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Abstract A game form is commitment-free if single actions of players do not have
physical consequences, i.e., affect the continuation game. Such game can be thought
to represent inifinite interaction with complete patience. A choice rule can be Nash
implemented via a commitment-free mechanism if and only if it coincides with the
feasible set of a normal form game. However, when players are complexity averse (in
the lexicographic sense), then any Nash implementable choice rule becomes available.
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1 Introduction

In many real life problems, an arbitrator can only implement a choice rule via con-
versation, a game in which messages are exchanged unboundedly long time, without
players clearly seeing the deadline or the final message stage. What matters is the
agreement that players reach (or do not reach) in the long run. One could imagine this
being the case, e.g., in political interaction or in marriage counseling.
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272 H. Vartiainen

Aumann and Hart (2003) model conversation as a long cheap talk game: a player
may have payoff relevant information but an outcome is chosen only after an infinite
sequence of messages has been exchanged. The difference between finitely and infi-
nitely repeated cheap talk game is analogous to the difference between finitely and
infinitely repeated prisoners’ dilemma: In the former case, the existence of a final
round unravels everything backwards and ruins hope for cooperation. In the infinite
case, however, unraveling need not take place. Thus not being able to commit to play-
ing the stage game one more time, which is the case under long cheap talk, allows
wider scope of cooperation.

In the scenario of Aumann and Hart (2003), the two players send messages infinitely
long before they choose their physical actions in a bimatrix game. We apply their idea
to the implementation context and assume that it is the planner who chooses, according
to a prefixed rule, the outcome after an infinite exchange of messages. The rule accord-
ing to which the outcome is implemented. This rule, i.e. the mechanism, is restricted
by the condition that we dub commitment-freeness: no single message of any player
affects how the implemented outcome depends on the messages. Commitment-free-
ness reflects the idea that the planner cannot commit to not let the players play again the
message game. Due to this property alone, all terminal histories of a commitment-free
game are infinitely long, and the implemented outcome is not sensitive to finite devi-
ations. However, the implemented outcome may be sensitive to an infinite deviation.
Hence, commitment-freeness is a measurability restriction on the outcome function.

Formally, implementation via a commitment-free mechanism takes place in three
phases: (i) the initial phase t = 0 when the mechanism is designed and the players’
preferences are determined, (ii) the communication phase t = 1, 2, . . . in which play-
ers send infinite sequences of public messages, and (iii) the implementation phase
t = ω + 1 when an outcome is chosen based on the realized stream of messages.
The planner’s game design problem is to associate outcomes to all infinite streams
of messages in a way that desirable Nash equilibria, and only them, are induced.
Choice rules that are implementable via a commitment-free mechanism are said to be
commitment-freely implementable.

The standard way of studying commitment in game theory is to do it through
repeated games. Indeed, one may think a commitment-free game a repeated game
where an outcome is implemented in each period with small probability (rather than
future being discounted). Assuming that the limit is well defined, the players’ payoffs
can be characterized by the limit of the means criterion (cf. Aumann and Shapley 1976;
see also Osborne and Rubinstein 1995; Aumann 1997). This criterion puts no weight
on payoffs in a single period.1,2

The fundamental problem with commitment-freeness in terms of implementation
is that there is no way of preventing players’ coordination. Indeed, a version of the
folk theorem applies: A set of outcomes is commitment-freely implementable if this

1 Limit of the means gives same preference ordering over the streams of payoffs as does the standard
discounting criterion when the discount factor approaches unity. Moreover, the discounted infinite stream
payoff converges as the factor approaches unity exactly when limit of the means exists (see Binmore 1998).
2 Limit of the means is not defined for all payoff streams. However, in the domain of strategies that are
implementable via finite state machines it is well defined. See the discussion in the final section of the paper.
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set agrees with a feasible set (the set of minmax dominating outcomes) of a normal
form mechanism. The converse also holds; the feasible set of any normal form mech-
anism can be commitment-freely implemented. For example, no Pareto optimal rule
is implementable via a commitment-free game in the unrestricted preference domain
(with the outcome set containing at least two elements).

However, the folk theorem requires players to use complex strategies that may not be
easily induced by players with bounded computational capacity. It is well known that
even weak complexity aversion can reduce dramatically the number of equilibria in re-
peated games. For example, the folk theorem collapses.3 The main results of this paper
concern implementable rules when the players are computationally bounded, i.e., have
tendency to avoid complex strategies. Complexity of a strategy is modeled in terms of
the size of the smallest (Moore) machine that induces the strategy. A complexity averse
player has a slight preference for strategy that is inducable via a smaller machine.4

The planner can exploit players’ complexity aversion when designing the mecha-
nism. We show that any Nash implementable choice rule can be Nash implemented via
a commitment-free game form. This is done by constructing a canonical commitment-
free mechanism that Nash implements any Nash implementable outcome when play-
ers are complexity averse. Hence, under complexity aversion commitment inability
is not a restriction on implementation. One way to interpret this is that complexity
aversion is an alternative assumption that game theory can be based on, rather than
commitment ability.

Finally, we show that the canonical commitment-free mechanism can be interpreted
in the language of repeated games. We construct a game form that implements an out-
come in each period t = 1, 2, . . . as a function of the message history until t, and
argue that the limit of the means payoffs generated from this game form are equivalent
to the canonical mechanism.

Literature Nash equilibria of commitment-free games are related to the concept
of program equilibria by Tennenholz (2004). Program equilibrium is based on the
idea that computers are not only programmed to implement strategies but also to read
how other computers are programmed. Hence an equilibrium strategy can be made
directly contingent on the other players’ program. Tennenholz shows that all minmax
dominating strategies can be implemented. One difference is that we are not, a priori,
restricted to computable strategies. The second is that our players do not scan other
players’ programs, only actions. This guarantees that a play path can always be deter-
mined.5 It would be interesting to explore whether the results of this paper hold, or
appropriate versions of them, under implementation in program equilibrium.

Commitment is not a new question the implementation literature. A common theme
in the literature is that a mechanism is an intermediate institution, a communication
device, whose output is merely a suggestion that can be changed. The approach closest
to this one is Jackson and Palfrey (1998, 2001) who study voluntary (stationary)

3 Rubinstein (1986) is a pioneering work. See also Abreu and Rubinstein (1988), Banks and Sundaram
(1990), and Chatterjee and Sabourian (2000).
4 In the lexicographic sense.
5 In Tennenholz (2004) the existence is guaranteed by a natural restriction on the programming language.
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implementation.6 In their framework, any player may veto an outcome of the mecha-
nism and opt instead to play the same mechanism over again, without a bound.7 As a
consequence, only mutually beneficial deviations are effective. Assuming stationary
strategies, this imposes a restriction on mechanisms and leads to a condition that is
more stringent than Nash implementation. However, the Pareto correspondence can
be implemented via such voluntary process.

Kalai and Ledyard (1998) study dominant strategy implementation in a repeated
framework. Their focus is on learning. They show that learning along the play path
may allow the planner to achieve socially optimal outcome in the long run, provided
that players discount future payoffs.

There are notably differences to this paper. First, we allow general strategies.
Second, what drives the Jackson–Palfrey-model is that players can commit to an
agreement. Since a move to the next round must be mutually accepted, there is an a
priori tendency towards players’ coordination. Finally, we derive the structure of the
game from the no commitment-condition.

Section 2 defines the implementation concepts. Section 3 gives the results. The final
section concludes with discussion.

