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Abstract

We study pure Nash equilibria in random ¡player games. Unlike
previous studies, we do not restrict the best replies to be single-valued.
When all best reply correpondences are equally likely, the probability
of at least one pure Nash equilibrium approaches one and the expected
number of pure Nash equilibria approaches in…nity, when the size of
the game becomes large. When the utilities of the players are drawn
from a …nite set of utility indices, the limit distribution of pure Nash
equilibria depends on how fast the set of utility indeces grows relative
to the the size of the game. We show that the limit distribution is
Poisson with mean that depends on this factor.
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1 Introduction

It is of importance to understand how Nash equilibrium behaves as a solu-
tion concept, on the "average". A vast literature has analyzed pure Nash
equilibria (PNE) in games whose payo¤s are drawn randomly from a max-
imum entropy distribution (see e.g. Stanford 1995a,b, 1996; Powers 1990,
Goldberg et al. 1968, Dresher 1970). Of particular interest is the asymp-
totic distribution of pure Nash equilibria when the size of the game becomes
large.

A standard assumption in the literature has been that the payo¤s are
drawn randomly from a set that is much larger than the …nite choice set,
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typically from a continuum. This assumption guarantees that players are
never indi¤erent, and that best responses are always unique. This simpli…es
the analysis.

However, we feel that the possibility of multiple best responses should
be accounted for. First, it can be argued that best reply correspondences
are su¢cient descriptions of games, at least as far as one is interested in
solutions that depend only on best replies. If all best response correspon-
dences are equally likely, then multiple best responses cannot be ruled out
(as is observed by looking at examples is standard game theory texts). Sec-
ond, even if there are aspects in strategic interaction that are not captured
by best reply correspondences alone, it is (arguably) not natural to think
that one could really choose payo¤s from an in…nite set of possible payo¤s -
especially in a model where everything else is …nite. This again means that
to multiple best responses occur with positive likelihood.

We evaluate the likelihood pure Nash equilibria in random games where
multiple best responses are allowed. We study "large" -player matrix games
where the size of each player’s choice set approaches in…nity. We …rst show
that, when all best reply correspondences are equally likely, the probability
of at least one pure Nash equilibrium approaches one, and the expected
number of pure Nash equilibria approaches in…nity.

The situation is more vexed, however, when randomness concerns the
underlying utilities. To model this, we let the payo¤s of the players be drawn
independently from a …nite set of utility indices. Letting the cardinality of
the set of utilities of player , ( ) depend on the size of the game in
such a way that ( ) approaches some real number as becomes
large, the probability of multiple best responses does not vanish even in the
limit.

The standard result when the utility indices are drawn from a continuum
is that the distribution of pure Nash equilibria converges to the Poisson
distribution with mean 1 as becomes large. This, however, does not hold
when utilities are drawn from a set of ( ) distinct indices. Our main
…nding is that the limit distribution of pure Nash equilibria converges to
Poisson with mean Y

=1

µ
1

1 ¡ ¡1

¶

Since this number converges to 1 as tends to in…nity, our result can be
taken as a generalization of the previous …ndings.

The key challenge is to take into account the probabilistic dependency
between Nash equilibria: existence of a Nash equilibrium in a row a¤ects
the probability - but does not rule out the possibility - that there is another
one in the same row. Tackling this phenomenon requires a combinatorial
argument. We show that, in the limit, the dependencies between pure Nash
equilibria vanish (with probability one) and they can be treated "as if" they
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are independent.
It is important to note that our limit results cover also the case where the

sizes of the choice sets of the players, say 1 increase with di¤erent
speed. So long as the limit of the ratios ( ) are well de…ned for all
players, they can be used as the basis of ( 1 ) in the above character-
ization of the limit distribution of pure Nash equilibria. Alternatively, we
could draw the utilities from a same set and vary the sizes of the strategy
sets, without a¤ecting the qualitative nature of the results.

There are important omissions. Our focus is restricted to pure strategies,
…nite action sets and independently drawn payo¤s. McLennan (1997) allows
mixed strategies and Bade et al. (2007) in…nite action sets. Rinott and
Scarsini (2000) study the case where players’ payo¤s are dependent.

The paper is organized as follows. The notation is given in Section 2.
In the rest of the paper, we characterize the distribution of the number
of equilibria and give the expected number of pure Nash equilibria, as the
number of pure strategies goes to in…nity.

