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Abstract

Moore and Repullo [Subgame perfect implementation, Econometrica 56 (1988) 1191–1220], and Abreu
and Sen [Subgame perfect implementation: a necessary and almost sufficient condition, J. Econ. Theory
50 (1990) 285–299] introduce distinct necessary and sufficient conditions for SPE implementation, when
the number of players is at least three. This paper closes the gap between the conditions—a complete
characterization of the SPE implementable choice rules is provided. The characterization consists of �∗,
which strengthens�of Abreu–Sen by adding it a restricted veto-power condition, and the unanimity condition.
Under strict preferences �∗ is equal to �.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Moore and Repullo [14] (hereafter MR) and Abreu and Sen [2] (hereafter AS) study implemen-
tation of social choice rules (correspondences) by using multi-stage mechanisms and subgame
perfect Nash equilibrium (SPE) as the solution concept. 1 They demonstrate that having multi-
ple stages in the implementing mechanism is very helpful: much more can be subgame perfect
implemented than Nash implemented. 2
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1 For recent introduction, see [13] or [11].
2 Tree mechanisms, where backwards induction can be used, are a special case of multi-stage mechanisms. Moulin

[16] is a seminal treatment on backwards induction. Herrero and Srivastava [9] give a full characterization.
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AS and MR characterize general conditions for SPE implementation in the three-or-more
players case. AS identifies Condition � that bears the same relation to SPE implementation as
Maskin’s [12] monotonicity condition to Nash implementation. I.e. � is a necessary condition and
coupled with no-veto power (NVP) a sufficient condition for SPE implementation. 3

In this paper, we fill the gap between AS necessary and sufficient conditions. 4 Our character-
ization consists of a strengthened version of �, which we dub Condition �∗, and the unanimity
condition. It is shown that if a choice rule is SPE implementable, then it satisfies the latter two
properties. To prove the other direction, we employ a modification of the stage-mechanism intro-
duced by MR. We show that if a choice rule meets �∗ and unanimity, then our MR-mechanism
SPE implements it. 5 Thus, this mechanism is canonical.

To understand the content of Condition �∗, suppose that f can be SPE implemented. Suppose
further that a belongs to f (�) but not in f (�). Then there is an equilibrium of an implementing
mechanism that induces a under � but not under �. Condition �∗ identifies situations when a
profitable deviation under � from the equilibrium path under � is not followed by further deviations
by a player different from the originally deviating player, say i. In such case we say i’s deviations
are successively unilateral. If we know that player i’s �-maximal successively unilateral sequence
of deviations leads to the implementation of outcome b which is also all j’s, j �= i, �-maximal
in the range of the implementing mechanism, then b must be an equilibrium outcome under �.
If f is SPE implemented by the mechanism, then we must have b ∈ f (�). Thus �∗ restricts the
feasible outcomes when only successively unilateral deviations are possible, and when deviator’s
maximal deviation sequences lead to the implementation of an outcome that is maximal also to
all non-deviators.

Clearly �∗ is stronger than �: It restricts choice rules when � does but also in the subset of
those cases where n − 1 players agree on a maximal alternative. Thus �∗ can be understood as
a combination of � and a restricted veto-power condition. However, �∗ is strictly weaker than �
combined with NVP.

The weakness of the extra restriction imposed by �∗ relative to � becomes transparent when
we assume linear preferences. It is shown that the restricted veto-power part of �∗ is vacuously
satisfied whenever � is, i.e. �∗ coincides with �. This means that � and unanimity are, in fact,
a necessary and sufficient condition for SPE implementation under linear preferences. We also
show that � simplifies further when preferences are linear.

The paper is organized as follows: Section 2 introduces the basic concepts and the equilib-
rium notion we use. Section 3 provides the main characterization result and establishes some
simplifications and corollaries. Section 4 concludes the paper.

3 Srivastava and Trick [20] characterize rules that are implementable via multi-stage mechanisms where a stage is
a binary voting contest. Under sophisticated, i.e. sincere given perfect foresight, voting, players’ preferences can be
summarized by a tournament. This permits Srivastava and Trick to give an elegant characterization of implementable
rules. Their result is not implied nor does it imply the results of this paper. The former follows from the assumption that
players vote sincerely given their perfect foresight, which is a refinement on the equilibrium concept. The latter is due to
the fact that the underlying game in Srivastava–Trick is not a canonical multi-stage game.

4 In the context of Nash implementation, Moore and Repullo [15] fill the gap between Maskin’s necessary and sufficient
conditions.

5 The mechanism uses integer game (see e.g. [10,11] for discussion). The usual counterargument to the criticism is that
general results require abstract mechanisms. Recent papers using integer games include Bergin and Sen [4], and Brusco
[5,6].
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2. Fundamentals

2.1. Notation and the basic set up

Let I be the set of players, with generic elements i, j . Assume #I �3. There is set A of feasible
pure alternatives with #A�3 and set � of admissible preferences of players. For profile � ∈
�, player i’s preferences over A are represented by Ri(�) (Pi(�) represents a strict relation). 6

Each � is a complete description of state, and � is observable by all players but not by others.
Denote the lower contour set of i at a ∈ A under � by Li(a, �) = {b ∈ A : aRi(�)b}. Denote
by Mi(�, B) the set of i’s �-maximal alternatives in B ⊆ A under �. Formally, Mi(�, B) =
{a ∈ B : aRi(�)b for all b ∈ B}.

We say that i experiences a preference reversal between a and b when switching from � to � if
aRi(�)b and bPi(�)a. Thus, if i experiences a preference reversal between a and some element
in B when switching from � to �, then [Li(a, �) \ Li(a, �)] ∩ B �= ∅. Preference reversal is a
fundamental requirement for implementation.

2.2. SPE Implementation and a choice rule

We confine our attention to mechanisms which are representable by extensive game forms
with simultaneous moves. 7 A mechanism is an array � = 〈Y, S, g〉 where Y is a set of histories
y, S = S1 × · · · × Sn and Si = ×y∈Y S

y
i for all i. An element of Sy = S

y

1 × · · · × S
y
n , say

sy = (s
y

1 , . . . , s
y
n ), is a message vector while s

y
i is i’s message at y. Histories and messages

are tied together by the property that Sy = {sy : (y, sy) ∈ Y }. An element of Si , say si , is
i′s (pure) strategy, 8 specifying i’s choices at each non-terminal history, and an element of S,
say s, is a (pure) strategy profile. There is an initial history ∅ ∈ Y and each history yk ∈ Y

is represented by a finite sequence (∅, s1, . . . , sk−1) = yk . 9 If yk+1 = (yk, sk), then history
yk+1 proceeds history yk . As � contains finitely many stages, there is a set of terminal histories
Y of Y such that Y = {y ∈ Y : there is no y′ ∈ Y proceeding y}. Any strategy profile s ∈ S

defines a unique terminal history given the initial history y. Sometimes we call terminal history
a path.