2 The concepts

The set up Let the set of players be {1, 2} with generic distinct elements i and j.
There is a finite set A of feasible pure alternatives containing at least two elements.
State θ that defines players’ preferences is drawn from the set �. For profile θ ∈ �,

denote by ui (·, θ) player i’s vNM utility function over A.
A social choice correspondence (SCC) f is a mapping f : � → A (not necessarily

single valued). Assume that f (�) = A.

Nash implementation We are interested in full implementation where the set of
SPE outcomes of the implementing mechanism coincides with the desired SCC in all
states. A normal form mechanism � = 〈S, g〉 consists of a strategy space S = S1 × S2
and an outcome function g : S → A. Pair (�, θ) constitutes a normal form game.
Denote by N E(�, θ) the set of Nash equilibria of (�, θ). Then s ∈ N E(�, θ) if

ui (g(s), θ) ≥ ui (g(s′
i , s j ), θ), for all s′

i ∈ Si , for all i = 1, 2.

Mechanism � Nash implements f if g(N E(�, θ)) = f (θ), for all θ ∈ �. If there is a
mechanism � which Nash implements f, then f is Nash implementable (cf. Maskin
1999).

Commitment-free mechanism Suppose implementation is not restricted to nor-
mal form games. An extensive mechanism with simultaneous moves is defined by a

6 Baliga et al. (1997) study implementation when the designer is unable to commit to the mechanism.
Maskin and Moore (1999) restrict implementation with a renegotiation procedure.
7 For an application of a similar idea to the principal-agent framework, see Ma et al. (1988).
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triple �̄ = 〈H, S, ḡ〉, where the set of finite histories H consists of strings of pairs
of actions—histories—such that (i) ∅ ∈ H , (ii) h ∈ H and h′ ⊂ h imply h′ ∈ H,

(iii) h1 ⊂ · · · ⊂ hk for all k = 1, 2, . . . implies hk ∈ H.8 At h, players’ choice
sets Sh = Sh1 × Sh2 satisfy the parity Sh = {s : (h, s) ∈ H}. The set of all strat-
egies is S = ×h∈H Sh and player i’s strategy set is Si = ×h∈H Shi . Each strategy
s = (s(h))h∈H of S induces a unique terminal history

h̄(s) = (s1, . . .) = (s(∅), s(s(∅)), s(s(∅), s(s(∅))), . . .).

Denote by H̄ the set of terminal histories, endowed with the product topology. The out-
come is conditional on the terminal history and is defined by the measurable function
ḡ : H̄ → A. Every nonterminal history h specifies a subgame �̄(h) = [

H h, Sh, ḡh
]
,

the branch of �̄ with origin h, where H h, Sh, and ḡh are herited from H, S, and ḡ,
respectively, in the obvious way.9

Commitment to an action means that the action has physical consequences. Hence,
mechanism � reflecting no-commitment is equivalent to saying that no single action
has physical consequences. We say that the two mechanisms � = [H, S,ḡ] and �′ =[
H ′, S′,ḡ′] are equivalent, written � = �′, if there is a 1–1 relation ϕ between H̄ and

H̄ ′ such that ḡ(h̄) = ḡ′(ϕ(h̄)) for all terminal histories h̄ ∈ H̄ .

Condition 1 Extensive mechanism �̄ is commitment-free if �̄(h, s) = �̄(h, s′) for
all s, s′ ∈ Sh, for all h ∈ H.

That is, no single action should ever affect the continuation game. However, the
condition does not require the continuation game form to be constant across histories.
It is important that the condition does not impose a restriction on any choice that
cannot be regretted afterwards, i.e., on infinite histories.

As an example of a nontrivial game that is commitment-free, let 1 and 2 move in
a sequential order. At odd stages 1 makes an offer a and at even stages 2 accepts or
rejects. If there is stage k from which onwards 1 always offers a and 2 always accepts,
then a is implemented. In all other cases, some d is implemented. This “Coasian”
bargaining game is studied by Vartiainen (2003).

Mechanism � is trivial if ḡ(h̄(S)) is singleton.
Mechanism � has a stage structure if there is a set Sk such that S(s0,...,sk ) = Sk for

all (s0, . . . , sk) ∈ H, for all k = 0, . . .. Thus if � has a stage structure, then the struc-
ture of the continuation game is independent of the past history. Moreover, if � has
a stage structure, then the set of terminal histories can be represented by a Cartesian
product ×K

k=0Sk, where K is finite or infinite. In such case, it is meaningful to say that
a terminal history differs at a particular, say kth, stage.

Lemma 1 �̄ = 〈H, S,ḡ〉 is commitment-free and nontrivial only if it has a stage
structure, every terminal history is infinite and ḡ(h̄) = ḡ(h̄′) whenever terminal histo-
ries h̄ and h̄′ differ at most finitely many stages. Conversely, if �̄ has these properties,
then it is commitment-free.

8 For convenience, use the notation h ⊂ h′ if h = (s, . . . , s′) and h′ = (s, . . . , s′, . . . , s′′).
9 For a more detailed construction of an extensive form, see, e.g., Osborne and Rubinstein (1995).
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The proof is in Appendix. Since an outcome of a commitment-free mechanism �

is independent of finite deviations, no nonterminal history gives any advice of the
relevant features of the other player’s strategies.

It is convenient to represent the extensive mechanism [H, S,ḡ] by the equivalent
normal form

[
S, ḡ ◦ h̄

]
. If a commitment-free mechanism

[
S, ḡ ◦ h̄

]
Nash implements

f , then f is commitment-freely Nash implementable.

3 Structure of equilibria

This section studies the structure of Nash equilibria under a fixed θ since, due to the
structure of strategy sets, the key issues with commitment-free implementation pop
up already in this case (all proofs of this section are in Appendix). For simplicity, we
remove θ from the notation.

Given a normal form mechanism � = [S, g] and a payoff vector v = (v1, v2),

denote the outcomes that generate both i = 1, 2 payoff at least vi by

D�(v) = {a ∈ g(S) : ui (a) ≥ vi , for all i}.

Denote player i’s minmax-payoff by

vi (�) = min
s j

max
si

ui (g(s j , si )), for all i. (1)

Then set D�(v(�)) is called the feasible set of normal form mechanism � = [S, g].
First we show that the set of Nash equilibrium outcomes of a commitment-free

game coincides with its feasible set.

Lemma 2 If E is the set of Nash equilibrium outcomes induced by a commitment-free
mechanism �̄ = [

S, ḡ ◦ h̄
]

under preferences θ, then E = D�̄(v(�̄)).

The next lemma establishes a sufficient condition for commitment-free Nash imple-
mentation: The feasible set of a normal form game coincides with the set of Nash
equilibrium outcomes of some commitment-free game.

Lemma 3 If, under preferences θ, E = D�(v(�)) for a normal form mechanism �,

then E is the set of Nash equilibrium outcomes induced by some commitment-free
mechanism.

Constructing a commitment-free mechanism from a normal form mechanism is
not completely straightforward. Since the set of outcomes is finite (unlike in standard
repeated games where convex combinations of payoffs can be generated), and the set of
strategies is a continuum, there are “too many” strategies to map to the set of outcomes.
The main difficulty lies in doing this in a way that preserves commitment-freeness.

Thus, collecting Lemmas 2 and 3, we have a tight characterization. The set of
Nash equilibrium outcomes under a commitment-free mechanism coincides with the
feasible set of some normal form mechanism.
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Theorem 1 E is the set of Nash equilibrium outcomes under a commitment-free
mechanism under preferences θ if and only if E = D�(v(�)) for a normal form
mechanism �.

