
Soc Choice Welfare
DOI 10.1007/s00355-006-0209-9

O R I G I NA L PA P E R

Subgame perfect implementation of voting rules via
randomized mechanisms

Hannu Vartiainen

Received: 25 November 2004 / Accepted: 19 October 2006
© Springer-Verlag 2006

Abstract We characterize completely ordinal and onto choice rules that are
subgame perfect of Nash equilibrium (SPE) implementable via randomized
mechanisms under strict preferences. The characterization is very operation-
alizable, and allows us to analyse SPE implementability of voting rules. We
show that no scoring rule is SPE implementable. However, the top-cycle and
the uncovered correspondences as well as plurality with runoff and any strongly
Condorcet consistent voting rule can be SPE implemented. Therefore our results
are favourable to majority based voting rules over scoring rules. Nevertheless,
we show that many interesting Condorcet consistent but not strongly Condorcet
consistent rules, such as the Copeland rule, the Kramer rule and the Simpson
rule, cannot be SPE implemented.

1 Introduction

Abreu and Sen (1990) (hereafter AS) and Moore and Repullo (1988) (MR)
characterize distinct necessary and sufficient conditions for choice rules to be
implementable in subgame perfect Nash equilibrium (SPE). Vartiainen (2005)
closes the remaining gap. In particular, Vartiainen (2005) shows that with linear
preferences the gap is automatically closed. Moreover, for any choice rule that
is onto the set of alternatives–a property that is met by any neutral voting rule on
a rich domain of preferences–the AS characterization simplifies to the following
form: a choice rule is SPE implementable if and only if there exists a sequence
of outcomes (a0, . . . , aK+1) and players (i0, . . . , iK) such that (1) akPik ak+1 for

H. Vartiainen (B)
Yrjö Jahnsson Foundation, Ludviginkatu 3-5, 00130 Helsinki, Finland
e-mail: hannu.vartiainen@yjs.fi

H. Vartiainen

all k = 0, . . . , K, (2) aK+1PiK aK, and (3) ak is not top ranked by ik under R′ for
any k = 0, . . . , K, whenever a0 ∈ f (R′) \ f (R), for any preference profiles R, R′
(Vartiainen 2005, Corollary 1).

Randomization is known to be useful in implementation.1 This paper analyses
SPE implementability of voting rules via randomized mechanisms. We assume
that preferences over pure outcomes are linear, and hence the sufficiency part
of the above characterization is in force. The key effect of randomization is that
it expands the number of potential AS sequences dramatically which allows
more choice rules to be SPE implemented. Moreover, the expansion of AS
sequences allows us to rewrite the AS characterization in a more operational-
izable form: an ordinal choice rule f that is onto the set of social alternatives
is SPE implementable if and only if there is i ∈ N who neither ranks a bottom
under R′

i nor top under Ri, whenever a ∈ f (R′) \ f (R).
In recent papers, Benoit and Ok (2005) and Bochet (2005) study Nash imple-

mentation in a similar framework (but allow more general preferences). They
show that when randomization is permitted off-the-equilibrium path, Maskin
monotonicity alone characterizes the implementable choice rules. Hence the
characterization of Nash implementable rules simplifies remarkably. Similarly,
this paper establishes a simple characterization of a class of rules that can be
SPE implemented by a randomized mechanism. Interestingly, the simplification
concerns the structure of the AS characterization itself. This is useful since the
AS condition is difficult to check in its original form.

Through our characterization SPE implementability of voting rules can eas-
ily be studied. We study voting rules that are neutral and, hence, onto on
a rich domain of preferences. Thus the voting rule is SPE implementable by
a randomized mechanism if and only if it meets the our condition. We show
that no generalized scoring2 rule meets the condition, and is hence not SPE
implementable by any randomized mechanisms. However, the top-cycle and
the uncovered rule as well as the plurality with runoff rule meet the condition,
and can therefore be SPE implemented by some mechanism. In addition, any
strongly Condorcet consistent3 can be implemented. However, we also show
that many interesting Condorcet consistent but not strongly Condorcet consis-
tent rules, such as the Copeland rule, the Kramer rule and the Simpson rule,
cannot be SPE implemented.

By and large, these observations add to the long list of results (see e.g.
Sjöström 1993 or May 1952) that favor majority based voting rules over scoring
rules for implementability reasons. Taken together, our results closely par-
allel to those obtained by Herrero and Srivastava (1992) and, in particular,
Dutta and Sen (1993) in the context of implementation of voting rules via back-
wards induction. This suggests, rather surprisingly, that integer games and alike
devices may not be fundamentally important in the voting context.

1 See e.g. Abreu and Matsushima (1990), Abreu and Sen (1991), Glazer and Perry (1996), and
Sjöström (1993).
2 Allowing scores be contingent on the number of voters.
3 We use a strong version of Condorcet consistency that prevents selecting a strong loser.