The outcome function g : S → A specifies an outcome for each terminal history, and hence
for each strategy profile. Given state � ∈ �, the pair (�, �) constitutes an extensive form game
with simultaneous moves.

By the construction of �, every y ∈ Y \ Y identifies a subgame �(y) of �, as follows: y is an
initial history of the game �(y) = 〈Y (y), S(y), g〉 where Y (y) = {y′ ∈ Y : y′ proceeds y} and
S(y) = ×y′∈Y (y) Sy′

. Then S(y) = S1(y) × · · · × Sn(y), where Si(y) is the strategy set of i in
subgame �(y). Denote an element of S(y) by s : y. Now s : y specifies a unique terminal history.
The corresponding value of the outcome function is written g(s : y). Thus g(s) = g(s : ∅).
Hence � = �(y0). Denote by D(y, s−i ) the set of outcomes player i can reach by varying his own

6 A preference relation is a complete and transitive binary relation.
7 For an equivalent definition, see [17, Chapter 6].
8 For simplicity, we confine our attention to pure strategies. This restriction does not affect the results.
9 Thus, like MR, we confine our attention to games having finitely many stages. This assumption is made for sake of

simplicity. AS showed that allowing infinitely many stages should not affect the conclusions.
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strategy si ∈ Si given that history y is reached, and all j �= i adopt strategy sj ∈ Sj . Formally,

D(y, s−i ) = {a ∈ A : g(s : y) = a, for some si ∈ Si(y)}.
Denote by SPE(�, �) the set of SPE strategies of a game � given �.

Definition 1. Take � = 〈Y, S, g〉 and � ∈ �. Then s ∈ S is an element of SPE(�, �) if and only
if g(s : y) ∈ Mi(�, D(y, s−i )) for all y ∈ Y and for all i ∈ I .

By construction, SPE(�(y), �) refers to the equilibria of the subgame starting at history y. An
important and natural additional restriction on any applicable mechanism � = 〈Y, S, g〉 is that
SPE(�(y), �) is non-empty for all y ∈ Y and for all � ∈ �. 10 Thus a mechanism must be well
defined independently of the history of the play.

Denote by SPE(�, �) the set of terminal outcomes, arising from equilibrium strategies.

Definition 2. Take � = 〈Y, S, g〉 and � ∈ �. Then a ∈ A is an element of SPE(�, �) if and only
if g(s) = a for some s ∈ SPE(�, �).

Note that SPE(�(y), �) refers to outcomes induced by SPE strategies after history y is reached.
Of course, SPE(�(y), �) and SPE(�, �) do not typically coincide if y does not belong to the
equilibrium path.

A social choice rule f : � → A defines a non-empty set of socially “desirable” outcomes
in each state. Denote f (�)= ∪�∈� f (�). We are interested in full implementation where the set
of SPE outcomes of the implementing mechanism coincides with the desired choice rule in all
states.

Definition 3. Choice rule f is SPE implemented by a mechanism � if and only if SPE(�, �) =
f (�) for all � ∈ �.

We say that if for some choice rule f there is a � such that f is SPE implemented by �, then f
is SPE implementable. If f is implementable, then there is D ⊇ f (�) such that D is the image of
the implementing mechanism, that is D = g(S), where S, g are the components of � which SPE
implements f . In what follows, D can always be interpreted to be the range of the implementing
mechanism.

We want to characterize SPE implementable choice rules, where characterization means “with-
out reference to the definition of SPE”. That is, a characterization imposes a restriction on admis-
sible rules as a direct function of basic data.

3. The characterization

First we review some fundamental properties of Nash implementable choice rules. 11 Choice
rule f satisfies monotonicity with respect to D ⊇ f (�) if there i such that [Li(a, �) \ Li(a, �)] ∩
D �= ∅ whenever a ∈ f (�) \ f (�), for any �, � ∈ �, and it satisfies NVP with respect to D ⊇
f (�) if b ∈ ∩j �=i Mj (�, D) for any i ∈ I implies b ∈ f (�). In many environments, including the

10 This restriction is weaker than the best response property, see e.g. Jackson [11].
11 If we would restrict the mechanisms having a single stage, then SPE implementation would collapse back to Nash

implementation.
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“economic” ones, NVP is vacuously satisfied. By Maskin [12] we have the following. If choice
rule f can be Nash implemented, then it satisfies monotonicity w.r.t. some D ⊇ f (�). If f satisfies
monotonicity and NVP w.r.t. some D ⊇ f (�), then it can be Nash implemented. 12

To express the AS characterization of SPE implementable choice rules, define the following
pair of sequences. Given a triple (a, �, �) ∈ A × � × � and D ⊆ A, a pair of sequences
h(0), . . . , h(K) in I , and d(0), . . . , d(K + 1) in D satisfy a = d(0) and
�(i) d(k)Rh(k)(�)d(k + 1), for k = 0, . . . , K ,
�(ii) d(K + 1)Ph(K)(�)d(K),
�(iii) d(k) /∈ Mh(k)(�, D), for k = 0, . . . , K ,
�(iv) d(K + 1) ∈ ∩i �=h(K) Mi(�, D) implies that K = 0 or h(K − 1) �= h(K).

Given (a, �, � : D), denote a typical sequence meeting �-conditions by (h, d)(a, �, � : D)

(when there is no risk of confusion, we may drop the (a, �, � : D)-part).

Definition 4 (Conditions � [�−]). There is D ⊇ f (�) and, for all (a, �, �) such that a ∈ f (�)\
f (�), there is a sequence (h, d)(a, �, � : D) meeting �(i)–(iv) [�(i)–(iii), resp.].

Parts �(i) and �(ii) were derived by MR, AS introduced �(iii) and �(iv). Note that �(i) and
�(ii) imply that there is player h(K) who experiences a preference reversal between d(K) and
d(K + 1), when switching from � to �. A need for preference reversal is acknowledged already
by monotonicity. However, monotonicity requires that there is a preference reversal between a
choice in f and some other alternative.

AS showed that �, and thus �−, is a necessary condition for SPE implementation. The intuitive
reason is that mechanism � that implements f gives rise to sequence (h, d)(a, �, � : D) meeting
�(i)–(iv). To see how, suppose that d(0) = a ∈ f (�) \ f (�). Then there is player h(0), who
deviates under � from the path implementing d(0) under �. Since the deviation must be strictly
profitable, d(0) cannot be top ranked for h(0) in the range of the mechanism (part �(iii)). On the
other hand, there must be a �–SPE outcome following the deviation, say d(1), that is not more
profitable under � for the deviator than d(0) (part �(i)). Otherwise d(0) would not constitute a
SPE at the first place. Ask if d(1) constitutes a �–SPE at the subgame following the deviation.
If yes, then d(1) must be more profitable to h(0) than d(0) under � (part �(ii)). If not, then
d(1) constitutes a �–SPE but not �–SPE at the subgame following the deviation, and hence
we can start the process from the beginning. Continuing this way, and noting that the process
must end at some point, we come up with a sequence meeting �(i)–(iii). Thus, any deviation
under � from the path implementing a under �, which is necessitated by a ∈ f (�) \ f (�),
induces a (h, d)(a, �, � : D) meeting �(i)–(iii). Condition �(iv) follows from observation that if
no sequence (h, d) induced by � meets �(iv), then one reduce the length of a some (h′, d ′) by
pruning all (h′, d ′)(k), k at or below K such that h(k) = i for some i, to obtain sequence meeting
all �(i)–(iv).