Thus to verify the implementability of set E via a commitment-free mechanism it
is necessary and sufficient to focus on normal form mechanisms.

4 Implementation

Now we associate our observations concerning the structure of Nash equilibria of
commitment-free games to implementation. Analogously to the previous notation,
let, for any θ ∈ �,

D�(v, θ) = {a ∈ g(S) : ui (a, θ) ≥ vi , for all i}.

Denote player i’s minmax-payoff in � under θ by

vi (�, θ) = min
s j

max
si

ui (g(s j , si ), θ), for all i.

Then D�(v(�, θ), θ) is the feasible set of � under θ.

With this notation, it is now straightforward to extend Theorem 1 to the state space
�.10

Theorem 2 Choice rule f is commitment-freely Nash implementable if and only if
f (θ) = D�(v(�, θ), θ), for all θ ∈ �, for some normal form mechanism �.

To present a simple sufficient condition, call choice rule f I R individually rational
correspondence with respect to d ∈ A if

f I R(θ) = {a ∈ A : ui (a, θ) ≥ ui (d, θ), for all i}, for all θ.

Construct a simple veto-game form: all players suggest an outcome. If all agree on
a, then a is implemented. Otherwise, d is implemented. This game form induces a
feasible set f I R(θ).

Proposition 1 Choice rule f I R is commitment-freely Nash implementable, for any
d ∈ A.

Not all Nash implementable rules are implementable by commitment-free mecha-
nism. It is well known that the intersection of the strong Pareto rule,

f P (θ) = {a ∈ A : there is no b s.t.ui (a, θ) < ui (b, θ), for all i}, for all θ,

and f I R, i.e.,

f P I R(θ) = f P (θ) ∩ f I R(θ), for all θ ∈ �,

10 Since Theorem 1 is a necessary and sufficient condition under any θ .

123



278 H. Vartiainen

is Nash implementable (cf. Maskin 1985). Consider the following scenario: there are
at two players 1 and 2 and three outcomes a, b, and c.11 Let rule f P I R be defined on
all strict preferences, and f I R with respect to c. Suppose that there is a normal form
mechanism � = 〈S, g〉 such that f P I R always agrees with the feasible set of �. Let
1 and 2 agree on the top alternative under θ :

u1(a, θ) > u1(b, θ) > u1(c, θ),

u2(a, θ) > u2(b, θ) > u2(c, θ).

Since f P I R(θ) = {a} and since f P I R agrees with the feasible set of �, there is i such
that

min
s j

max
si

ui (g(s j , si ), θ) > ui (b, θ). (2)

Define θ ′ such that

ui (a, θ ′) > ui (b, θ ′) > u1(c, θ
′),

u j (b, θ ′) > u j (a, θ ′) > u2(c, θ
′).

Then f P I R(θ ′) = {a, b} (since c is Pareto dominated by both a and b which in turn
are not Pareto dominated). By the definition of feasible set,

ui (b, θ) ≥ min
s j

max
si

ui (g(s j , si ), θ
′)

= min
s j

max
si

ui (g(s j , si ), θ) (3)

But (2) and (3) are in conflict. Thus f P I R cannot agree with the feasible set of �. Note
that defining f I R with respect to a or b would give the result as well (since then too
f P I R(θ ′) = {a, b}).
Proposition 2 Rule f P I R is not commitment-freely Nash implementable.

5 Complexity considerations

The previous section demonstrates that communication through costless actions cre-
ates more opportunities for coordination, and hence more undesirable equilibria. Thus
the lack of commitment ability restricts choice rules that can be implemented.

Cooperation requires players to use contingent strategies. Such strategies are com-
plex as they have to be conditioned on the past observations. But would players use
such strategies if they have even small preference for simplicity? This section explores
the consequences of complexity aversion to implementable choice rules.

To capture the complexity considerations, we view players implementing their strat-
egies via finite state (Moore) machines.12 Possible machines are defined with respect

11 The argument can be easily adjusted to many players and many outcomes case.
12 See Rubinstein (1986) for a seminal treatment of complexity issues in repeated games. For further
discussion, see Abreu and Rubinstein (1988); Kalai and Stanford (1988).
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to the underlying mechanism, say �̄ = 〈H, S,ḡ〉 . For simplicity, let Sih = Si for all
h ∈ H. Player i’s machine is a tuple mi = (Qi , q0

i , σi , τi ), where

• Qi is the set of states,
• q0

i ∈ Qi is the initial state,
• σi : Qi → Si is the output function,
• τi : Qi × S j → Qi is the transition function.

We analyze commitment-free games with choice set Si , i = 1, 2, that is fixed across
time. Machine mi induces a strategy {st

i }∞t=0, denoted by s[mi ], if the following hold:

st
i = σi

(
qt

i

)
and qt+1

i = τi
(
qt

i , st
j

)
, for all t = 0, 1, . . . .

That is, in the first stage, player i’s machine mi is in state q0
i and generates a choice

s0
i = σi (q0

i ). Given the other player’s choice s0
j and state q0

i , the machine moves to

state q1
i = τi (q0

i , s0
j ). In the second stage, the machine generates a choice s1

i = σi (q1
i ),

etc. The infinite stream of actions is defined recursively given the other player’s stream
of actions.

Denote the set of all machines available to player i by Mi .
13 Since a machine

specifies the player’s action after all histories, it does implement a strategy. Without
restrictions on Q, any strategy can be induced by some machine, hence the machine
description is without loss of generality. The key feature of the machine description
is that it allows explicit modeling of complexity considerations. As a proxy of the
complexity of the strategy we take the size of the state space Qi of the machine, or
size of the machine for short, that implements it. We denote the size of machine mi

by |mi | . Complexity aversion is then accounted by the negative sensitivity of play-
ers’ payoffs to the number |mi |. We assume that complexity aversion has the weakest
possible form; it is lexicographic.

Formally, denote by s[m] the pair of strategies that are induced by the pair of
machines m = (m1, m2). Also denote by q = (q1, q2) a typical pair of states in the
combined state space Q = Q1 × Q2 of the machines m, and σ(q) = (σ1(q1), σ2(q2))

the action taken by them under state q = (q1, q2). Finally, denote by s̄[m] =
(s̄1[m], s̄2[m]) = (s, s′, s′′, . . .) the path of actions that materializes with s[m], and
q̄[m] = (q̄1[m], q̄2[m]) = (q, q ′, q ′′, . . .) the path of states that are activated along
the play. That is, τ(q, σ (q)) = q ′ for any two successive elements q, q ′ in q̄[m] and
s = σ(q), and s′ = σ(q ′) for the corresponding successive elements s, s′ in s̄[m]. The
implemented outcome depends only on s̄[m]. To simplify notation, let us abbreviate
and write ḡ(m) instead of ḡ(s̄[m]).

The time line of a commitment-free machine game is: (i) State θ ∈ � is realized
and a commitment-free mechanism �̄ is designed. (ii) Players simultaneously choose
their machines. (iii) the chosen machines induce strategies within the mechanism and
an outcome is implemented accordingly. Machines m = (m1, m2) form a machine
equilibriumof �̄ under θ ,written simply m ∈ N E(�̄, θ), if for all i = 1, 2 and for all

13 Indexed by i since i’s machine implements actions in the set Si and takes inputs from the set S j .
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machines m′
i ∈ Mi ,

ui (g(m), θ) > ui (g(m j , m′
i ), θ), or

ui (g(m), θ) = ui (g(m j , m′
i ), θ) and

∣∣m′
i

∣∣ ≥ |mi | .
That is, a player always prefers an outcome that generates him a higher utility but if
there are two outcomes of equal value, then he prefers strategy that is less complex,
i.e., inducable by a smaller machine.