2 Preliminaries

There are players 1 , playing a matrix game. We assume that player
s payo¤s are drawn uniformly from the set f1 ( ) 1g where ( ) is

a natural number. A payo¤ matrix of player de…nes a utility index for all
action pairs ( 1 ) 2 f1 g

= [ ( )] 2f1 g

Given a payo¤ matrix denote the induced best response matrix by

( ) = [ ( : )] 2f1 g

where

( : ) =

½
1 if ( ) ¸ ( 0 ¡ ) for all 0 2 f1 g
0 otherwise

Note that at least one element in a row of a best response matrix must be
equal to one. If is random, then ( ) is random.

Given the payo¤ matrices ( 1 ), an action pro…le 2 f1 g
forms a pure Nash equilibrium (PNE) if and only if

Y
=1

( : ) = 1

Denote by ( ) the expected value of the function that is dependent
on the random variable .
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3 Random best reply matrices

Two games with the same players and the same strategy sets are best reply
equivalent if they induce the same best response matrices. Note that all
games in the same equivalence class have the same PNE. Given an equiv-
alence class of games, we may take the corresponding best reply matrices
(one for each player) as representing this class, since best reply matrices can
of course be interpreted as payo¤ matrices. In this section we draw equiva-
lence classes from a uniform distribution, for each number of actions. We
determine the limit probability that the chosen equivalence class of games
has PNEs as goes to in…nity.

Proposition 1 Suppose that a best reply equivalence class is drawn from the
uniform distribution over all equivalence classes, given . The probability
that a game in this class possesses exactly PNEs, for = 0 1 goes to
zero as goes to in…nity.

Proof. Assume …rst that ( ) = 2 for all and for all Let us call this
situation as a 0 ¡ 1 game. First we claim that the payo¤ matrices of a 0¡ 1
game coincides with probability one with the best response matrices as
becomes large. For this it su¢ces to show that, when becomes large, for
each action of a player ’s best response matrix there is a combination of
the other players’ actions that induces a payo¤ 1, i.e., there is no player
with an action that induces zero payo¤ against all actions pro…les of the

the players. This materializes with probability

µ
1 ¡ 1

2

¶

This number goes to 1 as becomes large. To see this, observe that

µ
1 ¡ 1

2

¶
=

"µ
1 ¡ 1

2

¶2 # 2

and that

ln

µ
1 ¡ 1

2

¶
=

2
ln

µ
1 ¡ 1

2

¶2

goes to zero as grows to in…nity. This proves the claim.
Now let ( ) ¸ 2 for all and . By the claim made in the previous

paragraph, a game with random best response matrices has PNEs with the
same probability as a game of random 0¡1 payo¤s has PNEs with payo¤s
(1 1). Since the utility indices of a 0 ¡ 1 game are drawn independently
from the set f0 1g an event "strategy ( ) induces payo¤s (1 1)" is a
Bernoulli trial that is independent of and , and has success probability
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1 2 The probability that there exist exactly = 0 1 such PNEs is
binomially distributed, and equals

µ ¶µ
1 ¡ 1

2

¶ ¡ µ
1

2

¶
=

!

( ¡ )! !

µ
1 ¡ 1

2

¶ ¡ µ
1

2

¶

This number goes to zero as goes to in…nity.

We end this section by stating two immediate corollaries of the previous
result. Suppose that a best reply equivalence class is drawn from the uniform
distribution over all equivalence classes, given . Then:

1. The probability that a game in this class possesses at least one PNE
goes to one as goes to in…nity.

2. The expected number of PNEs goes to in…nity as goes to in…nity.

4 Random payo¤ matrices

In this section, we let the utility indices be the primitive of the model. We
assume that, for each = 1 there is a nonnegative real number such
that

lim
!1

( )
=

First we observe the following lower bound on the number of pure PNEs
in the limit game. When payo¤s for agent are taken from the set f1 ( ) 1g,
the best possible PNE is the one with payo¤s (1 1). We …rstr observe that
the distribution of number of such best equilibria is approximately Poisson
with mean 1 ¦ as becomes large.

Remark 2 The number of PNE with payo¤s (1 1) is Poisson distributed
with mean 1 ¦ as goes to in…nity.

Proof. The probability that an action pro…le ( ) results in payo¤s (1 1)
gets arbitrarily close to ¡ ¦ as grows. The probability of pay-
o¤s (1 1) for a given action pro…le is independent of the realization
of the payo¤s for other action pro…les. Thus the number of action pro-
…les with payo¤s (1 1) is binomially distributed with success probability
¡ ¦ . The number of trials is and so the mean of this distribution

is ¢ ( ¡ ¦ ) = 1 ¦ . By the well-known approximation result, the
limit distribution is Poisson with mean 1 ¦ .