Subgame perfect implementation of voting rules

2 Notation and the basic set up

There is set N = {1, 2, . . . , n} players, with generic elements i, j, and a finite set
A of feasible pure social alternatives with three or more elements. Denote by
RA the set of all linear orders on A, i.e. a Ri b and b Ri a imply a = b for all
Ri ∈ RA. Assume that each Ri ∈ RA has an extension over lotteries � on A,
also denoted Ri, which satisfies the vNM axioms. Denote by Pi the asymmetric
part of Ri.

Recall the continuity and independence properties of vNM preferences Ri ∈
RA. First, take µ ∈ [0, 1], and define a lottery pµ : � × � → � as follows

pµ(a, b) = aµ + b(1 − µ), for a, b ∈ �.

Take a, b ∈ � such that a Pi b. By independence,

pε(a, c) Pi pε(b, c), for any ε ∈ (0, 1) and for any c ∈ �. (1)

By continuity, there is λ > 0 such that

a Ri pλ(b, c). (2)

To complete the description of the environment, there is a set R ⊆ Rn
A of

admissible preference profiles. This implies that for any distinct R = (R1, . . . , Rn)

and R′ = (R′
1, . . . , R′

n) in R there is i and a, b ∈ A such that i experiences a pref-
erence reversal over a and b when switching from R to R′. We assume that
R ∈ R is observed by all i ∈ N but not by the others.

Denote by Mi(R, B) and Mi(R, B) the sets of i’s R-maximal and R-minimal
alternatives, respectively, in B ⊆ � under R. Formally, Mi(R, B) = {a ∈ B : a
Ri bfor all b ∈ B} and Mi(R, B) = {a ∈ B : b Ri a for all b ∈ B}. For simplicity,
write Mi(R) = Mi(R, A) and Mi(R) = Mi(R, A). Since Ri’s are linear on A, also
Mi(R) = Mi(R, D) and Mi(R) = Mi(R, D) for all A ⊆ D ⊆ �. Denote the lower
contour set of i at a ∈ � under R by Li(a, R) = {b ∈ � : a Ri b}.

We say that i experiences a preference reversal over a and b when switch-
ing from R to R′ if a Ri b and b P′

i a. Preference reversals are a fundamental
requirement for implementation.

3 SPE implementation and a voting rule

We allow mechanisms in the class of extensive game forms with simultaneous
moves (for precise definitions, see Appendix A). We allow mechanism � to
contain randomization and call it randomized. Denote by SPE(�, R) the set of
outcomes in � that are implemented under SPE in state R ∈ R via a randomized
mechanism �.

A social choice rule is a correspondence f : R → A, defining a non-empty set
of “socially desirable” pure outcomes in each state. Denote f (R) = ∪R∈Rf (R).

H. Vartiainen

We will focus on deterministic and ordinal choice rules.4 That is, f (R) ⊆ A for
all R ∈ R and if, for any R, R′ ∈ R, Ri ∩ (A × A) = R′

i ∩ (A × A) for all i, then
f (R) = f (R′).

Given that f is ordinal, it would be without loss of generality to replace
the strong assumption R ⊆ Rn

A with a weaker assumption that R is compact in
the domain of all vNM preferences that are linear orders on A.5 Namely, in the
latter case there is λ̄ > 0 such that for any R ∈ R, and for all pure outcomes a
and b, a Pi b implies a Pi pλ(q, b) for all lotteries q, and for all λ in (0, λ̄]. This is
sufficient for the results below (in particular, Lemma 8) to hold.

We are interested in full implementation where the set of SPE outcomes of
the implementing mechanism coincides with the desired choice rule in all states.

Definition 1 Choice rule f is SPE implemented by a randomized mechanism �

if SPE(�, R) = f (R), for all R ∈ R.

We say that if there is a � that SPE implements choice rule f , then f is SPE
implementable.

4 Random mechanisms

To express the AS characterization of SPE implementable choice rules, define
the following pair of sequences.6 Given a triple (R, R′, a) ∈ R × R × A and
a set of D ⊆ � of outcomes, a pair of sequences h(0), . . . , h(K) in N, and
d(0), . . . , d(K + 1) in D satisfy a = d(0) and

α(i) d(k) R′
h(k)

d(k + 1), for k = 0, . . . , K,
α(ii) d(K + 1) Ph(K) d(K),
α(iii) d(k) /∈ Mh(k)(R, D), for k = 0, . . . , K,
α(iv) d(K + 1) ∈ ∩i �=h(K)Mi(R, D) implies that K = 0 or h(K − 1) �= h(K).

Given triple (R, R′, a), denote a typical sequence meeting α (i–iv) by (h, d)(R,
R′, a). In general, there may exist great many such sequences.

Definition 2 (Condition α) Choice rule f satisfies Condition α with respect to
D ⊇ f (R) if there exists a sequence (h, d)(R, R′, a) meeting α(i–iv) whenever
a ∈ f (R′) \ f (R), for all R, R′ ∈ R.