The simplest strategy is the one that is implemented by a one-state machine. Many
Nash equilibria are too complex to be implemented by such machines. Before estab-
lishing our main results, we make some preliminary observations concerning machine
games.

Since the machines are finite, the play of the game must eventually repeat itself
in a cycle. Thus given the machines m = (m1, m2), the path of states q̄[m] can be
decomposed into two phases: an introductory phase I P = (q0, . . . , qT0) of length
T0 ≥ 0 and a cycling phase C P = (qT0+1, . . . , qT0+T ) of length T ≥ 1.

Lemma 4 Any m induces a path of states q̄[m] = (I P, C P, C P, . . .), where I P is
a (possibly empty) finite sequence of elements in the combined state space Q of the
machines m, and C P is a finite sequence of elements in Q, and I P ∩ C P = ∅.

Proof Let Q1 × Q2 = Q. Define τ = (τ1, τ2) and σ = (σ1, σ2). Let φ = τ ◦ σ :
Q → Q such that (τ1(q1, σ2(q2)), τ2(q2, σ1(q1))) = φ(q1, q2). Starting from q0 =
(q0

1 , q0
2 ), generate φ(qt ) = qt+1 ∈ Q, for t = 0, . . . Since all Q1, Q2 are finite

sets, Q is finite. By the pigeonhole principle, there is the smallest T0 ∈ {0, . . .} and
T ∈ {1, . . .} such that (qT0

1 , qT0
2 ) = (qT0+T

1 , qT0+T
2 ). Since φ depends only on the

current qt , (qT0
1 , qT0

2 ) = (qT0+rT
1 , qT0+rT

2 ), for any r ∈ {0, . . .}. Since there is no
T ′ < T0 with this property, qt �= qk for all t < T0 ≤ k. ��

Any state appearing in the introductory phase is visited only once, but any state
appearing in the cycling phase is visited infinitely often.

Corollary 1 Any m induces a path of i’s states q̄i [m] = (I Pi , C Pi , C Pi , . . .), where
I Pi is a (possibly empty) finite sequence of states in Qi , and C Pi is a finite sequence
of states in Qi , and I Pi ∩ C Pi = ∅.

First we note that a machine equilibrium cannot support states that are never used.

Lemma 5 Let m ∈ N E(�̄, θ). Then Qi coincides with the distinct elements in the
path of states q̄i [m].
Proof If a machine mi of a player i has a state qi that is not used when m1 and m2
operate, then m cannot be a Nash equilibrium since qi can be eliminated without
affecting the physical process, i.e., s̄[m]. Since i prefers a smaller machine given that
the outcome remains the same, this cannot be the case. ��

An immediate consequence of Corollary 1 and Lemma 5 is that any state in the i’s
cycling phase can be reached from any state in Qi . Since i’s current state qi is always
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Repeated implementation and complexity considerations 281

either in the initial phase or in the cycling phase, player j needs to just follow the
actions that he would have taken would he follow the equilibrium path. Then the play
eventually goes through the all states in i’s cycling phase.

Corollary 2 Let m ∈ N E(�̄, θ). If qi ∈ C Pi , then, for any q ′
i ∈ Qi there is

{s1
j , . . . , sK

j } of j’s actions such that τi (sk
j , qk

i ) = qk+1
i for all k = 1, . . . , K and

q1
i = q ′

i imply q K+1
i = qi .

The next lemma shows that if there is a state in player i’s machine such that once
the state is received i will never change his action no matter what choices the other
player makes, then that state is the unique element in the cycling phase of i.

Lemma 6 Let m ∈ N E(�̄, θ). If, for any qi , all finite sequences {s1
j , . . . , sK

j } of j’s

actions imply σi (qi ) = σi (q
K+1
i ) for q1

i , . . . , q K+1
i such that τi (sk

j , qk
i ) = qk+1

i for

all k = 1, . . . , K and q1
i = qi , then τi (s j , qi ) = qi , for all s j ∈ S j .

Proof Suppose that the conditions hold for mi . Then, given that qi is reached, no
sequence of actions of j changes the action made by i at qi . Thus unless τ ′(s j , qi ) = qi

for all s j , one could replace τ with τ ′ that would do that and remove all states reached
after qi in q̄i [m] without affecting its performance, i.e., the path s̄[m]. But this this
violates the assumption that m forms a Nash equilibrium. ��

5.1 Nash implementability implies machine implementability

Moore and Repullo (1990) and Dutta and Sen (1991) establish a necessary and suffi-
cient condition for two-person Nash implementation. The condition, which is called
µ2, is defined with respect to a collection of sets {Ci (θ, a)} such that Ci (θ, a) ⊆
Li (θ, a) for all a ∈ f (θ), for all θ ∈ �, for all i = 1, 2, and a function e : � × A ×
N × A → A such that e(θ1, a1, θ2, a2) ∈ C1(θ

2, a2) ∩ C2(θ
1, a1).

Choice rule f satisfies µ2 if there are sets {Ci (θ, a)} and function e such that the
following hold:14

(i) If an outcome aθ -maximizes both players’ payoff in A, then a ∈ f (θ).

(ii) If an outcome aθ -maximizes i’s payoff in A, and j’s in C j (θ
′, a′), then a ∈ f (θ).

(iii) If an outcome aθ -maximizes i’s payoff in Ci (θ
′, a′) and j’s in C j (θ

′, a′), then
a ∈ f (θ).

(iv) If an outcome a = e(θ1, a1, θ2, a2)θ -maximizes 1’s payoff in C1(θ
2, a2), and

2’s in C2(θ
1, a1), then a ∈ f (θ).

Thus if f is implementable, then there are sets {Ci (θ, a)} such that (i)–(iv) are
met by f . To prove the other direction, Moore and Repullo (1990) and Dutta and
Sen (1991) employ the following canonical mechanism �∗: Both players i choose
(θ i , ai , ni , bi ) ∈ � × A × N × A such that ai ∈ f (θ i ). The outcome function g∗ is
defined by the following rules:15

14 Recall that we assume f (�) = A.

15 Ties are broken in favor of 1.
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(a) If (θ1, a1) = (θ2, a2) = (θ, a) and ni ≥ n j = 0, then g∗(s) = a.

(b) If (θ1, a1) �= (θ2, a2) and ni > n j = 0, then

g∗(s) =
{

bi , if bi ∈ Ci (θ
j , a j ),

e(θ1, a1, θ2, a2), otherwise.

(c) If ni > n j > 0, then g∗(s) = bi .

We show that any Nash implementable choice rule can be implemented via a com-
mitment-free machine game by using a dynamic version of the canonical mechanism.
Given the collection {Ci (θ, a)} of sets and the choice rule f , construct the following
commitment-free mechanism �M . In each stage t = 0, 1, . . . , each player i announces
a tuple (θ i

t , ai
t , ni

t , bi
t ) ∈ � × A × N × A such that ai

t ∈ f (θ i
t ). Outcome function gM

is defined on the set of terminal histories (� × A × N × A)∞, and it aggregates the
content of strategies by using the following measures.