In addition, AS derive a sufficient condition for SPE implementation: if f satisfies Condition �
and NVP, then it can be SPE implemented. We will show that when preferences are linear, this
result holds with Condition �−.

12 The gap between Maskin’s necessary and sufficient conditions was filled by Moore and Repullo [15] (see also [18,7])
by introducing Condition � which is both necessary and sufficient for Nash implementation. In addition to monotonicity,
Condition � contains a restricted version of NVP, and a unanimity property. Our conditions below can be thought as
generalization of these conditions.
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Theorem 1 (Abreu and Sen [2]). If f can be SPE implemented, then it satisfies Condition � w.r.t.
some D ⊇ f (�). Moreover, if n�3, and f satisfies Condition � and NVP w.r.t. some D ⊇ f (�),
then it can be SPE implemented.

This result is of particular interest by its similarity to Maskin’s Theorem—Condition � plays
the role of Maskin monotonicity in both sides of the characterization. Note that if one restricts the
focus on (h, d) sequences of length K = 0, then Condition � reduces to Maskin monotonicity,
and Theorem 1 back to Maskin’s Theorem.

As there is a gap between the necessary and sufficient conditions, Theorem 1 leaves open the
full characterization of SPE implementation. Our task is to fill the gap. To do that, we introduce
conditions which are weaker than NVP, but still necessary for implementation.

Definition 5 (Unanimity). There is set D such thatD ⊇ f (�), and such that ifb ∈ ∩i∈I Mi(�, D),
then b ∈ f (�).

Of course, unanimity is strictly weaker than NVP. 13 However, it is a necessary condition for
SPE implementation: if there is an outcome which is unanimously top ranked in the range of the
mechanism under certain preference profile, then it must be an equilibrium outcome under that
profile because there is no player who would strictly benefit from deviation from the strategy
implementing this outcome (by construction, such strategy exists).

Lemma 1. Choice rule f is SPE implementable only if it satisfies unanimity w.r.t. some D.

Proof. Let mechanism � = 〈Y, S, g〉 SPE implement f . Define D = g(S). In particular f (�) ∈
D for all � ∈ �. If b ∈ ∩i∈I Mi(�, D), then there is s ∈ S such that b = g(s). Let ȳ(s) =
(y0, s1, . . . , sK) for some K �0 and define YK = {yk : yk = (y0, s1, . . . , sk), k = 0, . . . , K}.
By assumption, one is able to find s′ such that ȳ(s) = ȳ(s′), and such that g(s′ : y) ∈ SPE(�(y), �)

for all y ∈ Y \ YK . Necessarily b = g(s′) ∈ ∩i∈I D(yk, s′−i ) for all k = 0, . . . , K , and since
D(yk, s′−i ) ⊆ D, for all k = 0, . . . , K , i ∈ I , it follows that also g(s′) ∈ ∩i∈I Mi(�, D(yk, s−i ))

for all k = 0, . . . , K . Hence s′ ∈ SPE(�, �) and, therefore, b ∈ f (�). �

More restrictions must be imposed on choice rule to fill the gap between necessary and sufficient
conditions. The condition we next introduce concerns circumstances under which d(K + 1) is
top ranked by all but player h(K). It allows players to have “restricted veto power”. The next
example serves as a motivation.

Example 1. Let I = {1, 2, 3}, � = {�, �}, A = {a, b, c, d, e} and preference rankings are

R1(�) = R1(�) R2(�) = R2(�) R3(�) R3(�)

a, b a, b d c

c c e d

d d c e

e e a b

b a

13 Unanimity is implied by �(iii) of Moore and Repullo [15] on Nash implementable choice rules.
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The Borda rule f B chooses f B(�) = {a} and f B(�) = {c}. Note that such rule satisfies Condition
� (even monotonicity) and unanimity (but not NVP). Is f B SPE implementable? Suppose yes.
Then there is � which implements f B. Since a ∈ f B(�) \ f B(�), � contains a strategy which
implements a, is a SPE under �, and is not a SPE under �. Thus, under � there is a deviator
from the specified strategy. Since a is �-maximal for 1 and 2, the deviator must be 3. Take 3’s
�-optimal deviation under �, and a SPE outcome following this deviation under �. Since the
deviation cannot be profitable under �, the SPE outcome corresponding 3’s deviation must be
a or b. Suppose first that this outcome is a SPE under � as well. Since the deviation must be
profitable under �, it must be that the SPE is b. But, importantly, since b is top ranked by 1
and 2, and b is the best outcome 3 can achieve under �, it must be that b is a SPE outcome
of the whole game under � as well. This contradicts the assumption that � implements f B and
f B(�) = c. Suppose then that the SPE outcome corresponding 3’s first deviation under � is not a
SPE outcome under �. Then there is a second deviation by some player under � from the strategy
implementing the SPE outcome (a or b) of the deviation. Again, since a and b are �-maximal for
1 and 2, the deviator must be 3. As in the case of the first deviation, either b is a SPE outcome of
the second deviation under both � and �, contradicting the assumption that f B is implementable
and f B(�) = c, or there is another deviation from a SPE under �. Since the implementing game
is of finite length, there must be a finite stage after which no further deviations take place. But
then the consecutive �-optimal choices made by 3 finally implement b under �. Therefore, being
top ranked by 1 and 2, b must be an SPE outcome of the whole game under �. Thus, f B cannot
be implemented.

To summarize the argument made in Example 1, observe that there is only one sequence pair
(h, d)(a, �, � : D) meeting �(i)–(iii): h(a, �, � : D) = (3) and d(a, �, �) = (a, b). This sequence
pair has length K = 0 and satisfies d(1)∈Mj(�, A) for j �= h(0). Under these circumstances a ∈
f (�) \ f (�) implies f (�) = b. This observation is valid more generally. We now construct a
condition that builds on this idea.

Before expressing our characterization, we need to develop some notation. For any �, find set
J (�, a, D) such that

J (�, a, D) = {j : a /∈ Mj(�, D)}.
Note that if f is unanimous and a /∈ f (�), then J (�, a, D) is non-empty. On the other hand, if
J (�, a, D) is a singleton set and a ∈ f (�)\f (�), then there is a priori determined player, namely
j such that {j} = J (�, a, D), who must deviate under � from the path implementing a under �.
Note that if J (�, a, D) is singleton set, then NVP would imply that a ∈ f (�).