Parts α(i) and α(ii) were derived by MR, AS introduced α(iii) and α(iv).
Note that α(i) and α(ii) imply that there is player h(K) who experiences a pref-
erence reversal between d(K), d(K + 1) when switching from R′ to R. This is a
much weaker condition than Maskin monotonicity, which requires that there is
a preference reversal between a choice in f and some other alternative.

4 With vNM preferences and lotteries a choice rule could be responsive to risk attitudes.
5 That is, in the domain {(xa)a∈A ∈ R

|A| : xa �= xb, for all a �= b}.
6 To be precise, the necessary condition of AS concerns the situation where the set of
possible outcomes of the mechanism is a subset of A. However, nothing in their construction
requires the outcomes to be deterministic. Hence the necessary condition holds also when the set
of possible outcomes is a subset of �.

Subgame perfect implementation of voting rules

Lemma 3 (Abreu and Sen 1990) Choice rule f is SPE implementable only if it
satisfies Condition α with respect to some D ⊇ f (R).7

AS also show that without the linearity restriction of preferences Condition
α and no-veto power (NVP) are sufficient for SPE implementation.8 However,
Vartiainen (2005) proves that when preferences are linear on A, as is assumed
throughout this paper, one can replace NVP with unanimity.9 Since Condition
α and unanimity are also necessary conditions for SPE implementation of a
choice rule, it follows that they completely characterize SPE implementable
choice rules.10

When the choice rule f is onto, i.e. f (R) = A, the characterization simplifies
even further: since any outcome is selected in some state, Condition α implies
unanimity. Thus Condition α is also sufficient to SPE implement this choice
rule.

Lemma 4 (Vartiainen 2005) An ordinal and onto choice rule f defined on R is
SPE implementable if it satisfies Condition α with respect to D = A.

This result uses a deterministic mechanism.

Lemma 5 If a choice rule f defined on R satisfies Condition α with respect to
some D ⊇ A, then it satisfies Condition α with respect to D = �.

Proof Given triple (R, R′, a), let sequence (h, d)(R, R′, a) satisfy α(i–iv) with
respect to D ⊇ A. By the linearity of Ri’s, Mi(R, D) = Mi(R, A) = Mi(R), for
all i. Since D ⊆ �, sequence (h, d)(R, R′, a) satisfies α(i – iv) with respect to � .
Equivalently, if f meets Condition α with respect to D, then f meets Condition
α with respect to �. 	

Combining Lemma 4 with Lemmata 3 and 5 we now have a tight character-
ization.

Theorem 6 A choice rule f that is ordinal and onto on R is SPE implementable
by a randomized mechanism if and only if it satisfies Condition α with respect
to �.

Condition α is difficult to use in practice. The number of α-sequences grows
fast as the number of players and alternatives increases. Thus, for practical
purposes, the condition needs to be simplified. When f is ordinal and onto,
randomization helps.

Definition 7 (Condition α�) Choice rule f defined on R satisfies Condition α� if
a ∈ f (R′) and a ∈ Mi(R

′) ∪ Mi(R) for all i ∈ N imply a ∈ f (R), for all R, R′ ∈ R.

7 Abreu and Sen (1990) use deterministic mechanisms and assume D ⊆ A.
8 Choice rule f satisfies NVP with respect to D if a ∈ ∩i�=jM

i
(θ , D) implies a ∈ f (θ).

9 Choice rule f satisfies unanimity with respect to D if a ∈ ∩i∈NM
i
(θ , D) implies a ∈ f (θ).

10 Vartiainen also shows that with strict preferences α(iv) of Condition α becomes superfluous.

H. Vartiainen

That is, if a subset H of players consider choice a ∈ f (R′) as R′-minimal, and
all players not in H as R-maximal, then f must pick a also under R. It is essential
that H may be empty or equal to N.

Note that if a ∈ f (R′) and {a} = Mi(R
′) or {a} = Mi(R) for all i, then there

cannot be b �= a such that a R′
i b and b Pi a, for any i. Thus, Maskin monotonic-

ity implies a ∈ f (R). Thus Maskin monotonicity binds whenever Condition α�

binds.
Condition α and Condition α� are equivalent when randomization is allowed

and D = �.

Lemma 8 An ordinal choice rule f on R satisfies Condition α with respect to �

if and only if f satisfies Condition α�.

Proof It suffices to show that, for any distinct R, R′ ∈ Rn
A and a ∈ A, there does

not exist (h, d)(R, R′, a) that meets α(i–iv) if and only if a ∈ Mi(R
′) ∪ Mi(R), for

all i ∈ N.
“If”: Suppose that a ∈ Mi(R

′) ∪ Mi(R), for all i ∈ N. We show that there
does not exist sequence (h, d)(R, R′, a) that meets α (i–iv). Suppose, to the con-
trary, that sequence (h, d)(R, R′, a) of length K exists. By construction d(0) = a.
Let d(k) = a for any k ∈ {0, . . . , K}. Since d(k) /∈ Mh(k)(R), α(iii) implies
d(k) ∈ Mh(k)(R

′). By α(i), d(k+1) ∈ Lh(k)(R′, d(k)). Since {d(k)} = Mh(k)(R
′) =

Lh(k)(R′, d(k)), necessarily d(k) = d(k + 1). Since this is true for k = 0, it must
be true for any k = 1, Thus there is no K such that α(ii) is satisfied.