Given strategy {si
t }∞t=0 = {(θ i

t , ai
t , ni

t , bi
t )}∞t=0, denote a set of messages that i

chooses infinitely many times by

Xi =
{

(θ i , ai ) :
∞∑

t=0

1{(θ i
t , ai

t ) = (θ i , ai )} = ∞
}

.

Since i’s machine is finite, there has to be an si that is chosen infinitely many times.
Thus Xi is nonempty. Denote the highest integer that i announces infinitely many
times by

n̄i = max

{

n :
∞∑

t=0

1{ni
t = n} = ∞

}

∪ {0}.

Since sequence {ni
t }t is countable, there is a well defined n̄i ∈ N.16 Finally, for any

b ∈ A, let

ρ(b) = lim
T →∞

∑T
t=0 1{bi

t = b and ni
t = n̄i }

∑T
t=0 1{ni

t = n̄i } .

That is, ρ(b) is the limit of the frequency of times that i chooses b together with
n̄i . Since n̄i is well defined, and since the sequence {ni

t , bi
t }t is generated by a finite

machine, the limit exists for each b. Let

bi = arg max
b∈A

ρ(b).

Since A is finite, a maximum exists.

16 Otherwise {ni
t } would contain infinitely many disjoint subsequences. Since {ni

t } is countable, this is not
feasible.
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Thus strategy {(θ i
t , ai

t , ni
t , bi

t )}∞t=0 uniquely defines a triple (Xi , n̄i , bi ) ∈ 2�×A ×
N × A. If Xi contains a single element, we slightly abuse the notation and denote this
element by (θ i , ai ). Given {(θ i

t , ai
t , ni

t , bi
t )}∞t=0, the outcome function gM is defined

as follows.17

(A) If
∣∣X1

∣∣ = ∣∣X2
∣∣ = 1, (θ1, a1) = (θ2, a2), and n̄i ≥ n̄ j = 0, then gM (s) = a.

(B) If
∣
∣X1

∣
∣ = ∣

∣X2
∣
∣ = 1, (θ1, a1) �= (θ2, a2), and n̄i > n̄ j = 0, then

gM (s) =
{

bi , if bi ∈ Ci (θ
j , a j ),

e(θ1, a1, θ2, a2), otherwise.

(C) If
∣∣X1

∣∣ = ∣∣X2
∣∣ = 1, and n̄i > n̄ j > 0, then gM (s) = bi .

(D) If
∣∣X j

∣∣ >
∣∣Xi

∣∣ = 1, then gM (s) = ai .

(E) If
∣∣Xi

∣∣ >
∣∣X j

∣∣ > 1, then gM (s) = bi .

�M is a commitment-free mechanism: the continuation game is always independent
of the players’ current actions. No finite change in choices affect the implemented out-
come. Any deviation with material consequences must induce a play path that differs
in infinitely many times from the initial path.

Note the analogy between (a–c) and (A–C) in g∗ and gM , respectively. The addi-
tional features of gM are D and E that relate to the cases when X1 and X2 are not single
valued. This can be interpreted as an integer game-construction in a new dimension.

Our aim is to show that the commitment-free mechanism �M and the canonical
mechanism �∗ induce the same set of Nash equilibria in each state, when the former
is played via machines.

Lemma 7 Let �∗ Nash implement f. Then �M implements f in machine equilibrium.

The “if”-part follows from the observation that a constant strategy that chooses the
same message unconditionally of the history of the play (and the machine inducing it
uses only one state) is a best response against a constant strategy. When such strategies
are used, only Rules (A–C) of game �M apply. Thus a pair of constant strategies form
a machine equilibrium in �M if the analogous strategies form a Nash equilibrium
in �∗.

The more involved “only if”-part of the proof is based on the idea that unless there
is a state in the player’s cycling phase when he is totally unresponsive to changes in
the other player’s strategy, then he can be “fooled” into a cycle that, by Rule D or E,
lets his opponent choose the implemened outcome (Claim 2 in the proof). This implies
both players have a tendency to choose unconditional, constant strategies. Comparing
game �M (without D and E that employ nonconstant strategies ) and �∗ one observes
that constant strategies in the former are analogous to the stratgies of the latter. Thus,
given that players use constant stratgies, equilibrium behaviors in the former and in
the latter are also analogous. Since �∗ is a canonical mechanism in the context of
two-player Nash implementation, the following sufficient condition is thus obtained.

17 Break integer ties in favor of 1.
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Theorem 3 Choice rule f is implementable in machine equilibrium of a commitment-
free game if f is Nash implementable.

It is well known in the literature that small changes in the underlying implemen-
tation framework can have a large impact on the class of implementable rules. How
much more can be implemented in machine equilibrium than in Nash equilibrium is
left as an open problem.

Caveat Theorem 7 is sensitive to the assumption that complexity costs are lexico-
graphic. With any strictly positive costs, it may no longer hold that it is profitable
for a player i to induce the other player j into a cycle á la Claim 2. Without such
property, j may not need to protect himself by committing to a constant strategy in the
cycling phase. It is also clear that with high complexity costs the result would again
apply since players would be inhibited from using conditional strategies. Exploring
the consequences of complexity costs in the middle area should be interesting.

5.2 Repeated implementation under limit of the means

While analytically unproblematic, that commitment-free mechanisms never end is
inconvenient from the heuristic perspective. A natural way to interpret this feature is
to view a commitment-free game as a reduced form description of a repeated interac-
tion where the planner seeks to implement an outcome with completely patient players
in every period 0, 1, . . .. Let us formalize complete patience in the language of the limit
of the means-criterion which places no weight on the payoffs that are materialized in
finitely many periods.

Formally, given a stream of outcomes ā = {at }∞t=0 ∈ A, the limit of the means-cri-
terion gives player i a payoff

ui (ā, θ) = lim
T →∞

∑T
t=0 ui (a, θ)

T
,

whenever the limit is defined. We now show how the canonical commitment-free
mechanism can be altered so that it matches the current repeated implementation
framework.

Construct a game �r that implements an outcome in A in every period T = 0, . . . ,

conditional on the submitted messages in periods 0, . . . , T . Let strategy sets be defined
as in the game �M : at each period t, player i announces a tuple (θ i

t , ai
t , ni

t , bi
t ) ∈

� × A × N × A such that ai
t ∈ f (θ i

t ).

Given the announcements s̄T = {si
t }T

t=0 = {(θ i
t , ai

t , ni
t , bi

t )}T
t=0 until period T,

denote a set of messages that i has chosen in proportion higher than 1/(
√

T − C) by

Xi (T ) =
{

(θ i , ai ) :
T∑

t=0

1{(θ i
t , ai

t ) = (θ i , ai )} ≥ √
T − C

}

, for C = |A × �|2 .
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Set {(θ i
t , ai

t )}T
t=0 contains at most |A × �| distinct elements. Thus, when T is higher

than |A × �|2 , {(θ i
t , ai

t )}T
t=0 repeats some element at least

√
T times. With this choice

of constant C, set Xi (T ) is nonempty for all T . Note that C does not affect the con-
vergence properties of Xi (T ).

Denote the highest integer that i has announced in proportion of at least 1/
√

T of
all messages in periods 0, . . . , T,

n̄i (T ) = max

{

n :
T∑

t=0

1{ni
t = n} ≥ √

T

}

∪ {0}.

Finally, let, as in the previous section,

ρ(b, T ) =
∑T

t=0 1{bi
t = b and ni

t = n̄i }
∑T

t=0 1{ni
t = n̄i } ,

and

bi (T ) = arg max
b∈A

ρ(b, T ).