Definition 6 (Condition �∗). There is a set of outcomes D, a collection of �(i)–(iv)-sequences
{(h∗, d∗)(a, �, � : D)}a∈f (�)\f (�), and a collection of outcome sets {Ci(a, �)}a∈f (�),i∈I such
that D ⊇ f (�), Ci(a, �) ⊆ Li(a, �) for all i, and h∗(k′)(a, �, � : D) = i for all k′ = 0, . . . , k

implies d∗(k)(a, �, � : D) ∈ Ci(a, �) for all � ∈ �. Moreover, if J (�, a, D) = {j}, the length of
(h∗, d∗)(a, �, � : D) is zero, and b ∈ Mj(�, Cj (a, �)) ∩ [∩i �=j Mi(�, D)

]
, then b ∈ f (�).

In words, there is set D, the domain of the implementing mechanism, and, if a ∈ f (�), set
Ci(a, �) that defines for any i his feasible set if other players stick in their �-equilibrium strategy
that implements a. If a �∈ f (�), then there is a sequence of profitable deviations under � from the
equilibrium path implementing a under �. Such sequence is described by (h∗, d∗)(a, �, � : D).
If all potential deviation sequences are induced by a single player, j, and his �-maximal outcome
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in Cj (a, �) set is maximal also for all other players in D, then the resulting outcome, b, must be
a �-equilibrium, and consequently b ∈ f (�). Since, all potential deviation sequences are, in fact,
induced by a single player if all �(i)–(iv) sequences are of length 0 (this is proven in Lemma 2),
we are permitted to use the latter property in the statement of the condition.

Note that Condition �∗ implies Condition �: The first sentence of the condition requires the
existence of a �(i)–(iv)-sequence whenever a ∈ f (�) \ f (�). Thus without the second sentence,
Condition �∗ would be equal to � (as we can always choose Ci(a, �) = Li(a, �) for all i). Note
that �∗ is weaker than the combination of � and NVP since �∗ restricts choice rules only in a
subset of those cases where n − 1 players agree on a top ranked alternative. In other words, �∗
demands that f gives players a limited degree of veto-power. It can easily be seen that unanimity
and �∗ do not imply NVP and � either.

While � plays the same role of Maskin monotonicity in the context of SPE implementation, �∗
now plays the role of �(i)–(ii) of Moore–Repullo [15], by restricting a choice rule in a subset of
those cases where all but one player agree on a particular top ranked alternative. Analogously, we
show that �∗ is a necessary condition for SPE implementation.

Lemma 2. Choice rule f is SPE implementable only if it satisfies Condition �∗.

Proof. Let � implement f , and choose D = g(S). Then f (�) ⊆ D. The proof proceeds as fol-
lows: The first part of shows that the lemma holds for certain�(i)–(iii)-sequences {(h∗, d∗)(a, �, � :
D)}a∈f (�)\f (�) such that if J (�, a, D) = {i}, h∗(k)(a, �, � : D) = i for all k = 0, . . . , K , and
b ∈ Mi(�, Ci(a, �)) ∩ [∩j �=i Mj (�, D)

]
, where Ci(a, �) comprises all outcomes i can reach

under � by unilaterally deviating from the strategy implementing a, then b ∈ f (�). The second
part shows that if one cannot find (h∗, d∗)(a, �, � : D) meeting also �(iv) with length K > 0,
then necessarily h∗(k)(a, �, � : D) = i for all k = 0, . . . , K . By the first part, this implies that
if there is no (h∗, d∗)(a, �, � : D) meeting �(i)–(iv) with length K > 0, {i} = J (�, a, D), and
b ∈ Mi(�, Ci(a, �)) ∩ [∩j �=i Mj (�, D)

]
, then b ∈ f (�).

Part 1: Take (a, �) such that a ∈ f (�), and find s ∈ SPE(�, �) such that g(s) = a. Suppose
that a /∈ f (�) = SPE(�, �). Then there is the first node y0 immediately succeeding the node
where some player, h0, makes a unilateral single shot deviation from s that induces only such
�-equilibria that he strictly �-prefers over a. Choose d0 = g(s) = a and d1 = g(s : y0). If
d1 ∈ SPE(�(y0), �), then choose K = 0. If d1 /∈ SPE(�(y0), �), then repeat the procedure to
obtain y1, h1 and d2, and so forth.

Since � has finitely many stages, this procedure generates sequences (h0, . . . , hK) and (d0, . . . ,

dK+1) that represent the successive unilateral,�-profitable deviations from s by playersh0, . . . , hK

from the paths implementing (a =)d0, d1, . . . , dK , i.e. there are histories y0, . . . , yK such that
g(s : yk) = dk and hk deviates from the path ȳ(s : yk). Then ((h0, . . . , hK), (d0, . . . , dK+1))

constitutes an �(i)–(iii)-sequence (h, d)(a, �, � : D) that meets �(i)–(iii).
Let HD(a, �, � : �) comprise all �(i)–(iii)-sequences (h, d)(a, �, � : D) derived from � in

the above described way. Pick sequence (h∗, d∗)(a, �, � : D) ∈ HD(a, �, � : �) such that
d∗(K + 1)(a, �, � : D) ∈ ∩i �=j Mj (�, D) and h∗(k)(a, �, � : D) = i for all k = 0, . . . , K if
and only if all �(i)–(iii)-sequences in HD(a, �, � : �) have this property.

Recall that D(∅, s−i ) comprises all outcomes i can reach under � by unilaterally deviating
from the strategy implementing a, i.e.

D(∅, s−i ) = {b : g(s′
i , s−i ) = b for some s′

i ∈ Si}.
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Choose

Ci(a, �) = D(∅, s−i ).

Since unilateral deviation cannot improve i’s �-payoff when other players adhere their
�-equilibrium strategy s−i , Ci(a, �) ⊆ Li(a, �). Thus, by construction h∗(k′)(a, �, �′ : D) = i

for k′ = 0, . . . , k implies d∗(k)(a, �, �′ : D) ∈ Ci(a, �), for all �′ ∈ �.
Suppose now that a /∈ f (�), J (�, a, D) = {i}, h∗(k)(a, �, � : D) = i for all k = 0, . . . , K ,

and d∗(K + 1)(a, �, � : D) ∈ ∩j �=i Mj (�, D). Then, since a ∈ Mj(�, D) for all j �= i, it must
be profitable for i to deviate from s under �. Since h∗(k)(a, �, � : D) = i for all k = 0, . . . , K , all
the �(i)–(iii)-sequences in HD(a, �, � : �) are unilaterally induced, and hence no sequence of i’s
deviations is followed by j’s deviation, for j �= i, i.e. any further deviation by any j must induce
an �-equilibrium that j does not prefer. This implies that i can induce any outcome in Ci(a, �) as
long as he himself does not deviate from the path implementing the outcome. Thus the strategy
that induces outcome b ∈ Mi(�, Ci(a, �)) is optimal for him. If, in addition, b ∈ ∩i �=j Mj (�, D),
then no j wants to deviate at any deviation stage of i, either. This implies that b ∈ SPE(�, �).
Thus b ∈ f (�).

