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Abstract

We study social choice via an endogenous agenda setting process.
At each stage, a status quo is implemented unless it is replaced by a ma-
jority (winning coalition) with a new status quo outcome. The process
continues until the prevailing status quo is no longer replaced. We im-
pose a one-time deviation restriction on the feasible policy processes.
The key aspect of the solution is that it allows the process to depend on
the history. A solution is shown to exists. Moreover, we show that the
largest set of outcomes that can be implemented via a policy process
that meets the on-deviation restriction coincides with the ultimate un-
covered set. Finally, we show that our solution can be interpreted as a
stationary Dynamic Condorcet Winner of Bernheim and Slavov (2009)
in a model of repeated voting.
Keywords: voting, history dependence, one-deviation principle.
JEL: C71, C72.

1 Introduction

A recurring problem with political decision making is the lack of a Condorcet
winner (e.g. Rubinstein 1979) - there is no status quo alternative that sur-
vives a majority contest against all other alternatives. For example, in the
extensive literature on political institutions that focuses on the positional
aspects of electoral campaigns, a Condorcet winner is guaranteed to exists
only in the special one dimensional - single peaked case. In fact, the famous
chaos theorems (McKelvey 1979, 1986; Bell, 1981; Schofield 1983) state that,
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with very relaxed conditions concerning how voters are distributed in the
policy space, an agenda can be created where it is possible to start at any
status quo alternative and, with a succession of majority comparisons, end
at any other specified alternative in the policy space. Hence, without a pre-
sumed institutional structure there seems to be only little hope in reaching
any predictions of the actual political choice. This is problematic since the
outcome of a political process tends to be sensitive to the details of the
structure. It also raises the natural question of where does the institutional
structure come from.

Lack of farsightedness of agents is a well known and important limitation
of with the chaos argument, however. With a forward moving agenda pro-
cedure studied by McKelvey and others, in which a status quo alternative
is voted against a challenger and the winner becomes the new status quo
alternative, farsighted voters should not vote for an alternative that triggers
an undesirable path of status quos.1 This questions whether all the dom-
inance chains described by the chaos argument are really feasible. Indeed,
as demonstrated by Banks (1985) and Shepsle and Weingast (1984), only
a subset of outcomes turn out to be implementable under farsighted voting
via a fixed, exogenous decision making procedure.

Modeling farsighted and endogenous political decision making has proved
particularly challenging. The problem calls for modeling the dynamics of the
agenda setting process, and there is no obvious way to do this (e.g. Banks
and Duggan 2008; Dutta et al 2001a,b, 2002; Duggan 2006; Penn 2006a;
Bernheim and Slavov 2009). The conceptual diffi culty (see Ray 2007) stems
from the open endedness of the problem. The profitability of a blocking of a
status quo outcome can only be evaluated if one can predict the consequences
of the blocking - the future blockings of the status quos. But since the later
blockings should be evaluated according to the same criteria as the original
one, there is no final stage from which to start the recursion. To obtain a
well defined solution, and to guarantee its existence, the literature has often
made demanding assumptions on the length of the agenda process, or on
the underlying physical set up.

A natural way to solve the conceptual problem is to model policy making
as an infinitely repeated policy process where the voters gain intertemporal
payoff from the day-by-day decisions. This approach, recently adopted by
Penn (2009), Roberts (2007), Konishi and Ray (2004), Duggan and Banks
(2006), and, in particular, Bernheim and Slavov (2009), permits accounting
for cyclic or randomized policy paths, which is often critical for the existence
of the solution.

However, randomization and cycles are not an unproblematic way to
solve the problem. First, computing randomized or cycling policy paths is
diffi cult, and predictions based on them are less clear than desired. Second,

1The term "forward moving agenda" is due to Wilson (1986).

2



an ever changing policy requires much sophistication and coordination from
the part of the voters. Finally, if blockings are interpreted as negotiation
prior to a binding agreement, as is often the case in the one-shot voting
context, it is not clear which outcome the voters could "agree upon" if there
is no state in which the play stays permanently.2

Our aim is to characterize, and show the existence of, an endogenous
and farsighted political decision making process that is not constrained by
artificial bounds. In contrast to the above literature on infinite policy paths
that allow infinite cycling or randomization, our focus is on policy processes
that implement an outcome in finite time or, equivalently, converge to an
absorbing state in finite time.

More concretely, we study the natural forward moving agenda of type
McKelvey (1979, 1986), where, at each stage, a status quo may be replaced
by a winning coalition (e.g. majority) with a new status quo outcome.3

The process continues until the prevailing status quo is no longer challenged
(and is implemented). Importantly, there are no bounds on how long the
process may continue. Assuming only that the set of social alternatives is
a compact metric space and that the social preferences are continuous, our
set up encompasses, for instance, the case of finite set of social alternatives
as well as the commonly studied spatial model where alternatives lie in a
compact subset of finite dimensional Euclidean space.

As the solution concept we take the standard one-deviation property,
equivalent to the solution used by Bernheim and Slavov (2009) in a frame-
work where policy decisions are made repeatedly and future payoffs are
discounted (they call a policy rule satisfying the property as a Dynamic
Condorcet Winner). The solution demands that after each history of block-
ings of the status quos, the prescribed voting act is optimal for a winning
coalition (e.g. a majority) in light of the continuation path that the action
triggers. Thus the solution reflects farsightedness of the agents. The crucial
feature of the process is that the voting act may depend on the history.

We study terminating policy programmes that implement an outcome
in finite time after any history. By the chaos theorems, one is tempted
to believe that termination and one-deviation property are not compatible
properties of a policy programme. Our aim is to show that this conjecture
is false.

We first give a characterization of terminating policy programmes that
satisfy the one-deviation property, or equilibrium policy programmes for
short. The characterization is directly in terms of the underlying domi-
nance relation. That is, we identify a set of social alternatives that can be

2Assuming discounting, convexity of the payoff space can be used to guarantee the
existence. Alternatively, one may focus on less stringent equilibrium notions (e.g. Herings
et al 2004, Chwe 1994, or Greenberg 1990).