Thus, as T becomes large, a strategy sT = {(θ i
t , ai

t , ni
t , bi

t )}T
t=0 well defines a triple

(Xi (T ), n̄i (T ), bi (T )) ∈ 2�×A×N× A. Moreover, when
∣∣Xi (T )

∣∣ = 1, it well defines
(θ i , ai ). An outcome is implemented in every period. Given, {(θ i

t , ai
t , ni

t , bi
t )}T

t=0, for
any T = 0, 1, . . . , the outcome function o is defined on ∪∞

T =0{(θ i
t , ai

t , ni
t , bi

t )}T
t=0 as

follows.18

1. If
∣∣X1(T )

∣∣ = ∣∣X2(T )
∣∣ = 1, (θ1, a1) = (θ2, a2), and n̄i (T ) ≥ n̄ j (T ) = 0, then

o(sT ) = a.

2. If
∣∣X1(T )

∣∣ = ∣∣X2(T )
∣∣ = 1, (θ1, a1) �= (θ2, a2), and n̄i (T ) > n̄ j (T ) = 0, then

o(sT ) =
{

bi (T ), if bi (T ) ∈ Ci (θ
j , a j ),

e(θ1, a1, θ2, a2), otherwise.

3. If
∣∣X1(T )

∣∣ = ∣∣X2(T )
∣∣ = 1, and n̄i (T ) > n̄ j (T ) > 0, then o(sT ) = bi .

4. If
∣∣X j (T )

∣∣ �= ∣∣Xi (T )
∣∣ = 1, then o(sT ) = ai .

5. If
∣∣Xi (T )

∣∣ >
∣∣X j (T )

∣∣ > 1, then o(sT ) = bi .

Denote by 
A the standard |A|-simplex. Given a strategy {st }∞t=0, denote the aver-
age implemented outcome by

ō(s̄T ) =
∑T

t=0 r(st )

T
∈ 
A.

18 Break integer ties in favor of 1.
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Denote by {st [m]}∞t=0 the strategy that is induced by machines m = (m1, m2). Since
m is finite,

ō(s̄∞[m]) = lim
T →∞ r̄(s̄T [m])

is well defined.
The next lemma argues that the limit of the average outcome induced by m coin-

cides exactly with the outcome that m induces in gM . Thus ō(s̄∞[m]) ∈ A for
all m.

Lemma 8 ō(s̄∞[m]) = gM (s̄[m]), for all m ∈ M1 × M2.

Proof Take any m. Denote

ō(s̄T
t0 [m]) =

∑T
t=t0 r(st [m])

T − t0
.

Since finite changes do not affect the average of an infinite sample,

ō(s̄∞[m]) = ō(s̄∞
0 [m]) = ō(s̄∞

t0 [m]), for all t0 = 1, 2, . . .

Since, by construction

lim
T →∞ Xi (T ) = Xi ,

lim
T →∞ n̄i (T ) = n̄i ,

lim
T →∞ bi (T ) = bi ,

we have

lim
t→∞ o(st+k[m]) = gM (s̄[m]), for all k = 1, 2, . . .

Thus, by transfinite induction,

ō(s̄∞[m]) = lim
t0→∞ ō(s̄∞

t0 [m])
= gM (s̄[m]).

��
Machines m = (m1, m2) form a machine equilibrium in �r if for all i and for all

machines m′
i ,

ui (ō(s̄∞[m]), θ) > ui (ō(s̄∞[m j , m′
i ]), θ) or

ui (ō(s̄∞[m]), θ) = ui (ō(s̄∞[m j , m′
i ]), θ) and

∣∣m′
i

∣∣ ≥ |mi | .
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By this, Lemma 8, and Theorem 7 we immediately obtain a full characterization of
the choice rules that are Nash implementable via machines in a repeated game with a
limit of the means criterion:

Corollary 3 Choice rule f is implementable in machine equilibrium of a (repeated)
commitment-free game under limit of the means criterion if f is Nash implementable.

Note that �r is commitment-free as it has a stage structure, and only infinite devi-
ations may affect the outcome. Thus it is only the interpretationof the moves that
differentiates �r from �M , not the strategic substance of the game.

6 Discussion

That a game form fully describes relevant interaction among individuals—the prop-
erty of games that is firmly rooted in the game theory language—is problematic for
any attempts to model genuine noncommitment. Noncommitment would mean, heu-
ristically, that even the structure of the game form should not be unchangeable. In
particular, one should be able to take back one’s move that is found desirable. But this
would require a change in the game form which is given from outside and cannot be
affected by the players.

This paper proposes a way to analyze noncommitment in games. Our approach is
inspired by Aumann and Hart (2003). We impose a commitment-freeness condition
on game forms. The condition requires that the continuation game form should not be
sensitive to actions, and should not require irrevocable actions. Any commitment-free
game continues forever.19

Commitment-free interaction can be interpreted as cheap talk without a detailed
view how the actions transform into outcomes. The question is rather of what com-
munication strategies are consistent with what outcomes given that there is no final
word.

Communication creates new opportunities to coordinate and, hence, new equilibria.
(Nash) implementation with commitment-free games is, therefore, difficult. However,
some equilibria require one to use complex strategies. The planner may therefore be
able to take advantage of players’ complexity aversion. We show that if players are
complexity averse in the lexicographic sense, then implementation is not more diffi-
cult than Nash implementation. Hence commitment can be replaced with complexity
aversion in the context of Nash implementation. The framework can be interpreted
as a repeated implementation problem where the planner implements an outcome in
every period 0, 1, . . . according to predesigned rules, and players are infinitely patient.

Appendix

Proof of Lemma 1 Let �̄ = [H, S,ḡ] be commitment-free and nontrivial. Since
�(h, s) = �(h, s′) it follows that Sh,s = Sh,s′ , for all s, s′ ∈ Sh, for all h ∈ H.

19 Cf. the Bill Murray movie “Groundhog Day”.
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By induction, S has a stage structure: The set of terminal histories coincides with
×K

k=1Sk where K may be finite or infinite. Suppose K is finite. Since terminal his-
tory (h, s) ∈ ×K

k=1Sk is associated to an outcome a(h, s), subgame �̄(h, s) is trivial.
But since �̄(h, s) = �̄(h, s′) by commitment-freeness, a(h, s) = a(h, s′), for all
s, s′ ∈ SK . Thus also subgame �̄(h) is trivial. By induction, �̄(∅), or �̄, is trivial, a
contradiction. Thus K must be infinite.

Identify terminal histories h̄ = (s1, . . .) and h̄′ = (s′
1, . . .). Suppose that h̄ and

h̄′ differ in stages k1, . . . , kL where L is finite. Since h̄ and h̄′ agree up to stage
k1 − 1, it follows by commitment-freeness that �̄(s1, . . . , sk1) = �̄(s′

1, . . . , s′
k1

).