Part 2: We still need to show that if all elements of HD(a, �, � : �) meeting �(i)–(iv) have
length K = 0, then h∗(k)(a, �, � : D) = i for all k = 0, . . . , K . To see this, suppose that
h∗(k̄)(a, �, � : D) = j �= i for some k̄. We show that then there is (h, d)(a, �, � : D) meeting
�(i)–(iv) such that K > 0 (from this on, write (h∗, d∗) instead of (h∗, d∗)(a, �, � : D)). If
d∗(K + 1) /∈ ∩j �=i Mj (�, D), then (h∗, d∗) itself meets �(i)–(iv) with K > 0. Thus suppose that
d∗(K + 1) ∈ ∩j �=i Mj (�, D).

Since � has finitely many stages, and in this case our selection rule does not restrict the choice
of (h∗, d∗) in HD(a, �, � : �), there is no loss in assuming that any �(i)–(iii)-sequences (h, d)

in HD(a, �, � : �) that agrees with (h∗, d∗) until stage k̄, satisfies h(k) = i for any k > k̄.
If k̄ = K − 1, then (h∗, d∗) meets �(iv) (note that necessarily h∗(K) = i). Thus suppose that

k̄ < K − 1. Find the node y immediately following h∗(k̄)’s deviation on the path implementing
d∗(k̄), to the path implementing d∗(k̄ +1). Then d∗(k̄ +1) = g(s : y) and s : y ∈ SPE(�(y), �).
Recall that D(y, s−i ) comprises all outcomes i can reach in subgame �(y) by unilaterally deviating
from s. Since a unilateral deviation cannot improve i’s �-payoff when other players adhere their
�-equilibrium strategy s−i in subgame �(y), D(y, s−i ) ⊆ Li(d

∗(k̄ + 1), �).
Since h∗(k) = i for all k = k̄ + 1, . . . , K , it must be that i deviates from s after y. Since

h∗(k) = i for all k > k̄ for all �(i)–(iii)-sequences in HD(a, �, � : �), no sequence of i’s
deviations is followed by j’s deviation, for any j �= i. Thus i’s strategy that induces outcome
b ∈ Mi(�, Di(y, s−i )) is optimal for him. Since also b ∈ ∩i �=j Mj (�, D), then no j wants to
deviate at any deviation stage of i, either. This implies that b ∈ SPE(�(y), �). Since d(k̄ + 1) /∈
SPE(�(y), �), i’s deviation must be profitable, or b /∈ Li(d(k), �). Thus b ∈ Li(d(k̄ + 1), �) \
Li(d(k̄+1), �) which implies that sequence {(h∗, d∗)(0), . . . , (h∗, d∗)(k̄+1), b} meets �(i)–(iv)
under (a, �, � : D). �

We have seen that Condition �∗ and unanimity are necessary for SPE implementation. We now
show that they are also sufficient. The next theorem summarizes the results regarding necessity,
and provides a constructive proof of sufficiency.

To state the constructive proof for sufficiency, we identify a collection of sequences {(h∗, d∗)(a,

�, � : D)}a∈f (�)\f (�) used in Condition �∗, and employ it to construct a new collection of �-
sequences. For any j ∈ J (�, a, D), develop a sequence (hj , dj )(a, �, � : D) by first constructing
a cycle of players in J (�, a, D) = {j [1], . . . , j [m]}, where each player acts as a “dummy mover”
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(does not change the outcome), and then adding this cycle on the bottom of (h∗, d∗)(a, �, � : D).
More precisely, for any k ∈ {1, . . . , m}, choose 14 (drop the (a, �, � : D)-term in the description
of sequences)

hj(k)(0) = j [(k + 0) mod m], dj (k)(0) = a,
...

...

hj (k)(m − 1) = j [(k + m − 1) mod m], dj (k)(m − 1) = a,

hj (k)(m) = a = h∗(0), dj (k)(m) = d∗(0),
...

...

hj (k)(K + m) = h∗(K), dj (k)(K + m) = d∗(K),

dj (k)(K + m + 1) = d∗(K + 1).

Thus (hj , dj ) is derived from (h∗, d∗) such that hj (·) first rotates around elements in J (�, a, D),
starting from j , during which dj (·) is kept fixed in a. The cycle takes m = #J (�, a, D) stages.
From stage m onwards, (hj , dj )(k) coincides with (h∗, d∗)(k − m).

Since a /∈ Mj(�, D) for any j ∈ J (�, a, D), (hj , dj )(a, �, � : D) is an �(i)–(iv)-sequence with
length Kj > 1 if (h∗, d∗)(a, �, � : D) is of length K > 0, or if J (�, a, D) contains more than one
element, or if d∗(1) /∈ ∩i �=h∗(0) Mi(�, D). If the converse is true, i.e. (h∗, d∗)(a, �, � : D) is of
K = 0, J (�, a, D) is singleton, and d∗(1)∈ ∩i �=h∗(0) Mi(�, D), then the unique (hj , dj )(a, �, � :
D) is an �(i)–(iii)-sequence. The following remark collects these observations.

Remark 1. If a∈f (�) \f (�), then either all (hj , dj )(a, �, � : D), j∈J (�, a, D), meet �(i)–(iv)
and have length Kj > 0, or no-one does. In the latter case, the unique (hj , dj )(a, �, � : D)

satisfies j = hj (0) = hj (1) and a = dj (0) = dj (1)∈ ∩i �=j Mi(�, D) and dj (2)∈ ∩i �=j Mi(�, D).

Theorem 2. Let n�3. Then a choice rule f is SPE implementable if and only if it satisfies �∗ and
unanimity w.r.t. some D ⊇ f (�).

Proof. Necessity of �∗ and unanimity follow from Theorem 1, and Lemmata 1 and 2. We now
prove that they are also sufficient. We use a version of MR (employed also by AS) stage mechanism,
denoted by �MR. It is shown that if f satisfies �∗ and unanimity, then SPE(�MR, �) = f (�) for
all � ∈ �.

Assume that f satisfies �∗ and unanimity w.r.t. D ⊇ f (�) and {Ci(a, �)}a∈f (�),i∈I , and
{(h∗, d∗)(a, �, �)}a∈f (�)\f (�) (drop the argument D from the description). Suppose that � is the
true state.

Stage 0. Each player i ∈ I announces a triplet (ai, �i , ni) ∈ A × � × {0, 1, . . .}.
(a) If (ai, �i ) = (a, �), for all i ∈ I , and a ∈ f (�), then implement a.
(b) If (ai, �i ) �= (aj , �j ) = (a, �), for all j ∈ I \ {i}, and a ∈ f (�), then, if ai = a, move to

stage 1 with sequence (hi, di)(a, �, �i ), and if a �= ai ∈ Ci(a, �), implement ai .
(c) In all other cases, if ni > nj for all j ∈ I \ {i}, then i chooses an outcome in D. Implement

this outcome. 15

14 Where (x) mod m denotes the congruent class of x ∈ N modulo m ∈ N.
15 Break the ties in favor of the player with the lowest index.
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Stage k = 1, . . . , K: Each player i ∈ I announces a number ni
k ∈ {−1, 0, 1, . . .}.