3This problem has been recently analysed by Roberts (2007) and Penn (2009). In their
models, however, the challenging policy is exogenously determined.
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implemented with an equilibrium policy programme, and show that for any
such set of alternatives one can construct an equilibrium policy programme
that is consistent with implementing outcomes in this set. Importantly, we
show that an equilibrium policy programme always exists. This is due to
the freedom that comes with the programme being conditioned on the his-
tory. The existence proof is by showing that an equilibrium programme
can be built on a version of the ultimate uncovered set, resulting from infi-
nitely iterating (our version of) the uncovered set.4 We show that this set is
the largest set of outcomes that can be implemented with any equilibrium
programme.

As the ultimate uncovered set is a subset of the uncovered set, our results
refine the conventional wisdom that, under variety of institutional settings,
it is the uncovered set that describes the outcomes that can be implemented
(Miller 1980; Shepsle and Weingast 1984; Banks 1985). Indeed, we show
it is precisely the ultimate uncovered set that can be implemented in the
natural non-cooperative equilibrium via the procedure that has been rou-
tinely analyzed in the literature. A second contribution of the paper is to
extend the existing results on the uncovered set and its derivatives in gen-
eral domains, an issue which has received some attention recently (see Penn
2006a; Banks et al 2006; Dutta et al 2005).5 The crucial observation is that
the uncovered set - given our version of the covering relation that is implied
by the underlying one-deviation restriction - is compact. Without compact-
ness, the general existence result cannot be extended to the iterations of
the uncovered set. We prove that (our version of) the uncovered set and
its iterations are closed and hence also nonempty. Moreover, we extend the
result of Dutta (1988) by tying the ultimate uncovered set to the covering
set in a general domain.

Finally, we show that a terminating policy programme satisfying the
one-deviation restriction are equivalent, in real terms, to some stationary
Dynamic Condorcet Winner of Bernheim and Slavov (2009) when there is
no discounting and the associated majority relation is continuous (also the
converse holds). Thus our existence result also proves the existence of a sta-
tionary Dynamic Condorcet Winner. This complements the existence result
of Bernheim and Slavov (2009) which requires randomization.6 Our charac-
terization also connects stationary Dynamic Condorcet Winners tightly to
the other solutions in the voting literature, in particular to the uncovered
set and its iterations as well as to the covering set of Dutta (1988).

The current paper is related to the literature on endogenous agenda

4The uncovered set is due to Fishburn (1977), and Miller (1980). The ultimate un-
covered set is studied by Dutta (1988). Coughlan and LeBreton (1999) study how to
implement (in) this set.

5See also Bordes et al. (1992).
6They show the existence of a Dynamic Condorcet Winner in a model without ran-

domization but cannot guarantee its stationarity.
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formation. Duggan (2006) provides a general existence result for a game
of endogenous agenda formation in which the agenda is formed by an ex
ante known finite sequence of proposers. The constructed agenda is then
voted upon. This generalizes the result in Banks and Gasmi (1987) in which
three players take turns proposing a single alternative each. Dutta et al.
(2002, see also 2001a,b) consider endogenous agendas in a less structured
setting, imposing only consistency conditions on the outcomes of the pre-
cess. Importantly, also they assume a bounded maximum length of the
resulting agenda which again permits iterating the solution backwards.7 To
our knowledge, Penn (2008) is the only paper that allows unbounded pro-
posal process. Players stop amending the agenda only when the constructed
agenda is stable against changes, given the forthcoming voting under the
agenda. Penn (2008) shows that, in the divide-the-dollar set up, the set
of feasible outcomes is a subset of the vNM stable set associated to the
problem.

The solution concept of this paper is related to equilibrium process of
coalition formation by Konishi and Ray (2003) and Vartiainen (2010) who
study coalition formation in the general framework of Chwe (1994). The
existence results and characterizations in these papers do not, however, ex-
tend to the current set up for two reasons. First, Konishi and Ray (2003)
assume history independent processes but allow randomization which trans-
forms the existence question to the one of fixed point in a convex, compact
set. Here, however, the rule is deterministic and it is history dependence
that creates the necessary freedom to obtain the fixed point. No convex-
ity assumptions are made. Vartiainen (2010) assumes finite outcome space
which rules out, e.g. the spatial model. Second, and more importantly, the
in the current model the solution is not only required to be robust against
one-time deviation by the currently active coalition but against all decisive
coalitions, , e.g. all majority coalitions. This makes the current solution
much more demanding, and also means that the results in Konishi and Ray
(2003) and Vartiainen (2010) do not apply.

The paper is organized as follows. Section 2 introduces the model and
defines the solution concept. In Section 3, the solutions is characterized.
Section 4 derives the existence result and, in Section 5, the connection to the
model of Bernheim and Slavov (2009) is demonstrated. Section 6 concludes
with discussion.

2 The Set Up

Let there be a set of social alternatives X. Preferences of individuals of
the society are summarized by a social preference ordering R ⊆ X × X,
with the asymmetric part P. For instance, R could be the majority relation

7See also Penn (2006b).
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(see below). We typically write xRy when (x, y) ∈ R. Denote the lower
contour set and the strict lower contour set of R at x, respectively, by
L(x) = {y ∈ X : xRy} and SL(x) = {y ∈ X : xPy}. Furthermore, let
L−1(x) = {y ∈ X : yRx}. The indifference set of x is then defined by
L(x) ∩ L−1(x).

We make the following assumptions concerning the underlying physical
structure:

A0 X is a compact metric space.

Relation R is complete if either xRy and/or yRx, for all x, y ∈ X.

A1 R is complete.

By A1, mapping L is nonempty valued. Also, by A1, SL(x)∪L−1(x) =
X.

A correspondence is continuous if it is both upper and lower hemicon-
tinuous.

A2 L and L−1 are continuous.8

We abstract from the details of how the preferences are aggregated but,
by A1, a natural interpretation of R is the majority relation: xRy if at least
one half of the voters prefer x over y. A0 permits all finite scenarios but also
the case of multidimensional spatial preferences studied e.g. by McKelvey
(1979). A2 is a technical assumption, guaranteeing that R is closed and
that a small shift in an outcome does not increase dramatically the set of
outcomes that are preferred.

A0-A2 are needed when we establish the existence of the solution. In
the remainder of this paper, they are assumed without further notice.

Policy Programme A path is a finite sequence x̄ = (x0, ..., xK) of
outcomes. Denote the final element of a path (x0, ..., xK) by

µ[(x0, ..., xK)] = xK .