“Only if”: Suppose that a /∈ Mi(R′) ∪ Mi(R), for some i We show that there
exists sequence (h, d)(R, R′, a) that meets α (i–iv). In proving this we use the
continuity (2) and independence (1) properties of vNM preferences.

Since R �= R′, there are b, c ∈ A and j ∈ N such that c R′
j b and b Pj c.

Construct lotteries11

q = 1
#A

∑

e∈A

e,

qbc = 1
#A

⎧
⎨

⎩
∑

e∈A \ {c}
e + b

2
+ c

2

⎫
⎬

⎭ .

That is, qbc shifts c’s probability mass in q on b. Let a /∈ Mi(R) ∪ Mi(R
′). By (2)

there is λ > 0 such that, for e ∈ Mi(R
′), a R′

i pλ(q, e). From (1) it follows that

pλ(q, e) R′
j pλ(qbc, e) and pλ(qbc, e) Pj pλ(q, e), for all j ∈ N.

11 Degenerate lotteries that put probability one to pure outcomes are denoted by a, b,

Subgame perfect implementation of voting rules

Construct sequences h(R, R′, a) and d(R, R′, a) such that

h(0) = i, d(0) = a,
h(1) = j, d(1) = pλ(q, e),

d(2) = pλ(qbc, e).

As q’s and qbc’s support is A, and λ > 0, also the grand lotteries pλ(q, e)
and pλ(qbc, e) have full support. Since preferences over A are linear it fol-
lows that d(1) and d(2) are not R-maximal for any player. By supposition,
d(0) = a /∈ Mi(R). Finally d(k) R′

h(k)
d(k + 1) for k ∈ {0, 1}, and d(2) Ph(1) d(1).

Checking that the constructed (h, d)(R, R′, a) meets α(i–iv) is routine. 	

The central problem is to construct (h, d)(R, R′, a) sequence whenever a �∈

Mi(R
′)∪Mi(R), for some i ∈ N. Our construction uses lotteries that are not top

nor bottom ranked for any player.
By Theorem 6 and Lemma 8 we now get an operationalizable characteriza-

tion of ordinal and onto SPE implementable choice rules.

Theorem 9 A choice rule f that is ordinal and onto on R is SPE implementable
by a randomized mechanism if and only if it satisfies Condition α�.

4.1 SPE implementation of voting rules

This section studies SPE implementability of voting rules, a class of choice rules
that are ordinal, neutral, and deterministic.12 We demand that a voting rule v
is implementable under universal preference domain and under any number of
players.

Definition 10 A voting rule v is SPE implementable by a randomized mechanism
if, for any n = 3, 4, . . . , there is a randomized mechanism that SPE implements
it under universal domain Rn

A of preferences.

The voting rules we shall focus are neutral, and hence they are onto on the
universal domain. By Theorem 9, a necessary and sufficient condition for SPE
implementability will be Condition α�.

First we study scoring rules.13 The question we impose is whether there is a
way to associate an implementable system of scores to any voting set up.

Definition 11 (Generalized scoring rule) A generalized scoring rule vs specifies,
for each n, a system of scores sn

1 ≥ sn
2 ≥ · · · ≥ sn

#A such that sn
1 �= sn

#A. For given
n, a preference profile R associates score sn

1 to i’s top ranked alternative in Ri, sn
2

to i’s second ranked alternative in Ri, and so forth, for all i ∈ N. Scoring rule
vs(R, n) selects an alternative with the highest sum of scores.

12 Neutrality means that the names of the social alternatives do not matter.
13 For voting methods, see e.g. Moulin (1988, Ch. 9).

H. Vartiainen

Thus a generalized scoring rule associates a scoring system to any voting
scenario. For a fixed number of voters the scoring system is fixed, and speci-
fies a winner for all preference profiles. The scoring system may, however, be
contingent on the number of voters.

One example of a scoring rule is the plurality rule where each player casts
a vote for his favorite candidate and the candidate who is named most often
is then elected. Another example is the Borda rule where sk = k − 1, for all
k = 1, . . . , #A. The general class of scoring rules contains infinitely many rules.

Proposition 12 There is no generalized scoring rule that is SPE implementable
by a randomized mechanism.

Proof Let A = {a, b, c}.14 It suffices to focus on the n = 12 case. We show that
there is no system of scales s1 ≥ s2 ≥ s3, s1 > s3 that allows to implement
vs(·, 12). To obtain a contradiction, suppose that there is a system of scores
(s1, s2, s3) such that vs(·, 12) can be SPE implemented. Construct six preference
profiles R, R′, R̄, R̄′, R̃, R̃′ ∈ R12

A as follows.
Case 1 Let profile R′ contain three different linear orderings on A:15

4 × R′
1 4 × R′

2 4 × R′
3

s1 a c c
s2 b a b
s3 c b a.