Since h̄ and h̄′ agree between stages k1 + 1 and k2, it follows that �̄(s1, . . . , sk2−1) =
�̄(s′

1, . . . , s′
k2−1). By induction, �̄(s1, . . . , skL ) = �̄(s′

1, . . . , s′
kL

). Since h̄ and h̄′ agree

from kL onwards, ḡ(h̄) = ḡ(h̄′).
Conversely, if �̄ = [H, S,ḡ] has a stage structure, then for any h, there is an identity

relation between H |(h,s) and H |(h,s′), where �̄(h, s) = [
H |(h,s) , S|(h,s) , ḡ|(h,s)

]
and

�̄(h, s′) = [
H |(h,s′) , S|(h,s′) , ḡ|(h,s′)

]
. If �̄ does not have finite terminal histories,

and has the property that ḡ(h̄) = ḡ(h̄′) whenever terminal histories h̄ and h̄′ differ
at most finitely many stages, then also ḡ|(h,s) ( h̄

∣∣
(h,s)) = ḡ|(h,s) ( h̄

∣∣
(h,s′)), where

(h, s, h̄
∣∣
(h,s)) is a terminal history, since ḡ(h, h̄

∣∣
h) = ḡ|h ( h̄

∣∣
h) for all h and since

(h, s, h̄
∣∣
(h,s)) and (h, s′, h̄

∣∣
(h,s′)) differ in only one stage. ��

Proof of Lemma 2 Let set E form a Nash equilibria of a commitment-free game �̄ =[
S, ḡ ◦ h̄

]
. Let

vi (�̄) = min
s j

max
si

ui (ḡ(h̄(s j , si ))).

By Lemma 1, no finite deviation affects the form of the continuation game. Thus also

vi (�̄) = min
s j

max
si

ui (ḡ
h(h̄(s j , si ))), for any h ∈ H. (4)

Denote i’s best response against s j at h by

B Rh
i (s j ) ∈ arg max

si
ui (g

h(h̄(s j , si ))).

Since A is finite, a best response exists.
We show that D�̄(v(�̄)) = E .

D�̄(v(�̄)) ⊆ E : Take any a ∈ D�̄(v(�̄)) Then there is a terminal history s̄ =
(s̄1, s̄2) such that g(s̄) = a. We prove that history s̄ is playable in Nash equilibrium.

Construct, by (4), a trigger strategy of j �= i that punishes i with sh
j whenever i

deviates from the path s̄ at h, where

sh
j ∈ arg min

s j
ui (ḡ

h(h̄(s j , B Rh
i (s j )))).
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Since A is finite, such sh
j exists. By Lemma 1, a finite deviation affects the payoff only

via the effect on players’ strategies. Thus player i’s payoff from a deviation is at most

vi (�̄) = ui (ḡ
h(h̄(sh

j , B Rh
i (sh

j )))).

Thus a deviation cannot be profitable.
E ⊆ D�̄(v(�̄)) : No a �∈ D�̄(v(�̄)) can be supported in Nash equilibrium since

otherwise some player is receiving less than what he can guarantee himself by respond-
ing optimally to the other player’s strategy. ��
Proof of Lemma 3 Let E = D�(v(�)) for normal form game � = [S, g] . Construct
a commitment-free game as follows. Let the choice set of i be an infinite replica of
Si s. Define, for any s̄i = {s̄i (t)}∞t=1 ∈ S∞

i and for any i, a set Ci (s̄i ) that contains all
si ’s that are repeated in s̄i for infinitely many times, i.e.,

Ci (s̄i ) =
{

si :
∣∣∣s̄−1

i (si )

∣∣∣ = ∞
}
.

For all i, there is a function20 ci : S∞
i → Si such that, for some s∗

i ∈ Si ,

ci (s̄i ) ∈
{

Ci (s̄i ), if Ci (s̄i ) �= ∅,

s∗
i , if Ci (s̄i ) = ∅.

That is, ci specifies an element from the subset of Si that are repeated in s̄i for infi-
nitely many times. If there is no such element in Si , then ci specifies some (any) fixed
element of Si . Note that ci (si , si , . . .) = si , for any si ∈ Si .

To construct ḡ, denote the set of player i’s history dependent strategies by Si =
Si × ∪∞

k=0Sk, where S = S1 × S2, and by h̄(s1, s2) the realized path (s̄1, s̄2) in S∞,
as a result of using strategy (s1, s2) ∈ S1 × S2. Construct an outcome function ḡ on
S∞ such that

ḡ(s̄1, s̄2) = g(c1(s̄1), c2(s̄2)), for all (s̄1, s̄2) ∈ S∞. (5)

Now �̄ = [
S, ḡ ◦ h̄

]
is a commitment-free game as no finite change of moves affects

the continuation game.
We now show that E = D�̄(v(�̄)). By Lemma 2, it suffices to show that

vi (�) = vi (�̄). (6)

Denote by 1(si ) ∈ Si the simple strategy of i that chooses si after all histories. Denote
also 1(s) = (1(s1), 1(s2)) ∈ S and 1(s j ) ∈ S j . Since h̄(s) ∈ S∞

1 × S∞
2 , and c−1

i (·)
partitions S∞

i such that (si , si , . . .) ∈ c−1
i (si ) for all si ∈ Si for all i, it follows that for

any s ∈ S there is s ∈ S such that h̄(s) ∈ c−1(s). Since, (s, s, . . .) ∈ c−1(s) it follows

20 Assuming the axiom of choice.
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by (5) that ḡ(h̄(s)) = ḡ(h̄(1(s))). Similarly, for any s j ∈ S j there is s j ∈ S j such that
ḡ(h̄(s j , 1(si ))) = ḡ(h̄(1(s j ), 1(si ))). Hence

min
s j

max
si

ui (ḡ(h̄(s j , si ))) ≥ min
s j

max
si

ui (ḡ(h̄(s j , 1(si ))))

= min
s j

max
si

ui (ḡ(h̄(1(s j ), 1(si )))). (7)

Similarly,

min
s j

max
si

ui (ḡ(h̄(s j , si ))) ≤ min
s j

max
si

ui (ḡ(h̄(1(s j ), si )))

= min
s j

max
si

ui (ḡ(h̄(1(s j ), 1(si )))).

Thus, by (5),

min
s j

max
si

ui (ḡ(h̄(1(s j ), 1(si )))) = min
s j

max
si

ui (g(c j (s j , s j , . . .), ci (si , si , . . .)))

= min
s j

max
si

ui (g(s j ,si )),

and consequently,

min
s j

max
si

ui (ḡ(h̄(s j , si ))) = min
s j

max
si

ui (g(s j ,si )),

as desired. ��
Proof of Lemma 7 Fix θ. By assumption, f (θ) = g∗(N E(�∗, θ)), for all θ . We show
that g∗(N E(�∗, θ)) = gM (N E(�M , θ)).

“⊆”: Take a ∈ g∗(N E(�∗, θ)). Then a ∈ f (θ). Construct m1 and m2 with |m1| =
|m2| = 1 that choose, in every stage t, si = (θ, a, 0, bi ). Since |mi | = 1, there are no
cycles and hence Xi = {(θ, a)} for all i. By Rule A, a is implemented.

Deviation by, say, player 1 such that X ′
1 = {(θ1, a1, n1, b1)} would, by Rule B,

implement either b1 or e(θ1, a1, θ, a), both in L1(θ, a). Thus the deviation does not
pay. Deviation such that

∣
∣X ′

1

∣
∣ > 1 would, by Rule D, implement a. Thus the deviation

does not pay. Hence a ∈ gM (N E(�M , θ)).

“⊇”: Suppose, to the contrary, that m ∈ N E(�M , θ) but gM (m) �∈ f (θ) :=
g∗(N E(�∗, θ)).

Claim 1 For each i, if there is qi ∈ Qi such that τi (s j , qi ) = qi for all s j ∈ S j , then
qi is the unique element in i’s cycling phase.