Denote the set of paths, i.e. histories, by H = ∪∞k=0Xk. Following Bernheim
and Slavov (2009), policy programme σ specifies a social action given the
history of past actions σ : H → X ∪ {stop}. The interpretation of a policy
programme is that if σ(h, x) = y ∈ X, then after a history h of status quos,
the current status quo x is successfully challenged by a winning coalition
(e.g. majority) with outcome y which the becomes the new status quo, and
if σ(h, x) = stop, then all the winning coalitions agree on implementing

8See Banks and Duggand (2000) and Banks et al (2006) on domains in which the
condition holds.
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x and this action is put in force. Thus, a policy programme specifies how
the sequence of status quos evolves and which outcome - if any - eventually
becomes implemented.

Denote, in the usual way, by σt(h) the tth iteration of σ starting from
h, i.e., σ0(h) = σ(h) and σt(h) = σ(h, σ0(h), ..., σt−1(h)), for all t = 1, ... . A
policy programme σ is terminating if, for any h ∈ H there is T < ∞ such
that σT+1(h) = stop (T may depend on h). That is, after history h, the
policy programme will eventually implement the outcome σT (h).

Our focus will be on terminating policy programmes. That is, we pre-
clude at the outset complex dynamics such as infinite cycling. Terminating
programmes are easy to interpret if the political process concerns a one-
shot policy decision. With a terminating programme, political actions could
reflect negotiation prior to a binding one-shot agreement. Terminating pro-
grammes are also easier to describe and compute.

One should note that the requirement that an agreement has to achieved
in finite time reduces the flexibility of the political process. This makes it
in general harder - not easier - to find a solution that meets the desired
stability properties.

Let σ̄(h) denote the sequence of status quos in X that is induced by the
programme σ from the history h onwards

σ̄(h) = (σ0(h), σ1(h), ...).

If σ is terminating, then σ̄(h) is finitely long and µ[σ̄(h)] is well defined, for
all h. Specifically, for a terminating policy programme σ, if a policy action
a ∈ X ∪ {stop} is chosen at history (h, x) ∈ H, then

µ[σ̄(h, x, a)] =

{
µ[σ̄(h, x, y)], if a = y ∈ X,
x, if a = stop.

(1)

In particular, µ[σ̄(h, σ(h))] = µ[σ̄(h)].

The Solution Our equilibrium condition, which is just a version of
the standard one-deviation principle, is defined next.

Definition 1 (One-Deviation Property) A history dependent terminat-
ing policy programme σ satisfies the one-deviation property if

µ[σ̄(h)]Rµ[σ̄(h, a)], for all a ∈ X ∪ {stop}, for all h ∈ H.

That is, after each history, a winning coalition will not want to change
the prescribed action given the consequences of the action and its counterfac-
tual. Since the programme is terminating, the consequences are always well
defined. It is important to note that the one-deviation restriction is imposed
on all histories - that is, also on off-equilibrium histories. This means that
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at the final stage of any finitely long deviation sequence the final deviation
violates the one-deviation property. Hence the property implies robustness
against finite deviations.

In a framework where policy decisions are made repeatedly and future
payoffs are discounted, Bernheim and Slavov (2009) introduce the concept of
Dynamic Condorcet Winner (DCW) which is equivalent to the one-deviation
property, adjusted to their framework. Since cycling or more complex dy-
namics is diffi cult to interpret in the standard one-shot social choice frame-
work, a particular focus of Bernheim and Slavov (2009) is on stationary
DCWs in which a policy converges immediately to an absorbing state after
any history. However, Bernheim and Slavov (2009) find stationary a very
demanding property. Existence of a stationary DCW is established under
rather heavy domain conditions.

While stationarity is more stringent requirement than being terminating,
we argue in Section 4 that together with the one-deviation property they
are essentially equivalent.9 This implies that all our results are transferable
to the framework of Bernheim and Slavov (2009). In particular, we our
results will establish the existence of a stationary DCW under rather weak
conditions. We also characterize the feasible policy programmes.

Implementable outcomes and Condorcet consistency Note that
an active winning coalition can always guarantee the status quo x by choos-
ing "stop". Therefore, the one-deviation property implies that

µ[σ̄(h, x)]Rx, for all (h, x) ∈ H. (2)

That is, the outcome that becomes implemented if the equilibrium path is
followed must not be majority dominated by any element along the path.

We say that the set Y of alternatives is implementable via a dynamic
policy programme σ if

Y = {x ∈ X : σ(h, x) = stop, for some h ∈ H} .

That is, for each element x of Y there is a history (h, x) such that x is
implemented. What the initial status quo is may affect the alternative that
will be implemented in Y but not the set Y itself. The sets of implementable
outcomes are the main object of our study.

Before going to the main results of the paper, we observe that our so-
lution passes the test of being Condorcet consistent. An outcome x is a
Condorcet winner if xRy, for all outcomes y. It is a strong Condorcet win-
ner if xPy, for all outcomes y 6= x.

Proposition 2 (a) Let z be a Condorcet winner. Then there is a termi-
nating policy programme σ meeting the one-deviation property such that z
is implementable via σ.

9This is particularly true in the case of no discounting.
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(b) Let z be a strong Condorcet winner. Then z is the only outcome
that is implementable via any terminating policy programme σ meeting the
one-deviation property.

Proof. (a): Construct a policy programme σ such that σ(h, x) = z if
x 6= z, and σ(h, x) = stop if x = z. We show that σ meets the one-
deviation property. Since µ[σ(h, z, x)] = z, a one-time deviation at (h, z)
is not profitable, for any h ∈ H. Since µ[σ(h, z,stop)] = z, since σ is
terminating, and since z is a Condorcet winner, there is no profitable one-
time deviation.

(b): Let σ be a policy programme that satisfies the one-deviation prop-
erty. Suppose, on the contrary of the proposition, that σ(h, x) = stop
for some x 6= y. Since σ(h, x) = z is not a profitable one-time deviation, it
must be that σ(h, x, z) 6= stop. But then, since σ is terminating and since
z is a strong Condorcet winner, σ(h, x, z) = stop is a profitable one-time
deviation at history (h, x, z).

2.1 Characterization

In this section, we characterize terminating policy programmes meeting the
one-deviation property. The characterization is given directly in terms of
outcomes that are implementable via them. For this purpose, we define the
following solution concept for social choice problems.