Given any system of scores s1 ≥ s2 ≥ s3, we have that c ∈ vs(R′). Let players of
type 3 experience a preference reversal over a and b, to get profile R :

4 × R1 4 × R2 4 × R3
s1 a c c
s2 b a a
s3 c b b.

By Theorem 9, and since vs meets Condition α�, c ∈ vs(R). Thus also

s1 + s3 ≥ 2s2. (3)

Case 2 Let profile R̄′ generate the following linear orderings on A:

3 × R̄′
1 3 × R̄′

2 3 × R̄′
3 3 × R̄′

3
s1 a a c c
s2 b b b b
s3 c c a a.

14 As pointed out by a referee, the proof would go through with A containing any number ≥ 3 of
elements by assuming that any new e is ranked below a, b, c in all the used profiles.
15 The table reads: there are four players with preferences R′

1. Call them type 1 players. Type 2
and 3 players’ preferences are defined similarly. Score s1 is associated to an alternative that is top
ranked by a player, s2 to the second, and so on.

Subgame perfect implementation of voting rules

From (3) it follows that a, c ∈ vs(R̄′). Let type 3 and 4 players experience a
preference reversal with respect to a and b to get profile R̄ :

3 × R̄1 3 × R̄2 3 × R̄3 3 × R̄4
s1 a a c c
s2 b b a a
s3 c c b b.

By Theorem 9, and since vs meets Condition α�, c ∈ vs(R̄). Thus also

s1 > s2 = s3. (4)

Case 3 Let profile R̃′ generate the following linear orderings on A:

4 × R̃′
1 4 × R̃′

2 4 × R̃′
3

s1 a b c
s2 b a a
s3 c c b.

From (4) it follows that a, b, c ∈ vs(R̃′). Let type 2 players experience a prefer-
ence reversal with respect to a and b to get profile R̃ :

4 × R̃1 4 × R̃2 4 × R̃3
s1 a a c
s2 b b a
s3 c c b.

By Theorem 4, and since vs meets Condition α�, c ∈ vs(R̃). But, by (4), vs(R̃) =
{a}. A contradiction. 	

The proof relies on there being 12 voters. Whether this is the smallest domain
of voters where a scoring rule cannot be implemented remains an open question.

Scoring rules and majority based voting rules constitute two main approaches
to voting. Given R, denote by SD(R) and D(R) the strict majority and majority
preference relations on A : for any a, b ∈ A

a SD(R) b if and only if # {i : a Pi b} > # {i : b Pi a} ,

a D(R) b if and only if # {i : a Pi b} ≥ # {i : b Pi a} .

Given R, alternative a is the Condorcet winner if a SD(R) b for all b �= a, and
a is a strong loser if a is bottom ranked by a majority. Condorcet consistency
implies that an alternative that the Condorcet winner, if it exists, is chosen by
the voting rule. We will slightly strengthen this condition.

Definition 13 (Strong Condorcet consistency) Voting rule vc is strongly Con-
dorcet consistent if (i) the Condorcet winner under R, if it exists, belongs to vc(R),
and (ii) a strong loser under R, if it exists, does not belong to vc(R).

H. Vartiainen

This definition of Condorcet consistency is stronger than the usual one since
we require that a strong loser is never selected. It is clear a strong loser cannot
ever be the Condorcet winner. Thus property (ii) binds only when there is no
winner. With #A ≥ 3, there always exists an outcome that is not a strong loser.

Proposition 14 Any strongly Condorcet consistent voting rule can be SPE imple-
mented by a randomized mechanism.

Proof Let vc be a strongly Condorcet consistent rule. We show that Condition
α� is met by vc. Suppose not. Then there are R, R′ such that a ∈ v(R′) \ v(R), and
such that Mi(R

′) = {a} for all i ∈ H and Mi(R) = {a} for all i ∈ N \ H, for some
H ⊆ N∪∅. Since vc does not select strong losers, and a ∈ vc(R′), it cannot be the
case that a is bottom ranked by the majority. Thus 2#H < #N. By construction,
#H + #N \ H = #N, thus 2#N \ H > #N implying that a SD(R) b for all b �= a.
But Condorcet consistency implies that a ∈ vc(R), a contradiction. 	

This is consistent with the fact that no scoring rule is Condorcet consistent
(e.g. Moulin 1988, Theorem 9.1). Condorcet consistency is a property, it does
not define a choice rule. Many well known voting rules satisfy the property, e.g.
the top-cycle set (Condorcet set) and the uncovered set.

Definition 15 (Top-cycle set) Given R, the top-cycle set vtc(R) satisfies

vtc(R) = ∩{B ⊆ A : b ∈ B, a ∈ A \ B implies b SD(R) a}.