(a) If ni
k = −1 for at least n − 1 players, then hi(k − 1)(ai, �, �i ) chooses an outcome in D.

Implement this outcome.
(b) If ni

k = 0 for all i ∈ I then implement di(k).

(c) If ni
k = 0 for all i ∈ I \{hi(k)}, and n

h(k)
k �= 0 then move to the stage k+1, or, in case k = K ,

implement d(K + 1).
(d) In all other cases, if ni

k > n
j
k , for all j ∈ I \ {i} then i chooses an outcome in D. Implement

this outcome.

First we show that f (�) ⊆ SPE(�MR, �). Take any (�, a) such that a ∈ f (�). Consider the
following strategy profile: at stage 0 all players announce (�, a), and at stages k = 1, . . . , K all
players announce 0. To see why this is an equilibrium, consider the subgame starting at stage k.
Only hi(k)’s deviation can change the resulted outcome (which is hi(k−1)’s top ranked alternative
in D). Since � is true state and di(k)Rhi(k)(�)di(k +1) by definition, a deviation is not profitable.
Hence, a unanimous announcement 0 at stage k is an equilibrium, for any k = 1, . . . , K . At stage
0 a unilateral deviation by any other player does not change anything. Consequently, the described
strategy is an equilibrium and a ∈ SPE(�MR, �) if a ∈ f (�).

Now we show that SPE(�MR, �) ⊆ f (�). Suppose, to the contrary, that b ∈ SPE(�MR, �)\f (�).
First we ask what are the possible SPE strategies at stage 0. Either at least n−1 players announce
(�, a), or at least three players, i, j , and k disagree on their announcements (�i , ai), (�j , aj ),
and (�k, ak). In the latter case, since the integer game does not knock out b, it must satisfy
b ∈ ∩j∈I Mj (�, D). By unanimity b ∈ f (�), a contradiction. So at least n − 1 players must
announce (�, a) such that a ∈ f (�). There are two cases to consider: Either n players announce
(�, a), and b = a, in which case a /∈ f (�), or n−1 players announce (�, a), and some i announces
(�i , ai) �= (�, a). Note that in the latter case i must belong to J (�, a, D) since otherwise, as
the integer game does not knock out equilibrium, b ∈ ∩j �=i Mj (�, D), which would imply by
unanimity that b ∈ f (�). We seek a contradiction by showing that in both cases either unanimity
or Condition �∗ imply b ∈ f (�).

Recall that a ∈ f (�) \ f (�) implying that (h∗, d∗)(a, �, �) and hence (hi, di)(a, �, �) does
exist). The proof proceeds in two steps. First we show that if (hi, di)(a, �, �) meets �(i)–(iv),
and the integer game at stage 0 does not knock out an equilibrium outcome b, then b ∈ f (�) by
unanimity. Then we show that if (hi, di)(a, �, �) does not meet �(i)–(iv), and the integer game
at stage 0 does not knock out equilibrium outcome b, then b ∈ f (�) by Condition �∗.

Case 1: (hi, di)(a, �, �) meets �(i)–(iv). 16

By Remark 1, one can associate sequence (hi, di)(a, �, �) meeting �(i)–(iv), or (hi, di) for
short, with length Ki = K + 1 > 0 for any player i ∈ J (�, a, D). Consider the consequences of
i ∈ J (�, a, D) announcing (a, �i ) = (a, �) at stage 0, and inducing (hi, di)-subgame. Solve the
subgame backwards.

At stage Ki there are two possible equilibrium outcomes: either n−1 players choose −1 which
results in outcome in Mhi(Ki−1)(�, D), or hi(Ki) chooses 1 while others choose 0, in which case,
since the integer game is not triggered, di(Ki + 1) ∈ ∩j �=hi(Ki) Mj (�, D) is implemented.

At stage Ki − 1, either n − 1 players choose −1 which results in outcome in Mhi(Ki−2)(�,

D), or hi(Ki) chooses 1 while others choose 0, in which case, since the integer game is not trig-
gered, di(K +1) ∈ ∩j �=hi(Ki−1) Mj (�, D) is implemented. Since since hi(Ki) �= hi(Ki −1), the

16 An analogous proof of this case can be found in Abreu and Sen [2] or in Moore and Repullo [14].
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latter case implies di(K +1) ∈ ∩j∈I Mj (�, D). Thus in all cases an outcome in Mhi(Ki−2)(�, D)

is implemented.
The same applies inductively to all stages k = 0, . . . , K , and hence an outcome in Mhi(k)(�, D)

is implemented at any stage k. In particular an outcome in Mhi(0)(�, D) = Mi(�, D) is imple-
mented. Thus any i ∈ J (�, a, D) can guarantee an outcome in Mi(�, D) by choosing (hi, di)(a,

�, �) at stage 0.
In equilibrium, therefore, either no i ∈ J (�, a, D)profits from inducing an element inMi(�, D),

or i induces b ∈ Mi(�, D). In the former case, a ∈ ∩i∈J (�,a,D) Mi(�, D). But this contradicts the
definition of J (�, a, D). In the latter case, since b is not knocked out by the integer game at stage
0, it must be that also b ∈ ∩j �=i Mj (�, D). But by unanimity, b ∈ f (�), a contradiction.

Case 2: (hi, di)(a, �, �) does not meet �(i)–(iv).
By Remark 1, i = hi(0) = hi(1) and a = di(0) = di(1) ∈ ∩j �=i Mj (�, D) and di(2) ∈ ∩j �=i Mj

(�, D). If i announces (a, �i ) = (a, �) at stage 0, and induces (hi, di)-subgame, outcome di(1),

di(2), or some unanimously agreed outcome c becomes implemented. In the third case, c ∈ f (�).
Thus suppose that di(1) or di(2) becomes implemented. Since di(2)Pi(�)di(1), and di(2) ∈
Ci(a, �), i chooses (hi, di) over outcome b in Ci(a, �) only if di(2) is maximal in Ci(a, �).
The integer game does not knock out the equilibrium only if the induced outcome b or di(2),
say b, satisfies b ∈ Mj(�, Ci(a, �)) ∩ [∩j �=i Mj (�, D)

]
. But then, by Condition �∗, b ∈ f (�), a

contradiction. �

As usual, the foregoing proof on sufficiency is constructive. We employ a version of the stage
mechanism introduced by MR (denoted by �MR) and show that any choice rule satisfying Con-
dition �∗ and unanimity can be SPE implemented by this mechanism. Hence, we show that
�MR is a canonical mechanism: it SPE implements any choice rule that may potentially be SPE
implemented by any mechanism. 17

The main property of the proof is that whenever player i wishes to deviate under � from an
otherwise unanimous false announcement, a one that would be announced when implementing
a under �, he would choose “truthfully” sequence (hi, di)(a, �, �) whenever it meets �(i)–(iv).
The reason for this that in any equilibrium such choice would induce his top ranked outcome.
But if choice (hi, di)(a, �, �) would constitute an equilibrium, the resulting outcome must be
unanimously top ranked, since the integer game at stage 0 does not knock out the equilibrium.
By unanimity, this would imply that the resulting outcome must be in the choice set under �.
Thus the only question is what happens when truthful (hi, di)(a, �, �) does not meet �(i)–(iv).
We show that in this case, if i optimally chooses an outcome in Ci(a, �). If the choice constitutes
an equilibrium, and is not knocked out by stage 0 integer game, the outcome must belong to the
choice set under �, by Condition �∗.