Definition 3 (Consistent Choice Set) A nonempty set C ⊆ X is a con-
sistent choice set if, for any x ∈ C and for any y ∈ X\{x}, there is z ∈ C
such that z ∈ L(x) \ SL(y).

That is, if x is in C, then for any outcome y there is another outcome z -
possibly x itself - in C such that xRz and zRy.10 Hence, any element x in the
choice set is reachable from any other element y with at most two dominance
steps such that also the intermediate step, z, is in the set. While neither
implies the other, there is a relationship between the notion of consistent
choice set and that of the uncovered set (Fishburn 1977; Miller 1980), as
will be seen in the next section However, in a current set up a consistent
choice set is a consistent set of Chwe (1994), but not vice versa.11

A priori, the existence of a set C is not clear. This will be proven in the
next section.

A consistent choice set contains only the set of Condorcet winners when-
ever this set is nonempty. Whenever a Condorcet winner does not exist, a

10Recall that R is complete.
11To see that a consistent choice set C is a consistent set, let x ∈ C and y 6∈ L(x). Then

there is (x, y, z) that directly dominates (x, y) but does not indirectly dominate (x) such
that z ∈ C. Hence z ∈ L(x) \ SL(y).
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consistent choice set contains at least three elements (apply the definition
to any pair y, z in C), and is a strongly connected component of X.12

Now we characterize terminating policy programmes meeting the one-
deviation property through the concept of consistent choice set.

Lemma 4 Let terminating policy programme σ satisfy the one-deviation
property. Then the set Y of outcomes that are implementable via σ is a
consistent choice set.

Proof. We show that Y satisfies Definition 3. Take any (h, x) ∈ H such
that σ(h, x) = stop. Then µ[σ̄(h, x)] = x ∈ Y . Take any y ∈ X, and let
z = µ[σ̄(h, x, y)] ∈ Y. By (2), zRy, or z 6∈ SL(y). By Definition 1, xRz, or
z ∈ L(x), as desired.

We now show that the converse of this result holds too by constructing
a terminating policy programme that meets the one-deviation property, and
implements outcomes that form a consistent choice set. Fix a consistent
choice set C and an alternative α ∈ C. Let us describe a policy programme
as a deterministic Markov chain (σC : τC , QC), where QC is a set of states,
indexed by the elements of C such that

QC = {qx : x ∈ C}. (3)

Function τC : Q×X → Q is a transition function between states, function
σC : QC ×X → X is the strategy that is conditional only on the outcome
of the table and the current state. Note that QC partitions H based on the
transition function τ .

Construct a function z : X ×X → X such that for any x ∈ C and for
any y 6∈ C,

z(x, y) ∈ C ∩ L(x) \ SL(y). (4)

By Definition 3, C ∩L(x)\SL(y) is non-empty and z(x, y) is well defined.13

Let the transition rule τ satisfy

τC(qx, y) =

{
qy, if y ∈ L(x) ∩ C,
qz(x,y), if y 6∈ L(x) ∩ C. (5)

Finally, given the function z, let the agenda setting strategy σ satisfy

σC(qx, y) =

{
stop, if y ∈ L(x) ∩ C,
z(x, y), if y 6∈ L(x) ∩ C. (6)

We now give a verbal interpretation of the constructed policy programme.
For the sake of the argument, think R as the majority relation. The policy

12There is a directed path from any element in X to any other element in X.
13Appealing to the Axiom of Choice.
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programme is constructed so that any deviating majority coalition will be-
come punished. The punishment is achieved by implementing an outcome
that the deviating coalition does not prefer relative to the outcome that
was originally to become implemented. The role of a state in the construc-
tion is to store in memory which majority is to be punished. The z-function
specifies the majority whose job it is to implement the punishment (by stop-
ping the programme). The transition function τ determines when and how
the majority that is to be punished should be changed. The circularity
in punishments eventually makes the programme robust against profitable
majority deviations in all states, i.e., after all histories.

Of course, the construction is feasible only due to the assumed charac-
teristics of the consistent choice set C. The existence of a set with such
characteristics is a separate issue, and established in the next section.

We will now prove formally that (σC : τC , QC) satisfies the one-deviation
property. To this end, we state an intermediate result.

Lemma 5 Let policy programme (σC : τC , QC) be constructed as in (3) -
(6). Then µ[σ̄C(qx, y)] ∈ L(x) ∩ C, for all x, y ∈ X.

Proof. Starting from any (qx, y) ∈ QC , it takes at most two periods to
implement an outcome. Applying (5) and (6),

µ[σ̄C(qx, y)] =

{
y, if y ∈ L(x) ∩ C,
µ[(qz(x,y), z(x, y))], if y 6∈ L(x) ∩ C.

Since (4) and (6) imply σC(qz(x,y), z(x, y)) = stop, it follows that

µ[σC(qx, y)] =

{
y, if y ∈ L(x) ∩ C,
z(x, y), if y 6∈ L(x) ∩ C.

Thus, by (4), the result follows.

Lemma 6 Policy programme (σC : τC , QC) satisfies the one-deviation prop-
erty.

Proof. Take any (qx, y) ∈ QC × X. It suffi ces to show that a one-time
deviation from σC(qx, y) is not profitable. There are two cases.

1. Let y ∈ L(x)∩C. Then σC(qx, y) = stop and hence µ[σ̄C(qx, y)] = y.
A deviation to w ∈ X changes the state to τC(qx, y) = qy. Then

µ[σ̄C(τC(qx, y), w)] = µ[σ̄C(qy, w)]. (7)

Applying Lemma 5 to µ[σ̄C(qy, w)],

µ[σC(qy, w)] ∈ L(y) ∩ C.
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Thus, by (7), µ[σ̄C(τC(qx, y), w)] ∈ L(y), implying that the deviation is not
profitable.

2. Let y 6∈ L(x) ∩ C. Then σC(qx, y) = z(x, y) and τC(qx, y) = qz(x,y).
Thus

µ[σ̄C(qx, y)] = z(x, y).