To define the uncovered set, we say that a covers b if aSD(R)b and b SD(R) c
implies a SD(R) c for all c ∈ A.

Definition 16 (Uncovered set) Given R, the uncovered set vu(R) satisfies

vu(R) = {a ∈ A : a is not covered by any b ∈ A under R}

The top-cycle set is the smallest subset of A with the property that noth-
ing outside the set is preferred by a strict majority anything in the set. The
uncovered set is a subset of the top-cycle set and contains only Pareto optimal
allocations. In particular, if a is the Condorcet winner under R, then a = vc(R) =
vu(R) = vtc(R).

One commonly used voting rule is plurality with runoff.16 In principal, the
rule seeks to select two candidates that favored by most of the players, and
then compare these candidates against each other. To define the plurality with
runoff correspondence also in the indeterminate situations where one cannot
find exactly two mostly preferred candidate, we use the notion of top cycle
set to identify the candidates that are strong in pairwise comparisons. Define
n(a, R) = #{i ∈ N : {a} = Mi(R)} and A(R) = {a ∈ A :there is c ∈ A s.t.
n(a, R) ≥ n(b, R) for all b ∈ A \ {c}}.

16 Applied widely, e.g. in France and in Finland.

Subgame perfect implementation of voting rules

Definition 17 (Plurality with runoff) Given R, the plurality with runoff rule
vpr(R) satisfies

vtc(R) = ∩{B ⊆ A(R) : b ∈ B, a ∈ A(R) \ B implies b SD(R) a}.

If there are two candidates that are top ranked by more players than the
rest of the candidates, then A(R) consists of these two candidates. Only in the
case of a three or more players’ tie A(R) contains more than two elements. If
A(R) consists of two candidates, then the one which wins the pairwise majority
comparison is selected by vpr(R). Finally, if there is any candidate which is top
ranked by a majority, then vpr selects this alternative.

Proposition 18 The top-cycle correspondence, the uncovered correspondence,
and plurality with runoff correspondence can be SPE implemented by a ran-
domized mechanism.

Proof Denote the top-cycle correspondence, the plurality with runoff cor-
respondence, and the uncovered correspondence by vtc, vpr, and vu, respec-
tively. We show that the correspondences satisfy Condition α�. Suppose that
v ∈ {vtc, vpr, vu} does not. Then there are R, R′ and a ∈ A such that a ∈
v(R′) \ v(R), and such that Mi(R

′) = {a} for all i ∈ H and Mi(R) = {a} for
all i ∈ N \ H, for some H ∈ N ∪ ∅.

Case v = vtc : Suppose that 2#H > #N. Then b SD(R′) a, for all b �= a. But
then, by definition, vtc(R′) ⊆ A \ {a}, a contradiction. Hence 2#H ≤ #N and,
therefore, 2#(N \ H) ≥ #N. Then it must also be true that a D(R) b, for all
b �= a. But then it cannot be the case that b SD(R) a, for any b �= a. Thus, by
definition, a ∈ vtc(R), a contradiction.

Case v = vpr : By definition, a ∈ A(R′). Suppose that 2#H > #N. Then
b SD(R′) a, for all b ∈ A(R′) \ {a}. But then, by definition, vpr(R′) ⊆ A(R′) \ {a},
a contradiction. Hence 2#N \ H ≥ #N. Then it must also be true that n(a, R) ≥
n(b, R), for all b ∈ A. Thus a ∈ A(R). Moreover, it cannot be the case that
bSD(R)a, for any b ∈ A(R) \ {a}. Thus, by definition, a ∈ vpr(R), a contradic-
tion.

Case v = vu : Suppose that 2#H > #N. Then b SD(R′) a, for all b �= a. But
then every b �= a covers a, a contradiction. Hence 2#H ≤ #N and, therefore,
2#N \ H ≥ #N. Then it must also be true that a D(R) b, for all b �= a. But then it
cannot be the case that b SD(R) a, for any b �= a. Thus, by definition, a ∈ vu(R),
a contradiction. 	

Our results are similar to Sjöström (1993) who studies implementation in
trembling hand perfect equilibrium. He founds out that strongly Condorcet
consistent voting rules and the top-cycle correspondence are implementable
whereas the Borda rule is not. However, these results are strikingly different
from those obtained by Jackson et al. (1994) in the context of implementation in
undominated Nash equilibrium with bounded mechanism. They showed that the

H. Vartiainen

top-cycle set cannot be implemented by using their solution concept whereas
the plurality correspondence can be implemented.17,18

To identify other prominent Condorcet consistent voting rules, define the
following. For given R, the Copeland score of an outcome a is c(a, R) = #{b ∈
A : a SD(R) b}, the Kramer score of an outcome a is k(a, R) = maxb �=a #{i ∈ N :
a Pi b}, and the Simpson score of an outcome a is s(a, R) = minb �=a #{i ∈ N :
a Pi b}.
Definition 19 –The Copeland rule:

vC(R) = {a ∈ A : c(a, R) ≥ c(b, R), for all b ∈ A}, for all R ∈ Rn
A,

–The Kramer rule:

vK(R) = {a ∈ A : k(a, R) ≥ k(b, R), for all b ∈ A}, for all R ∈ Rn
A,

–The Simpson rule:

vS(R) = {a ∈ A : s(a, R) ≥ s(b, R), for all b ∈ A}, for all R ∈ Rn
A.