As a corollary of the previous remark it follows that the probability of
at least one PNE with payo¤s (1 1) converges to 1 ¡ ¡1 ¦ as becomes
large. However, for all there is also a positive probability that a PNE
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materializes with payo¤s strictly lower than 1 As long as 0 this prob-
ability does not vanish when becomes large, and it needs to be taken into
account when evaluating the distribution of PNEs.

De…ne

¹ :=
1

1 ¡ ¡1

Now we can state our main result.

Proposition 3 The number of PNEs is Poisson distributed with mean¦ =1¹
as goes to in…nity.

We prove the result via a series of subresults. The proof is by induction
on Let be a payo¤ matrix of player in a ¡game. Denote the
proportion of the ¡1 action pro…les of the other players against which
has = 0 distinct best responses by

( : ) =

P
¡

©P
( ¡ : ) =

ª
¡1 for all = 1 ¡1

Similarly, denote the proportion of the actions of that are best responses
to = 0 distinct action pro…les of the other players

( : ) =

P nP
¡ ( ¡ : ) =

o
for all = 0

Since it is immaterial whether one counts the total number of best responses
on the basis of rows or columns, the average number of ’s best responses

( ) is satis…es the parity

( ) :=

¡1X
=1

( : ) =

P
=1 ( : )

¡2 (1)

Lemma 4 For any ( ) converges to ¹ as goes to in…nity.

Proof. The probability that the number of player pro…les ¡ against which
has best responses is the probability that actions generate the same

payo¤ times the probability that all other actions generate lower pay-
o¤s, given Since the distribution over the set f1 ( ) 2 ( ) 1g is
uniform, we have, under given

( : ) =

( )X
=1

µ ¶µ
1

( )

¶ µ
¡ 1

( )

¶ ¡

=

µ ¶µ
1

( )

¶ ( )X
=1

µ
1 ¡

( )

¶ ¡
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where the second equality follows by reversing the order of summation. Let-
ting become large,

lim ( : ) = lim
1

!

µ
( )

¶ ( )X
=1

µ
1 ¡

( )

¶ ¡

=

P1
=1

¡

!

=
¡1

(1 ¡ ¡1 ) !

where the second equality follows by taking a component wise limit of the
summation. Since best responses of player against ¡ are independently
distributed, it follows, by the law of large numbers, that

lim ( : ) = lim ( : ) for all

almost surely. Thus

lim ( ) = lim

( )X
=1

( : )

=
1X
=1

¡1

(1 ¡ ¡1 ) !

=
¡1

1 ¡ ¡1

1X
=1

1
¡1( ¡ 1)!

=
1

1 ¡ ¡1

where the …nal equality follows from noting that
P1

=1

£ ¡1( ¡ 1)!
¤¡1

is
a Taylor expansion of 1 .

Based on Lemma 4, the content of our Proposition 3 is that, in the limit,
the expected of number of PNEs is simply Denote the number of PNEs in
a ¡game given payo¤ matrices 1 by ( 1 ). Denote

lim 1 ( 1 ) = ¹

whenever the limit is well de…ned.

Lemma 5 Assume that the limit ¹ ¡1 is well de…ned. Denote by ( ) the
prior probability that action of player is a component of PNEs in the

-game. Then

lim ¢ ( ) =

½
¹ ¡1¹ if = 1
0 if 1

(2)
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Proof. For any …x an arbitrary action of player . Let there be
distinct pro…les ¡ against which is a best response of player . Further,
let there be PNEs in the ¡ 1 -player game restricted to the player set
f1 ¡ 1g when player chooses action Since each allocation of the
given and in the in the set f( ¡ ) : ¡ 2 f1 g ¡1g is equally
likely, the number · maxf g of PNEs in this set is hypergeometrically
distributed. The probability ( : ) of there being PNEs, given
and is

( : ) =

µ ¶ µ ¡1 ¡
¡

¶
µ ¡1 ¶

=
! !

( ¡ )!( ¡ )!

( ¡1 ¡ )!( ¡1 ¡ )!
¡1!( ¡1 ¡ ¡ + )!