There are two kinds of deviations. (i) A deviation to "stop" implements y.
By (4), z(x, y) 6∈ SL(y), thus the deviation is not profitable. (ii) A deviation
w ∈ X \ {z(x, y)} changes the state to τC(qx, y) = qz(x,y). Hence

µ[σ̄C(τC(qx, y), w)] = µ[σ̄C(qz(x,y), w)]. (8)

Applying Lemma 5 to µ[σ̄C(qz(x,y), w)],

µ[σ̄C(qz(x,y), w)] ∈ L(z(x, y)) ∩ C. (9)

Thus, by (8), µ[σ̄C(τC(qx, y), w)] ∈ L(z(x, y)), implying that the deviation
is not profitable.

By Lemma 4, a set Y of alternatives is implementable via a terminat-
ing policy programme meeting the one-deviation property only if Y is a
consistent choice set. Conversely, by Lemma 6, outcomes of any consistent
choice can be implemented via a terminating policy programme meeting the
one-deviation property. We compound these observations into the following
characterization.

Theorem 7 Set Y of alternatives is implementable via a terminating policy
programme that satisfies the one-deviation property if and only if Y is a
consistent choice set.

This result does not, however, tell anything about the existence of a con-
sistent choice set nor how it can be identified. The existence of a consistent
choice set is proven and an algorithm for identifying the maximal consistent
choice set is provided in the next section.

3 Existence

We shall use the following version of the well known relation. Given B ⊆ X,
we say that y covers x in B if x, y ∈ B, yPx, and xRz implies yPz, for all
z ∈ B.14 Since, by A1, xRx, we can state this more succinctly: y covers x
in B if

L(x) ∩B ⊆ SL(y) ∩B and x, y ∈ B.
This relation was introduced by Duggan (2006) and Duggan and Jackson
(2005) who call it deep covering.

14There are many versions of the covering operation in the literature. See below.
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The covering relation in B is transitive. Denote the maximal elements
of the covering relation in B by UC(B), the uncovered set of B (cf. Fish-
burn, 1977; Miller, 1980). That is, UC(B) comprises alternatives that are
not covered in B by any element in B. The following important result is
discussed by Duggan and Jackson (2005).

Lemma 8 Let B be a closed subset of X. Then UC(B) is nonempty and
closed.

Proof. First we show that UC(B) is nonempty. Since, by A0, X is compact,
B is compact. Let, by the Hausdorff Maximal Principle, M ⊆ B be a max-
imal subset of B that is totally ordered by the covering relation. Since B is
compact, A2 implies that there is z ∈ B such that L(z)∩B = ∩x∈ML(x)∩B.
By the construction of z, either M = {z} or z covers any element in M. In
either case, z is not covered by any element in M. Since M is a maximal
totally ordered subset of B, z is uncovered in B.

We now show that UC(B) is closed. Suppose that UC(B) is not closed.
Then there is a converging sequence {xk} ⊆ UC(B) and x 6∈ UC(B) such
that xk → x. Since x is covered in B, there is y ∈ B such that L(x) ∩ B ⊂
SL(y) ∩ B. Equivalently, L(x) ∩ L−1(y) ∩ B = ∅. Since xk ∈ UC(B) for
all k, also L(xk) ∩ B 6⊂ SL(y) ∩ B for all k. That is, there is zk such
that zk ∈ L(xk) ∩ L−1(y) ∩ B, for all k. Find a converging subsequence
{zk(j)}j and z ∈ B such that zk(j) →j z. Then also xk(j) →j x. By A2,
z ∈ L(x) ∩ L−1(y) ∩ B. But then y does not cover x in B, a contradiction.

The compactness of UC(B) owes to the asymmetry in the relations that
define the covering relation, i.e. that the covering element’s lower contour
should be contained in the strict lower contour set of the element that is
covered. To the author’s knowledge, there are no corresponding results - and
probably cannot be - in the standard case when covering is defined with re-
spect to the "Miller relation" L(x) ⊆ L(y) (e.g. Miller 1980; Banks 1985, and
Dutta et al. 2004) or with respect to the "Gillies relation" SL(x) ⊆ SL(y)
(e.g. Shepsle and Weingast 1984). For a more comprehensive discussion
and analysis of these versions of the uncovered set, see Bordes (1992), Penn
(2006a), or Duggan et al. (2006).

Compactness of the uncovered set is, however, instrumental in one being
able to iterate the concept. Our aim is to show that through iteration of the
uncovered set -operator one eventually reaches a fixed point where the set
coincides with the uncovered set derived from it. We show that this limit
set also satisfies the properties of a consistent choice set.

The iterated version of the uncovered set, the ultimate uncovered set, is
defined recursively as follows. Set UC0 = X, and let UCk+1 = UC(UCk),
for all k = 0, .... By Lemma 8, since a closed subset of a compact metric
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space is itself a compact metric space, UCk+1 is closed and nonempty for
all k = 0, ... . The ultimate uncovered set UUC is then obtained in the limit

UUC := UC∞.

The ultimate uncovered set UUC is nonempty and closed since it is an
intersection of nested closed and nonempty sets.15

Lemma 9 The ultimate uncovered set UUC is nonempty and closed.

By construction, no element in UUC is covered in UUC. The next result
extends the result of Dutta (1988) into general compact domains: the set
UUC is a covering set in the sense that any element z outside UUC is
covered in UUC ∪ {z}, and that UUC = UC(UUC).

Lemma 10 Let y ∈ X�UUC. Then there is z ∈ UUC such that L(y) ∩
UUC ⊂ SL(z) ∩ UUC.

Proof. Choose y = z0 and, for all j = 0, ..., find kj such that zj+1 covers zj
in UCkj and zj ∈ UCkj \ UCkj+1. Since the covering relation is transitive,
such element exists by Lemma 8.

Since L(z0)∩UCk0 ⊆ SL(z1)∩UCk0 , and since UCk1 ⊆ UCk0 , it follows
that L(z0) ∩ UCk1 ⊆ SL(z1) ∩ UCk1 . As the same relation holds for z1 and
z2, we have, by chaining the relations, L(z0) ∩ UCk2 ⊆ SL(z2) ∩ UCk2 . By
induction on 0, ..., j, it follows that

L(z0) ∩ UCkj ⊆ SL(zj) ∩ UCkj . (10)

Since X is compact there is z such that for a subsequence {zk} of {zj}
we have zk → z. Since zk ∈ UCk for all k, and ∩∞k=0UCk = UUC is closed,
it follows that z ∈ UUC. By (10), L(z0)∩UUC ⊆ SL(zk)∩UUC, for all k.
Suppose that there is w ∈ UUC ∩ L(z0) \ SL(z). By A2, there is an open
neighborhood E ⊆ X×X of (z, w) such that E∩R = ∅. Since zk → z, there
must be k such that (zk, w) ∈ E. But then w ∈ UUC ∩ L(z0) \ SL(zk), a
contradiction.