Proposition 20 The Copeland rule, the Kramer rule or the Simpson rule cannot
be SPE implemented by a randomized mechanism.

Proof The Copeland rule vC and the Kramer rule vK : let A = {a, b, c} and
n = 4, and let profile R′ contain two kinds of orderings:

2 × R′
1 2 × R′

2
a c
b b
c a.

Then vC(R′) = vK(R′) = {a, b, c}. To get profile R, let type 2 players experience
a preference reversal over a and b,

2 × R1 2 × R2
a c
b a
c b.

17 However, Jackson et al. (1994) also show that general scoring rules, the Borda rule in particular,
cannot be boundedly implemented in undominated Nash equilibrium.
18 Palfrey and Srivastava (1991) argue that SPE implementation is a weak implementation pro-
cedure relative to undominated Nash implementation by constructing examples where attractive
Pareto optimal or Condorcet consistent rules (Examples 1 and 3) cannot be implemented by using
the former even if they can be by using the latter. However, this observation holds true only for
deterministic mechanisms: both examples satisfy Condition α� and can therefore be SPE imple-
mented by a random mechanism.

Subgame perfect implementation of voting rules

Then vC(R) = vK(R) = {a}. However, Condition α� implies c ∈ vC(R) and
c ∈ vK(R).

Simpson rule vS : Let A = {a, b, c, e} and n = 9 and let R′ generate six
different preference orderings:

2×
︷ ︸︸ ︷

R′
1 R′

2 R′
3

a b c
b c a
c a b
e e e

R′
4 R′

5 R′
6

e e e
a b c
b c a
c a b.

Then vS(R′) = {a, b, c, e}. Shift a upwards to get profile R

2×
︷ ︸︸ ︷

R1 R2 R3
a a a
b b c
c c b
e e e

R4 R5 R6
e e e
a a a
b b c
c c b.

Then vS(R) = {a} (s(a, R) = 6, s(e, R) = 3). However, Condition α� implies
e ∈ vS(R). 	

While the proof of the result uses even number of voters, it does not rely on
that assumption (examples available from the author).

The three rules are not strongly Condorcet consistent as they may choose a
strong loser. This is interesting since Dutta and Sen (1993) show that selections
from the uncovered set can be implemented (see also Herrero and Srivastava
1992) whereas any selection from the Kramer nor the Copeland correspon-
dence cannot be implemented by using mechanisms that are solvable via back-
wards induction. Thus, in general, this suggests that allowing a mechanism to
have simultaneous moves does not dramatically increase the number of inter-
esting implementable voting rules. This is desirable since implementation via
backwards induction does not rely on integer games or alike unattractive con-
structions.

5 Conclusion

We show that under linear preferences, randomization can be used to simplify
the complex characterization of SPE implementable voting rules. We assume
that the used mechanisms randomize only off-the-equilibrium path. It is shown
that no genralized scoring rule is SPE implementable even with randomized
mechanisms. However, the top-cycle rule, the uncovered rule as well as the

H. Vartiainen

plurality with runoff rule can be SPE implemented, as well as any strongly
Condorcet consistent voting rule (that always selects the Condorcet winner and
never selects and a strong loser). However, not all condorcet consistent rules
can be implemented. We show that the Copeland rule, the Kramer rule or the
Simpson rule cannot be SPE implemented.

Acknowledgements I am very grateful for two referees for their thorough and insightful com-
ments. I also thank Matt Jackson, Rafael Repullo, and Hannu Salonen for useful comments.

A Appendix

A mechanism is an array19 � = 〈Y, S, g〉 where Y is a set of histories y, S =
S1 × · · · × Sn and Si = ×y∈YSy