Consider again Example 1. There it holds that J (�, a, �) is singleton set. Suppose that a ∈
f (�) \ f (�). Since a ∈ D, C3(a, �) ⊆ {a, b}, and {3} = J (�, a, D), we have by Condition
�∗ that f (�) = {x} if x ∈ M3(�, C3(a, �)) ∩ M1(�, D) ∩ M2(�, D). Since a /∈ f (�), we must
have b ∈ D and C3(a, �) = {a, b}. Thus f (�) = {b}. In particular, the Borda rule f B chooses
f B(�) = {a} and f B(�) = {c}, hence it violates Condition �∗.

To the contrary, plurality with runoff chooses f (�) = {a} and f (�) = {b}, and satisfies
Conditions �, �∗ and unanimity but not NVP. Hence, even if this rule does not satisfy the AS
sufficient condition, it can be implemented.

17 Of course, �MR is subject to well known criticism: it is unbounded and, if mixed strategies are allowed, it does not
satisfy the best response property. See [10,11].
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The next example highlights the difference between AS sufficient condition and the complete
characterization, and the difference between Nash and SPE implementability.

Example 2. Let I = {1, 2, 3}, � = {�, �}, and alternatives A = {a, b, c, d, e} are ranked in
strict order as follows:

R1(�) = R1(�) R2(�) = R2(�) R3(�) R3(�)

a a e b

b b c c

c c b e

d d a a

e e d d

The Borda rule f B chooses f B(�) = {a} and f B(�) = {b}. Clearly f B is not monotonic nor
satisfies NVP. Thus it is not Nash implementable nor SPE implementable according to the AS
sufficient condition. However, f B does satisfy Condition �∗ (construct sequences (a, d, e, b)

and (3, 1, 3), and choose D = A and C3(�, a) = {a, d}) and unanimity, and is therefore SPE
implementable.

3.1. Remarks

First we give a characterization of Nash implementable choice rules by using �-sequences. Note
that in the context of Nash equilibrium only one deviation from the equilibrium path is possible.
Given this restriction, �∗(= � + a restricted veto-power condition) has the following form:

Definition 7. There is a set of outcomes D ⊇ f (�), a collection of pairs {(h, d)(a, �,

�)}a∈f (�)\f (�) in I × D, and a collection of sets {Ci(a, �)}a∈f (�),i∈I in D such that Ci(a, �) ⊆
Li(a, �) for all i, and h(a, �, �) = i implies d(a, �, �) ∈ Ci(a, �) \ Li(a, �) for all � ∈ �.
Moreover, if b ∈ Mj(�, Cj (a, �)) ∩ [∩i �=j Mi(�, D)

]
, then b ∈ f (�).

This is equivalent to Moore and Repullo [15] Condition �(i)–(ii). Together with unanimity, it
fully characterizes Nash implementable choice rules.

Next we study scenarios where the characterization of SPE implementable rules becomes
simple. Many interesting choice rules are neutral: names of the alternatives do not matter. In such
case, if the domain of preferences is large, the choice rule is onto the set of social alternatives. Thus,
whenever there is a unanimously top ranked alternative, then this outcome should be selected by
the choice rule. Since any outcome is selected by the choice rule in some state, it follows that
Condition � implies unanimity. But then, since Condition �∗ implies �, it follows that �∗ alone is
sufficient to SPE implement this choice rule.

Theorem 3. If A = f (�), then f is SPE implementable if and only if it satisfies Condition �∗.

Proof. Necessity follows from Theorem 2. Suppose that f satisfies Condition �∗. Let c ∈ ∩i∈I Mi

(�, A). Then there is � such that c ∈ f (�). By property �(iii), also c ∈ f (�). Thus unanimity is
met and, by Theorem 2, f can be implemented. �
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Linearity is a natural restriction on players’ preferences. Formally, preference profile Ri(�) is
linear if

aRi(�)b implies aPi(�)b, for all a �= b.

If � induces linear preferences, then Mi(�, D) is single valued for any i and D ⊆ A.

Lemma 3. If � consists of linear preferences, then Condition �∗ is equivalent to Condition �.

Proof. Clearly �∗ implies �. We show the other way. Take f meeting Condition � with respect to set
D. Then, by Theorem 1, there is a family of �(i)–(iv) sequences {(h∗, d∗)(a, �, � : D)}a∈f (�)\f (�).
Choose Ci(a, �) = Li(a, �) for each a ∈ f (�), and i ∈ I . Then the families {(h∗, d∗)} and
{Ci(a, �)} of sequences and feasible sets meet the properties imposed by �∗.

Fix (a, �, �) such that a ∈ f (�) \ f (�), and suppose that f violates �∗ at (a, �, �), given our
choices of {(h∗, d∗)} and {Ci(a, �)}. Then J (�, a, �) = {i}, the length of (h∗, d∗)(a, �, � : D) is
zero, and there is b ∈ Mi(�, Ci(a, �))∩[∩i �=j Mj (�, D)

]
, but b /∈ f (�). Recall that J (�, a, �) =

{i} is equivalent to a ∈ ∩i �=j Mj (�, D). Since preferences are linear, Mj(�, D) is a singleton set,
for all j. Thus, for j �= i,

{a} = {b} = Mj(�, D) = Mi(�, Ci(a, �)). (1)

By construction, K = 0, and hence, by �(iii), h∗(K) = i, and by �(i) and �(ii), d∗(0)Ri

(�)d∗(1) and d∗(1)Pi(�)d∗(0), respectively. Since d∗(0) = a, we have d∗(1)Pi(�)a and d∗(1) ∈
Ci(a, �). But this contradicts (1). �

If we now replace NVP by unanimity 18 in the AS characterization, the gap between necessary
and sufficient conditions closes when preferences are linear: f is SPE implementable if and only
if it meets Condition � and unanimity.

Finally, we argue that property �(iv) is superfluous under linear preferences—it is always
satisfied by some pair of sequences (h, d) meeting �(i)–(iii).

Lemma 4. Let � consists of linear preferences. If there exists (h, d)(a, �, � : D) meeting �(i)–
(iii), then there exists a sequence (h′, d ′)(a, �, � : D) meeting �(i)–(iv).