That the ultimate uncovered set is a covering set means that if one moves
away to y from an element x in the ultimate uncovered set, then it takes at
most one (weak) dominance step from y to some z to return to the ultimate
uncovered set. However, this does not yet mean that the arrival outcome z
in the ultimate uncovered set is (weakly) dominated by the outcome x from
the departure originally took place. And this is the property that is needed
for the ultimate uncovered set to be also a consistent choice set. The next
theorem, which is the main result of the paper, shows that the ultimate
uncovered indeed has the desired property.
15The ultimate uncovered set is analysed in the finite case e.g. by Miller (1980), Dutta

(1988) and Laslier (1998). The infinite case has not, to the best of our knowledge, been
analysed before.
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Theorem 11 The ultimate uncovered set UUC is a consistent choice set.

Proof. Take x ∈ UUC and let y ∈ X. We find an element z in UUC such
that z ∈ L(x) \ SL(y). If y ∈ UUC ∩ L(x), then y = z qualifies as such
element. Thus let y 6∈ UUC ∩ L(x).

By Lemma 10, there is z ∈ UUC such that L(y)∩UUC ⊆ SL(z)∩UUC.
Since z 6∈ L(y), we are done if z ∈ L(x). Suppose, on the contrary, that z 6∈
L(x). Since x, z ∈ UUC, and UC∞ = UUC, it follows that L(x) ∩ UUC 6⊆
SL(z) ∩ UUC. Thus there is w ∈ UUC such that w ∈ L(x) \ SL(z). Since
L(y)∩UUC ⊆ SL(z)∩UUC, and w ∈ UUC \SL(z), we have that w 6∈ L(y).
Thus w ∈ L(x) \ SL(y), as desired.

In fact, it is easy to see that any covering set is also a consistent choice
set. However, the converse is not true. Moreover, as opposed to the case of
covering sets, a minimal consistent choice set (in the sense of set inclusion)
may not be unique (see Vartiainen 2006).

But to the other direction we can say more. The next result shows that
UUC is the maximal consistent choice set in the sense of set inclusion.

Theorem 12 The ultimate uncovered set UUC is the maximal consistent
choice set.

Proof. Let C be a consistent choice set. We show that C ⊆ UUC. By the
definition of a consistent choice set, C ∩ L(x) \ SL(y) is nonempty, for all
x ∈ C and for all y ∈ X. Thus, for any B ⊆ X such that C ⊆ B,

L(x) ∩B 6⊆ SL(y) ∩B, for all x ∈ C, for all y ∈ B. (11)

Choosing B = X = UC0 in (11), it follows by the definition of covering
that C ⊆ UC(UC0) = UC1. By induction, C ⊆ UC(UCk) = UCk+1, for all
k = 0, 1, ... . Thus C ⊆ UC∞ = UUC.

Finally, we are able to tie the existence results concerning consistent
choice sets to the existence issue of policy programmes that satisfy the one-
deviation property. By Theorems 7 and 12, we have shown that a terminat-
ing policy programme that has the one-deviation property does exist, and
that the set outcomes that are implementable via any such programme is
contained in the ultimate uncovered set.

Corollary 13 There is a terminating policy programme meeting the one-
deviation property that implements outcomes in the ultimate uncovered set.
Moreover, the ultimate uncovered set is the maximal set of outcomes that
can be implemented via any terminating policy programme meeting the one-
deviation property.

Thus it is without loss of generality to focus on the ultimate uncovered set
UUC if one is interested in the welfare consequences of a dynamic political
decision making.
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4 Relationship to Bernheim and Slavov (2009)

In this section we interpret our results in the framework of Bernheim and
Slavov (2009). The clearest connection can be made when X is a finite set.

The model is captured by {1, ..., n} individuals. The set X is now in-
terpreted as social states which may change in dates t = 0, 1, ... . The
per-period utility functions of the players are written as ui : X → R for all
i = 1, ..., n, which induces a per-period utility possibility set U = {u(x) ∈
Rn : x ∈ X}. Given that X is a finite set, the set U also contains finitely
many elements. This implies that the convexity conditions of Bernheim and
Slavov (2009), which are required for their existence result, need not be met.

To complete the analysis relating our solution concept to that of Bern-
heim and Slavov (2009), we focus is on the generic finite case where indif-
ferences are ruled out. We assume that n is odd and that preferences over
per period payoffs are strict: ui(x) ≥ ui(y) and x 6= y implies ui(x) > ui(y),
for all i and for all x, y.

Under these assumptions, X satisfies condition A0 and the majority
relation M ⊂ X ×X such that

xMy if and only if #{i : ui(x) ≥ ui(y)} ≥ n

2
,

satisfies conditions A1 and A2. Moreover,M is asymmetric. This guarantees
that M is robust against small changes in the agents’payoffs.16

Policy making is now an ongoing process where the individuals gain
benefits from the policy choices in each period t = 0, 1, ... . Letting H
denote the set of all possible finite paths of social alternatives - the set of
histories - a dynamic policy programme is now a function p : H → X,
capturing the transitions from one history to another. Let H be the set of
all histories of states (x0, ..., xt) such that x0 = xα. These transitions will
be induced by winning majority coalitions who stand to benefit from them.
Let p0(h) = p(h) and pt(h) = p(h, p0(h), ..., pt−1(h)), for all t = 1, ... .

Let the intertemporal payoffs be evaluated by discounted sum of per
period payoffs

vi(p(h)) =
∞∑
t=0

ui(p
t(h))δt.

A policy programme p is a Dynamic Condorcet Winner (DCW) of Bernheim
and Slavov (2009) if

#{i : vi(p(h)) ≥ vi(p(h, y))} ≥ n

2
, for all h ∈ H, for all y ∈ X.

That is, if a majority of agents prefers action p(h) over any action y at any
history h, given the continuation path the action triggers.