Proof If such qi is in the initial phase, then, by Lemmas 5 and 6, the cycling phase
would never be reached. Hence qi is in the cycling phase. Once it is reached, no other
element in the cycling phase is reached. Hence the length of the cycling phase is 1.
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Claim 2 If there is no qi ∈ Qi such that τi (s j , qi ) = qi for all s j ∈ S j , then gM (m)

maximizes j’s payoff, for j �= i .

Proof Suppose that for all q ′
i ∈ Qi there is s j ∈ S j such that τi (s j , q ′

i ) �= q ′
i ,

for j �= i. This holds, in particular, for qi in the cycling phase. By Lemma 6
and Claim 1, j can induce i’s action σi (q

K1+1
i ) �= σi (qi ) by choosing a sequence

{s1
j , . . . , sK1

j } of actions such that τi (sk
j , qk

i ) = qk+1
i for all k = 1, . . . , K1, and

q1
i = qi . Take any finite sequence of actions {sK1+1

j , . . . , sK1+K2
j }. By Corollary

2, there is a continuation sequence of actions {sK1+K2+1
j , . . . , sK1+K2+K3

j } such that

τi (sk
j , qk

i ) = qk+1
i for all k = 1, . . . , K1 + K2 + K3, and q K1+K2+K3+1

i = q1
i .

That is, {q1
i , . . . , q K1+K2+K3

i } forms a cycle such that {σi (q1
i ), . . . , σi (q

K1+K2+K3
i )}

is not a singleton, implying
∣∣Xi

∣∣ > 1. By construction,
∣∣Xi

∣∣ ≤ |Qi | . Choosing

{sK1+1
j , . . . , sK1+K2

j } of distinct actions and K2 > |Qi | , we have
∣∣X j

∣∣ >
∣∣Xi

∣∣ > 1.

Applying Rule E, and choosing b j that maximizes j’s payoff, it follows that unless
gM (m) maximizes j’s payoff, there is a profitable deviation. A contradiction to the
assumption m ∈ N E(�M , θ).

Claim 3 gM (m) maximizes i’s payoff, for some i .

Proof If gM (m) does not maximize either player’s payoffs, then, by Claim 2, there is
for both i = 1, 2 a state qi such that τi (s j , qi ) = qi , for all s j ∈ S j . Thus, by Claim 1,
neither player’s actions in the cycling phase affect the the other player’s choices. Since
infinite action streams are unconditional, i.e., player i’s actions are not conditioned on
j’s actions, only Rules (A–C) of �M apply, and they are identical with Rules (a–c) of
�∗. Thus, m ∈ N E(�M , θ) implies gM (m) ∈ g∗(N E(�∗, θ)). A contradiction to the
initial hypothesis.

Claim 4 There is i and qi such that τi (s j , qi ) = qi , for all s j ∈ S j .

Proof Otherwise, by Claim 2, gM (m) maximizes both players’ payoffs under θ .
Thus, by the unanimity condition (i), gM (m) ∈ f (θ). But this contradicts f (θ) =
gM (N E(�∗, θ)).

Claim 5 Rules D or E of �M do not apply.

Proof It suffices to show
∣∣X1

∣∣ = ∣∣X2
∣∣ = 1. By Claim 4, there is qi such that

τi (s j , qi ) = qi , for all s j ∈ S j . Since i’s cycling phase consists of qi alone, we
have

∣∣Xi
∣∣ = 1. Suppose that

∣∣X j
∣∣ > 1. Then the cycling phase of j contains more

than one element, say {q1
j , . . . , q K

j }, K > 1. Thus for all q j there is si ∈ Si such that

τ j (si , q j ) �= q j . By Rule D, ai ∈ f (θ i ) becomes implemented. But dropping all but
one state in the cycling phase and choosing in the remaining state s j = (θ i , ai , n j , ai )

such that n j = 0 if ni = 0 and n j > ni if ni > 0 would not affect the implemen-
tation of ai , by Rules A or C. Thus j would be better off by dropping the states.
A contradiction.
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Claim 6 Rule C of �M does not apply.

Proof By Claim 3, gM (m) maximizes i’s payoff. By unanimity condition (i), gM (m)

cannot maximize j’s payoff, j �= i. By Claim 2, there is qi in the cycling phase such
that τi (s j , qi ) = qi , for all s j ∈ S j . If rule C applies, then, since j’s actions are
unconditional on i’s actions, and n̄ j > 0, j can profitably deviate by choosing in all
periods (ni , bi ) such that ni > n̄ j and bi maximizes his payoff.

Claim 7 Rule B of �M does not apply.

Proof Let i be defined as in Claim 4. If Rule B applies, then either (1) n̄ j > n̄i = 0 or
(2) n̄i > n̄ j = 0. Since i’s actions are unconditional on j’s choices, j could deviate
without consequences. Because of this, since in case (2) j does not move the game
under the range of Rule C, gM (m) must maximize j’s payoff. By the unanimity con-
dition (i), gM (m) cannot maximize i’s payoff, j �= i. By Claim 2, there is q j in j’s
cycling phase such that τ j (si , q j ) = q j , for all si ∈ Si , and such that n j = 0 for
(a j , θ j , n j , b j ) = σ j (q j ). Since j’s actions are unconditional, i is free to choose
either bi ∈ Ci (a j , θ j ) or e(θ1, a1, θ2, a2) ∈ Ci (a j , θ j ). Thus gM (m) must maxi-
mize i’s payoff in Ci (a j , θ j ). Since gM (m) already maximizes j’s payoff in A, by
condition (ii), gM (m) ∈ f (θ), a contradiction.

Hence (1) applies. Then any b j ∈ C j (ai , θ i )or e(θ1, a1, θ2, a2) ∈ C j (ai , θ i ) could
become implemented. Since i’s actions are unconditional on j’s choices, gM (m) has to
maximize j’s payoff in C j (ai , θ i ). By Claim 3, gM (m) also maximizes some player’s
payoff in A. If that player is i, then by condition (ii), gM (m) ∈ f (θ), a contradiction.
Thus gM (m) maximizes j’s payoff in A. To not violate condition (i), gM (m) cannot
maximize i’s payoff in A. Hence, by Claim 2, there is q j in j’s cycling phase such that
τ j (si , q j ) = q j , for all si ∈ Si , and such that n j > 0 for (a j , θ j , n j , b j ) = σ j (q j ).

But since now j’s actions are unconditional on i’s choices, and i does not move
the game under the range of Rule C, gM (m) must also maximize i’s payoff which
contradicts condition (i).

Claim 8 Rule A of �M does not apply.

Proof Suppose Rule A applies with (a, θ). Then, since a = gM (m) maximizes i’s
payoff by Claim 3, and cannot maximize j’s payoff since then it would violate con-
dition (i), it must be that there is qi in the cycling phase such that τi (s j , qi ) = qi , for
all s j ∈ S j , and such that (a, θ) = (ai , θ i ) for (ai , θ i , ni , bi ) = σi (qi ). But then j
could move the game under the range of Rule B, and induce any b j ∈ C j (a, θ). Thus
gM (m) must maximize j’s payoff in C j (a, θ).

Thus there is b j ∈ C j (ai , θ i ) that improves j’s payoff relative to ai . Since i’s
strategy is unconditional, it becomes profitable for j to deviate by moving the game
under the range of Rule B and choosing b j .

Since one of Rules A,B,C,D, or E must apply, Claims 5, 6, 7, and 8 imply that
gM (m) ∈ f (θ). ��
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