasing. □
However, f also possesses some continuity properties.

Proposition 7. Let δI≥1/2. Then f is left-continuous.

Proof. Let {xn} be an increasing sequence on [0,1] converging
to x. Then { f (xn)} is a decreasing sequence bounded below by 0.
Hence { f (xn)} converges to y. Since u[S] is compact, (x,y) is in u
[S] by definition of f. Since (xn, f (xn)) is a Pareto optimal utility
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allocation for each n, we cannot have f (x)Ny. So f (x)≤y, and
since (x,y) is in u[S], we have f (x)=y, by definition of f. □

We conclude from Proposition 4 that it is nonproblematic for
the patient agent to find his personal maximal subject to
impatient agent's reservation payoff. However, by Proposition
6, this is not the case for the impatient agent: his maximal payoff
is very sensitive to the patient agent's payoff, and hence finding
it is computationally very hard.

3. Discussion

This paper studies the consequences of differentiated
discount factors on players' payoffs from prize streams. To
see how differentiated discount factors affects the feasible set of
a repeated game, consider the case of prisoners' dilemma:
Fig. 2.
As demonstrated by Lehrer and Pauzner (1999), the induced
feasible set under randomization has a smooth boundary, and
contains the convex hull of stage game payoffs as a proper
subset. However, without randomization the feasible set of
prisoners' dilemma is a proper subset of the feasible set with
randomization. The boundary is everywhere non-smooth and
contains caves. Fig. 2 depicts the feasible set under δp=0.9 and
δI=0.7. Our results still apply: the Pareto-frontier is is
everywhere discontinuous. The shape of the feasible set is
sensitive to the size of the discount factors.

These observations have some relevance from the viewpoint
of the Folk theorem. For example, the equilibria in Fudenberg
and Maskin (1986, 1990) rely on the assumption that con-
tinuation payoffs can be matched with incentives not to deviate.
When mixed strategies are used, exact match of continuation
payoffs may be important. The problem is that when discount
factors are unequal, the feasibe set is far from convex, and it is no
longer clear (to us) that one can always find the needed con-
tinuation payoffs.
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