i for all i. An element of Sy = Sy
1 × · · · × Sy

n,
say sy = (sy

1, . . . , sy
n), is a message vector while sy

i is i′s message at y. Histories
and messages are tied together by the property that Sy = {sy : (y, sy) ∈ Y}. An
element of Si, say si, is i′s (pure) strategy20, specifying i’s choices at each nonter-
minal history, and an element of S, say s, is a (pure) strategy profile. There is an
initial history y0 ∈ Y and each history yk ∈ Y is represented by a finite sequence
(y0, s1, . . . , sk−1) = yk.21 If yk+1 = (yk, sk), then history yk+1 proceeds history
yk. As � contains finitely many stages, there is a set of terminal histories Y of
Y such that Y = {y ∈ Y : there is no y′ ∈ Y proceeding y}. Any strategy profile
s ∈ S defines a unique terminal history given the initial history. Denote this
dependence by ȳ(s : y) ∈ Y. Thus, if yk = (y0, s1, . . . , sk−1) ∈ Y \ Y, then there
is a chain ȳ(s : yk) = (y0, s1, . . . , sk−1, . . . , sK) ∈ Y for some K ≥ k. Sometimes
terminal history ȳ(s : yk) is called a path, given s and yk. The outcome function
g(· : y) : S → � specifies an outcome for each strategy profile with a property
that if ȳ(s : y) = ȳ(s′ : y) for any s, s′ ∈ S, y ∈ Y \ Y, then g(s : y) = g(s′ : y). For
short, if players obey strategy profile s and start from y0, denote the outcome of
g by g(s) = g(s : y0). Given state R ∈ R, the pair (�, R) constitutes an extensive
form game with simultaneous moves.

By the construction of �, every y ∈ Y \ Y identifies a subgame �(y) of
�, as follows: y is an initial history of the game �(y) = 〈Y(y), S(y), g〉 where
Y(y) = {y′ ∈ Y : y′ proceeds y} and S(y) = ×y′∈Y(y)Sy′

. Hence � = �(y0).
Denote by D(y, s−i) the set of outcomes player i can reach by varying his own
strategy si ∈ Si given that history y is reached, and all j �= i adopt strategy sj ∈ Sj.
Formally, D(y, s−i) = {a ∈ A : g(s : y) = a, si ∈ Si(y)}. Denote by SPE(�, R) the
set of SPE strategies of a game � given R .

19 For analogous definition see Osborne and Rubinstein (1994).
20 For simplicity, we confine our attention to pure strategies. This restriction does not affect the
results.
21 Thus, like MR, we confine our attention to games having finitely many stages. This assumption
is made for sake of simplicity. AS showed that allowing infinitely many stages should not affect the
conclusions.

Subgame perfect implementation of voting rules

Definition 21 Take � = 〈Y, S, g〉 and R ∈ R. Then s ∈ S is an element of
SPE(�, R) if and only if g(s : y) ∈ Mi(R, D(y, s−i)) for all y ∈ Y and for all i ∈ N.

By construction, SPE(�(y), R) refers to the equilibria of the subgame starting
at history y. An important and natural additional restriction on any applicable
mechanism � = 〈Y, S, g〉 is that SPE(�(y), R) is nonempty for all y ∈ Y and for
all R ∈ R. Thus a mechanism must be well defined independently of the history
of the play.

Denote

Definition 22 Take � = 〈Y, S, g〉 and R ∈ R. Then a ∈ � is an element of
SPE(�, R) if and only if g(s) = a for some s ∈ SPE(�, R).

Note that SPE(�(y), R) refers to outcomes induced by SPE strategies after
history y is reached. Of course, SPE(�(y), R) and SPE(�, R) do not typically
coincide if y does not belong to the equilibrium path.

References

Abreu D, Matsushima H (1990) Virtual implementation in iteratively undominated strategies:
complete information. Econometrica 60:993–1008

Abreu D, Sen A (1990) Subgame perfect implementation: a necessary and almost sufficient condi-
tion. J Econ Theory 50:285–99

Abreu D, Sen A (1991) Virtual implementation in nash equilibrium. Econometrica 59:997–1021
Benoit J-P, Ok E (2005) Nash implementation without No-Veto power, manuscript, NUY
Bochet O(2005) Nash implementation via lottery mechanism. Soc Choice Welf (forthcomming)
Dutta B, Sen A (1993) Implementing generalized condorcet social choice functions via backwards

induction. Soc Choice Welf 11:148–60
Glazer J, Perry M (1996) Virtual implementation in backwards induction. Games Econ Behav

15:27–32
Herrero M, Srivastava S (1992) Implementation via backward induction. J Econ Theory 56:70–88
Jackson M, Palfrey T, Srivastava S (1994) Undominated Nash implementation in bounded mecha-

nisms. Games Econ Behav 13:474–501
May K (1952) A set of independent necessary and sufficient conditons for for simple majority

decision. Econometrica 46:317–30
Moore J, Repullo R (1988) Subgame perfect implementation. Econometrica 56:1191–1220
Moulin H (1988) Axioms of cooperative decision making. Cambridge University Press,

New York, NY
Osborne M, Rubinstein A (1994) A course in game theory. MIT, Cambridge, MA
Palfrey T, Srivastava S (1991) Nash implementation using undominated strategies. Econometrica

59:479–501
Sjöström T (1993) Implementation in perfect equilibria. Soc Choice Welf 10:97–106
Vartiainen H (2005) Subgame perfect implementation: a full characterization. J Econ Theory

(forthcoming)

	Subgame perfect implementation of voting rules via randomized mechanisms
	Abstract
	Introduction
	Notation and the basic set up
	SPE implementation and a voting rule
	Random mechanisms
	SPE implementation of voting rules
	Conclusion
	Acknowledgements
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