16xMy and yMx imply x = y.
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To highlight the relationship of our solution to that of Bernheim and
Slavov (2009), let us focus on policy programmes that are stationary in the
sense that

p(h) = p(h, p(h)), for all h ∈ H. (12)

That is, after all histories, the policy path converges immediately to an
absorbing state in which it stays permanently. Stationary rules are simple
and intuitive as they do now exhibit complex dynamics or cycles.

As Bernheim and Slavov (2009) discuss, stationarity is a desirable prop-
erty of a choice rule but also quite demanding. Their existence result con-
cerning stationary DCWs require convexity assumptions, e.g. randomization
over X. Our aim is to show that randomization is not needed.

For any stationary policy programme p, the limit of the intertemporal
payoff of i as δ tends to unity is well defined, and satisfies limδ→1 vi(p(h)) =
ui(p(h)), for all h. Given that n is odd and the per period preferences are
linear, there is δ̄ ∈ (0, 1) such that a stationary policy programme p is a
DCW for all δ ≥ δ̄ if and only if

p(h)Mp(h, y), for all h ∈ H, for all y ∈ X. (13)

To prove that for each stationary DCW p there is an equivalent ter-
minating policy programme σ meeting the one-deviation property (defined
with respect to M), construct σ from p by letting, for all h ∈ H,

σ(h, x) =

{
stop if p(h, x) = x,
p(h, x) if p(h, x) 6= x.

Since p is a DCW, σ satisfies the one-deviation property, by (13).
For the other direction, let C be a consistent choice set and construct a

policy programme (pC : τC , QC) such that

τC(qx, y) =

{
qy, if y ∈ L(x) ∩ C,
qz(x,y), if y 6∈ L(x) ∩ C,

and

pC(qx, y) =

{
y, if y ∈ L(x) ∩ C,
z(x, y), if y 6∈ L(x) ∩ C.

The only difference of this programme to the one defined in (3) - (6) concerns
the choice pC(qx, y) when y ∈ L(x) ∩ C. Since

pC(τC(qx, y), y) = pC(qy, y) = y

and
τC(qy, y) = qy,

it follows that the policy programme (pC : τC , QC) is stationary: starting
from any configuration, the programme starts repeating the status quo at
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most after one period lag. By Lemma 6, it is clear that the programme also
meets (13).

By Theorem 7, we may compound the above observations in a proposi-
tion.

Proposition 14 Let X be finite, n odd, and the agents’preferences over X
strict. Then the set B of states is a consistent choice set with respect to the
majority relation M if and only if there is δB ∈ (0, 1) such that B is the set
of absorbing states of a stationary DCW for all δ ≥ δB.

By the previous proposition, and by Theorems 11 and 12, we can con-
clude that a stationary DCW always exists, and that the ultimate uncovered
set completely characterizes the stationary states that can be supported by
a DCW.

Corollary 15 Let X be finite, n odd, and players’preferences over X strict.
There is δ̄ ∈ (0, 1) such that a stationary DCW exists for all δ ≥ δ̄.Moreover,
there is δUUC ∈ (0, 1) such that UUC is the set of possible absorbing states
of any stationary DCW, for all δ ≥ δUUC .

That is, UUC serves as a reliable prediction of a political process when
the parties seek to converge to a stable state that can be supported in the
long run. This result complements the existence result in Bernheim and
Slavov (2009) which requires convexity assumptions. The leading motiva-
tion for the convexity assumption is randomization which may be diffi cult
to motivate in the context of a political process where the parties cannot
commit to the status quo outcome. First, it is not clear in what sense could
a majority coalition choose a randomized action. Second, since the lack of
commitment is a primitive of the model, i.e. that the parties cannot commit
not to change status quo, it is natural to think that they need not commit
to a randomized devices either. That is, after uncertainty related to the
randomized device has resolved, they have an option to rethink their choice.
Third, stationarity as a concept loses some of its appeal if the per period
state is randomly determined.

Note on the no-discounting case The above results are stated un-
der discounting, to relate our model to that of Bernheim and Slavov (2009).
However, they extend without complications to the limiting case, where the
payoff streams are evaluated by the time-average criterion:

vi(p(h)) =
1

T

T∑
t=0

ui(p
t(h)).
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Under this payoff specification, the results of this section can be stated
without the restriction that M is asymmetric. Also finiteness of X can be
relaxed but M then has to be assumed continuous.

Furthermore, under this intertemporal payoff specification the results
can also be extended by stating them in terms of absorbing policy pro-
grammes. A programme p is absorbing if, after all h there it th such that
pt(h) = pt+1(h), for all t > th. Under the time-average payoff criterion,
absorbing policy programmes can be interpreted as terminating ones, where
an outcome or state is implemented when the policy process absorbs to it.
Thus, by Section 3, the set B of states is a consistent choice set with respect
to the majority relation M if and only if B is the set of absorbing states of
a stationary DCW. Note that stationary programmes are absorbing but not
vice versa.

5 Conclusion

In this paper, we study farsighted political decision making when the voting
acts may be conditioned on the history. We abstract from the details of the
voting procedure and assume that individual preferences are aggregated by
a continuous social preference (e.g. majority) ordering. Choices are made on
the basis of binary comparisons - the current status quo may be challenged
with another outcome and the status quo is implemented if it is not defeated
by any challenger. The key aspect of the model is farsightedness: the agents
foresee the consequences of the blocking behavior. The solution we apply is
the standard one-deviation principle.

Our results contribute to the voting literature in three dimensions. First,
we show that the one-deviation property, which is a synonym for sequential
rationality in many non-cooperative set ups, is a natural way to model col-
lective decision making in the canonical social choice scenario: a dynamic
policy programme meeting the one deviation property always exists and
has an interpretation in terms of well known solution concepts in the social
choice literature. In particular, our model bridges the one-deviation prop-
erty to the concept of ultimate uncovered set, the infinitely iterated version
of a version of the uncovered set. The uncovered set has been one of the
central solution concepts in the literature of agenda formation and voting
(e.g. Miller 1980; Shepsle and Weingast 1984; Banks 1985).