It then follows that

lim ¡1 ¢ ( : ) =

½
if = 1

0 if 1
(3)

By de…nition,
( ) = ( : ) (4)

Since the best responses of player and the PNEs of the game played by
players 1 ¡ 1 are independently distributed, and are independent
random variables. The expected value of is

1 ¡1 ¡1( 1 ¡1)

The share of player ’s choices that are best responses against distinct
pro…les ¡ is ( : ) The expected value of is then, by (1),

X
=1

( : ) = ¡2 ¢ ( )

Since and are independently distributed, and since the limit ¹ ¡1 is well
de…ned, Lemma 4, (4), and (3) imply

lim ¢ ( ) = lim
¡1 ¢ ( : )

¡2

=

½
lim 1 ¡1 ¡1( 1 ¡1) ¢ ( ) if = 1
0 if 1

=

½
¹ ¡1¹ if = 1
0 if 1
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Lemma 6 Assume that the limit ¹ ¡1 is well de…ned. The number of PNEs
is Poisson distributed with mean ¹ ¡1¹ as goes to in…nity.

Proof. Recall that ( : ) is the proportion of actions of player
under that are best responses to = 0 1 distinct strategy pro…les
¡ of the other players when the size of the game is . Let be large

so that, by the law of large numbers, (¢ : ) is approximately equal
to the empirical distribution of a -sequence of independent trials drawn
from the distribution (¢ : ) itself. This means that the preconditions
of Lemma 5 are met by each trial in this ¡sequence: the probability that
any action of player is a component of PNEs is ( ) Because of
the independency of the trials, the number of choices of player that are
components of PNEs is binomially distributed with mean ¢ ( ). By
Lemma 5, this mean is approximately zero for all 1. That is, for large

the number of PNEs is approximately binomially distributed with mean
¢ (1). By the standard approximation result, the claim now follows

from Lemma 5.

Finally, we argue by induction that ¹ = ¦ =1¹ for all By Lemma
6, this also proves Proposition 2.

Lemma 7 ¹ = ¦ =1¹ for all = 1

Proof. The initial step: By the de…nition of PNE and Lemma 4, the
statement of the lemma holds for = 1.

The inductive step: Let, for any = 2 ¹ ¡1 = ¦ ¡1
=1 ¹ By de…nition,

¹ is the expected number of PNEs in an ¡player limit game Thus, by
Lemma 6, ¹ = ¦ =1¹

Thus, in the limit, the expected number of PNE is

Y
=1

¹ =
Y
=1

µ
1

1 ¡ ¡1

¶

Since (1 ¡ ¡1 ) is monotonous in and

lim
!0

1

1 ¡ ¡1 = 1 and

lim
!1

1

1 ¡ ¡1 = 1

it follows that:

1. When payo¤s are drawn from a set that is much (in…nitely times) larger
than the set of choices, the number of pure PNE is Poisson distributed
with mean 1 as the set of choices becomes large (cf. Goldberg et al.,
1968; Drescher, 1970; Powers, 1990; Stanford, 1995a,b).
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2. When payo¤s are drawn from a set that is small relative to the size of
the game the expected number of PNEs approaches in…nity and the
probability of at least one PNE approaches one, a result parallel to
Remark 2.

3. Adding a new player + 1 with +1 2 (0 1) increases the expected
number of PNEs. If the parameters 1 are drawn from a bounded
set then the number of expected PNEs grows exponentially in .

Note also that the ratio between Poisson mean 1 ¦ in Remark 2 - the
lower bound of the expected number of equilibria - and the Poisson mean
¦ ¹ in Proposition 3, i.e. 1 ¦ (1 ¡ ¡1 ) tends to one when all s tend
to 0, re‡ecting the fact that when the set of utility indices is small relative
the size of the game, most of the PNE are with maximal payo¤s.

5 A note on the limit game

The natural limit game when becomes large is the one in which all players
have N = f0 1 g as their strategy sets. If ( ) increases without limit
as well, for all then the uniform distribution over f1 ( ) 1g weakly
converges to the uniform distribution over [0 1]. Assume indeed that the
strategy sets are N and payo¤s to both players and to each strategy pair
are i.i.d. draws from the uniform distribution over [0 1]. In this game there
are no pure Nash equilibria with probability 1. To see this, note that player

= 1 gets utility strictly less than 1 from every strategy pair with
probability 1. Hence a Nash equilibrium ( 1 ) should be such that
player, say, gets equilibrium payo¤ 1. But with probability one he
gets payo¤ from some other action 0 6= . This is one reason why
the limit results are of interest: if there were pure Nash equilibria in the limit
game, then such an equilibrium might qualify as an approximate solution to
a large but …nite matrix game.
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