Proof. Given (a, �, � : D), take (h, d) meeting �(i)–(iii). If {d(K + 1)} �= Mi(�, D) for some
j �= h(K), then we are done. Suppose that {d(K + 1)} = Mj(�, D) for all j �= h(K). Then, by
�(iii) and linearity of preferences, d(K) /∈ Mi(�, D) for all i. Take some j �= h(K), and construct
(h′, d ′) as follows:

h′(0) = h(0), d ′(0) = d(0),
...

...

h′(K) = h(K), d ′(K) = d(K),

h′(K + 1) = j, d ′(K + 1) = d(K),

h′(K + 2) = h(K), d ′(K + 2) = d(K),

d ′(K + 3) = d(K + 1).

(h′, d ′) meets �(i)–(iv). �

18 If f satisfies NVP, then a∈ ∩j �=i Mj (�, D) implies a∈f (�). Thus if a ∈ ∩j∈I Mj (�, D), then, by NVP, also a ∈ f (�).
Thus unanimity is implied by NVP.
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Thus Conditions � and �− are equivalent when preferences are linear. Summing Theorem 2,
and Lemmas 3 and 4, we get the following simpler characterization of SPE implementation under
linear preferences.

Theorem 4. If � consists of linear orders, then f is SPE implementable if and only if it satisfies
Condition �− and unanimity.

Particularly simple characterization is now obtained when preferences are linear and the f is
onto A. In such case, Theorems 3 and 4 imply that Condition �− is a necessary and sufficient
condition for implementation.

Corollary 1. If � consists of linear orders, and A = f (�), then f is SPE implementable if and
only if it satisfies Condition �−.

4. Concluding remarks

We have obtained a complete characterization of choice rules that can be implemented in
subgame perfect Nash equilibrium (SPE implemented) by using multi-stage mechanisms. Our
characterization consists of unanimity and Condition �∗, which is based on Condition � of Abreu
and Sen [2]. Thus our result fills the gap between Moore and Repullo [14] and Abreu and Sen [2]
necessary and sufficient conditions by replacing � with a stronger condition of �∗, and NVP with
a weaker condition of unanimity.

The general characterization we have introduced is rather complex. However, a slight domain
restriction simplifies the characterization remarkably: with linear preferences �∗ becomes equal
to �−, a weakened version of �.

Allowing randomization simplifies the characterization even further. 19 Vartiainen [23] shows
that under linear preferences and randomized mechanisms Condition �− reduces to the following:
If a ∈ f (�)\f (�), then there is no H ⊂ I such that a is bottom ranked under � in D by all i ∈ H

and top ranked under � by all i ∈ I \H . By Corollary 1 this condition is the necessary and sufficient
condition for SPE implementability of neutral voting rules. This form of the characterization is
very operationalizable. E.g. SPE implementability of voting rules can be easily studied with it.
For example, no scoring rule is SPE implementable whereas the top-cycle correspondence, the
uncovered correspondence as well as the plurality with runoff can be SPE implemented by a
random mechanism.

The question of two-player implementation, which is much harder, has not been touched by
this paper. Vartiainen [22] characterizes partially two-player SPE implementable rules, and shows
that any strictly individually rational bargaining solution can be SPE implemented (see also [21]).

Acknowledgements

I am indebted to a referee for his/her exceptionally generous comments and, in particular,
for pointing out a serious problem in a previous version. I am also grateful to an associate ed-
itor for his/her patience and very useful comments. Finally, I want to thank Tomas Sjöström,

19 Abreu and Matsushima [1], Abreu and Sen [3], and Glazer and Perry [8] show that with randomized mechanisms one
can virtually implement essentially all choice rules.



126 H. Vartiainen / Journal of Economic Theory 133 (2007) 111–126

Matthew Jackson, Rafael Repullo, Seppo Honkapohja, and Hannu Salonen for their comments
and encouragement along the project.

References

[1] D. Abreu, H. Matsushima, Virtual implementation in iteratively undominated strategies: complete information,
Econometrica 60 (1990) 993–1008.

[2] D. Abreu, A. Sen, Subgame perfect implementation: a necessary and almost sufficient condition, J. Econ. Theory 50
(1990) 285–299.

[3] D. Abreu, A. Sen, Virtual implementation in nash equilibrium, Econometrica 59 (1991) 997–1021.
[4] J. Bergin, A. Sen, Extensive form implementation in incomplete information environments, J. Econ. Theory 80

(1998) 222–256.
[5] S. Brusco, Perfect Bayesian implementation, Econ. Theory 5 (1995) 419–444.
[6] S. Brusco, Implementation with extensive form games: one round of signaling is not enough, J. Econ. Theory 87

(1999) 356–378.
[7] B. Dutta, A. Sen, A necessary and sufficient condition for two-person nash implementation, Rev. Econ. Stud. 58

(1991) 121–128.
[8] J. Glazer, M. Perry, Virtual implementation in backwards induction, Games Econ. Behav. 15 (1996) 27–32.
[9] M. Herrero, S. Srivastava, Implementation via backward induction, J. Econ. Theory 56 (1992) 70–88.

[10] M. Jackson, Implementation in undominated strategies, a look at bounded mechanisms, Rev. Econ. Stud. 59 (1992)
757–775.

[11] M. Jackson, A crash course in implementation course, Soc. Choice Welfare 18 (2001) 655–708.
[12] E. Maskin, Nash equilibrium and welfare optimality, Rev. Econ. Stud. 66 (1999) 23–38.
[13] E. Maskin, T. Sjöström, Implementation theory, in: Arrow, Sen, Suzumura (Eds.), Handbook of Social Choice and

Welfare 1, 2002, North-Holland.
[14] J. Moore, R. Repullo, Subgame perfect implementation, Econometrica 56 (1988) 1191–1220.
[15] J. Moore, R. Repullo, Nash implementation: a full characterization, Econometrica 58 (1990) 1083–1099.
[16] H. Moulin, Dominance solvable voting schemes, Econometrica 47 (1979) 1337–1351.
[17] M. Osborne, A. Rubinstein, A Course in Game Theory, MIT Press, Cambridge, MA, 1994.
[18] T. Sjöström, On the necessary and sufficient conditions for nash implementation, Soc. Choice Welfare 8 (1991)

333–340.
[20] S. Srivastava, M. Trick, Sophisticated voting rules: the case of two tournaments, Soc. Choice Welfare 13 (1996)

275–289.
[21] H. Vartiainen, Studies in mechanism design and game theory, Ph.D. Thesis, Department of Economics Research

Reports No. 83, University of Helsinki, 1999.
[22] H. Vartiainen, Two player subgame perfect implementation, Manuscript, University of Helsinki, 2000.
[23] H. Vartiainen, Subgame perfect implementation of voting rules via randomized mechanisms, Manuscript, Yrjö

Jahnsson Foundation, 2002.