Second, as our domain restrictions are rather weak - we assume that the
set of social alternatives is a compact metric space - our results extend the
literature on the uncovered set and its derivatives. In particular, we intro-
duce a new version of the covering operation that has an interpretation in
terms of the one-deviation property. Importantly, we show that the uncov-
ered set that is derived with respect to this covering relation is compact.17

17E.g. Bordes et al. (1992) provide conditions under which the Miller’s and Gillies’
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As a consequence, we can show that the iterations of the uncovered set and,
in particular, the ultimate uncovered set does exist. We also show that,
with this definition of covering, the ultimate uncovered set is a covering set
of Dutta (1988).

Third, we demonstrate that terminating policy programmes meeting the
one-deviation property are, in real terms, equivalent to stationary Dynamic
Condorcet Winners (DCWs) of Bernheim and Slavov (2009). Thus our re-
sults, in particular on the existence, are directly transferable to their frame-
work. The existence of a stationary DCW is not clear a priori since sta-
tionarity is a demanding condition. Moreover, our analysis allows one to
interpret the important solution of Bernheim and Slavov (2009) in a general
class of political domains.

References

[1] Banks, J (1985), Sophisticated voting outcomes and agenda control,
Social Choice and Welfare 1, 295-306

[2] Banks, J., Duggan, J., and M. Le Breton (2006), Social choice and
electoral competition in the general spatial model, Journal of Economic
Theory 126, 194-234

[3] Bell, C. (1981), A random voting graph almost surely has a Hamiltonian
cycle when the number of alternatives is large, Econometrica 49, 1597-
1603.

[4] Bernheim, D. and S. Slavov (2009), A solution concept for majority
rule in dynamic settings, Review of Economic Studies 76, 33-62

[5] Black, D. (1948). On the rationale of group decision-making, Journal
of Political Economy 56, 23-34

[6] Bordes, G. Le Breton, M., and M. Salles (1992), Gillies and Miller’s
Subrelations of a Relation over an infinite set of alternatives: general
results and applications to voting games, Mathematics of Operations
Research 17, 509-18.

[7] Chwe, M. (1994), Farsighted stability, Journal of Economic Theory 63,
299-325.

[8] Coughlan, P. and M. LeBreton (1999), A social choice function imple-
mentable via backwards induction with values in the ultimate uncovered
set, Review of Economic Design 4, 153-60.

versions of the uncovered set is nonempty (see also Penn 2006). However, compactness of
the solutions remains unclear.

20



[9] Downs, A. (1957) An economic theory of democracy, New York: Harper
and Row.

[10] Dutta. B., Jackson, M. and M. LeBreton (2001a), Equilibrium agenda
formation, Social Choice and Welfare 23, 21-37

[11] Dutta. B., Jackson, M. and M. LeBreton (2001b), Strategic candidacy
and voting procedures, Econometrica 69, 1013-37

[12] Dutta. B., Jackson, M. and M. LeBreton (2002), Voting by successive
elimination and strategic candidacy, Journal of Economic Theory 103,
190-218

[13] Dutta. B., Jackson, M. and M. LeBreton (2005), The Banks set and
the uncovered set in budget allocation problems, in Austen-Smith D.
and J. Duggan (eds.): Social Choice and Strategic Decisions, Essays in
Honor of Jeffrey S. Banks, Springer: Berlin, Germany

[14] Dutta. B (1988), Covering sets and a new condorcet correpondence,
Journal of Economic Theory 44, 63-80

[15] Duggan, J.: (2006), Endogenous voting agendas, Social Choice and
Welfare 27, 495—530

[16] Duggan J. (2006), Uncovered sets, University of Rochester, unpublished

[17] Duggan, J and M. Jackson (2005), Mixed strategy equilibrium and
deep covering in multidimensional electoral competition, University of
Rochester, unpublished

[18] Duggan, J and J. Banks (2008), A dynamic model of democtratic elec-
tions in multidimensional policy spaces, Quarterly Journal of Political
Science 3, 269-99

[19] Fishburn, P. (1977), Condorcet social choice function, SIAM Journal of
Applied Math 33, 295-306

[20] Greenberg, J. (1990) The theory of social situations: an alternative
game-theoretic approach, Cambridge UP: London, UK

[21] Herings, P, Mauleon A., and V. Vannetelbosch (2004), Rationalizability
for social environments, Games and Economic Behavior 49, 135-156

[22] Laslier, J.-F. (1997), Tournament solutions and majority voting, Hei-
delberg, New-York: Springer-Verlag.

[23] McKelvey, R.(1976), Intransitivities in multidimensional voting models
and some implications for agenda control, Journal of Economic Theory
12, 472-82

21



[24] McKelvey, R.(1979), General gonditions for global intransitivities in
formal voting models, Econometrica 47, 1085-112.

[25] McKelvey, R. (1986), Covering, dominance, and institution-free prop-
erties of social choice, American Journal of Political Science, 283-314

[26] Miller, N. (1980), A new solution set to for tournaments and majority
voting, American Journal of Political Science 24, 68-96.

[27] Moulin, H. (1986), Choosing from a tournament, Social Choice and
Welfare 3, 271-91

[28] Penn, E. (2009), A Model of Farsighted Voting, American Journal of
Political Science 53, 36-54

[29] Penn, E. (2008), A distributive N-amendment game with endogenous
agenda formation, Public Choice 136, 201-213

[30] Penn, E. (2006a), Alternate definitions of the uncovered set, and their
implications, Social Choice and Welfare 87, 83-7

[31] Penn, E (2006b). The Banks set in infinite spaces, Social Choice and
Welfare 27, 531-543

[32] Shepsle, K. and B. Weingast (1984), Uncovered sets and sophisticated
outcomes with implications for agenda institutions, American Journal
of Political Science 28, 49-74.

[33] Roberts, K. (2007), Condorcet cycles? A model of intertemporal voting,
Social Choice and Welfare 29, 383-404

[34] Rubinstein, A. (1979). A note about the ‘nowhere denseness’of societies
having an equilibrium under majority rule, Econometrica 47: 511—514.

[35] Schofield, N. (1983). Generic instability of majority rule, Review of
Economic Studies 50, 695-705

[36] Vartiainen, H. (2006), Cognitive equilibrium, ACE working paper

[37] Vartiainen, H. (2010), Dynamic coalitional equilibrium, forthcoming in
Journal of Economic Theory

[38] Wilson R. (1986), Forward and backward agenda procedures: commit-
tee experiments on structurally induced equilibrium, Journal of Politics
48, 390-409

22


