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Abstract We study Nash implementation of the bargaining solutions in a cake
sharing set up. We argue that the minimal Pareto optimal, symmetric and Nash
implementable SBS is the one inducing all Pareto optimal and midpoint-domi-
nating utility vectors in each state.

1 Introduction

Bargaining theory aims at specifying a reasonable compromize to each bar-
gaining problem. The compromize is called a bargaining solution. Since Nash
(1950), an extensive literature has explored bargaining solutions from the axi-
omatic basis (for a survey, see e.g. Thomson and Lensberg 1989). The so called
Nash Program requires that a good solution can not only be motivated axi-
omatically but it also should be supported in a non-cooperative framework.
Implementation theory studies the general question of what outcome functions
can be implemented non-cooperatively. It is shown by Trockel (2002a) that any
support result in Nash Program can be embedded into implementation theory
(the “Embedding Principle”) (see also Bergin and Duggan 1999, Serrano 1997,
2005; Trockel 2002b). Conversely, if a solution cannot be implemented under
any meaningful structural assumptions, then it cannot be supported in Nash
Program.

We study implementability of bargaining solutions in the canonical cake shar-
ing scenario. Both the players and the planner are aware of the cake sharing
structure but only the players know the payoff functions.
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Literature contains many permissive results on implementation of bargaining
solutions in subgame perfect Nash equilibrium in a similar set up.1 The general
rule is that practically any bargaining solution can be implemented with com-
plex enough extensive form mechanism in subgame perfect Nash equilibrium
(see Miyagawa 2002; Vartiainen 2002). In the light of Nash Program, this is
slightly frustrating: strategic constraint does not matter much, at least if there
is no bound on how complex mechanisms are feasible. Hence, if the strate-
gic constraint is to have a bite, one must assume some restrictions on feasible
mechanisms.

In this paper, we focus on normal form mechanisms, and employ the Nash
equilibrium as the solution concept. Normal form games are “simple” and do
not require too much strategic sophistication from the players’ part. We ask
what two-person bargaining solutions—or solution correspondences—can be
Nash implemented.

The set of states consists of all representations of increasing and continuous
von Neumann–Morgenstern utility functions over the cake. Random mecha-
nisms are permitted. Since any increasing and continuous utility functions are
possible, and lotteries are feasible, the domain of the utility possibility sets
consists of all compact, convex, and strictly comprehensive sets.

We prove that any monotonic, Pareto-optimal, and symmetric solution nec-
essarily contains the Nash bargaining solution.2 Since the Nash solution is also
shown to be non-monotonic (in the Maskin sense), which is a necessary con-
dition for Nash implementation, an impossibility result follows. There is no
Pareto-optimal, symmetric, and Nash implementable bargaining solution in the
cake sharing problem.3

The impossibility result can be avoided by allowing a solution to induce a
multi-valued set of utility vectors in each state. By using Corollary 3 of Moore
and Repullo (1990), it follows that (Maskin) monotonicity is also a sufficient
condition for implementation of any strictly individually rational solution in our
context. Hence, it follows that there are multi-valued Pareto-optimal and sym-
metric solutions which are implementable (e.g., the Pareto-correspondence).

From two set valued bargaining solutions, the smaller one (in the sense
of set inclusion) is presumably more desirable since it gives a more accurate
prediction of the eventual outcome. The question is whether one can rank multi-
valued solutions based on their size. The main result of the paper is to develop
a tight characterization of the minimal set valued solution.4 We show that
there is a unique minimal Pareto-optimal, symmetric and Nash implementable

1 Howard (1992) (the Nash solution), Moulin (1984) (the Kalai–Smorodinsky solution), and
Anbarci (1993) (the Area monotonic solution).
2 Benoit and Ok (2005) and Bochet (2005) study Nash implementation via randomized mechanisms
when the number of players is at least three.
3 For another negative result in a different domain, see Serrano (1997). However, in other contexts
positive results are feasible, see e.g. Trockel (2000, 2002b), Naeve (1999), and Vartiainen (2005).
4 Bargaining solution is minimal in a class of solutions if it is contained (as a subset) by all other
solutions in this class.
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bargaining solution. Such solution consists of all Pareto-optimal and midpoint
dominating outcomes.

2 Fundamentals

2.1 The set up

Let {1, 2} be the set of players, with typical elements i and j. There is a perfectly
divisible cake of size 1, to be shared among the two players. The set of possible
allocations is A = {(a1, a2) ∈ R

2+ : a1 + a2 ≤ 1}, with ai denoting a typical share
of player i. The sets of players and outcomes are kept fixed throughout.

Let the index set � comprise all representations of continuous and strictly
monotonic von Neumann–Morgenstern preferences on [0, 1]. That is, each θi ∈
� can be identified with a continuous and strictly increasing payoff function
vi(·, θi) : [0, 1] → R, and for any continuous and strictly increasing function
w : [0, 1] → R there is θ ∈ � such that w = vi(·, θi). To simplify the exposition
we shall focus on the subset �0 of � that is defined by the property

�0 = {
θi ∈ � : vi(0, θi) = 0

}
.

This normalization will not affect the results. The state space is the product
�0 × �0. The prevailing pair θ = (θ1, θ2) ∈ �0 × �0 of payoff functions is
known by the players but not by outsiders. We customarily use the vector nota-
tion θ ′ = (θ ′

1, θ ′
2), θ

′′ = (θ ′′
1 , θ ′′

2 ), etc.
Denote by � the outcome set, i.e. the set of all probability measures on the

Borel sigma algebra of A. Denote the typical elements of � by p and q. Abusing
the notation, denote by a the degenerate measure in � that chooses a ∈ A with
probability one. For any p ∈ �, the expected payoff of i = 1, 2 under θ is

vi[p, θi] =
∫

A

vi(ai, θi)dp(a1, a2).

Write v[p, θ ] = (v1[ p, θ1], v2[p, θ2]) and, for B ⊆ �,

v[B, θ ] = {
v[p, θ ] ∈ R

2 : p ∈ B
}
.

Denote the lower contour set of i at q ∈ � under θ by

Li(q, θi) = {
p ∈ � : vi[q, θi] ≥ vi[ p, θi]

}
,
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and the Pareto-optimal set of lotteries by5

P(θ) = {
p ∈ � : there is no q ∈ �s.t.v[q, θ ] ≥ v[p, θ ]}.

Since vi(·, θi) is strictly increasing, p ∈ P(θ) if and only if there is no q ∈ �

such that v[q, θ ] > v[p, θ ]. Or, in other words, p ∈ P(θ) if and only if L1(p, θ1) ∪
L2(p, θ2) = �.

2.2 A bargaining solution and a set valued bargaining solution

Let us take the dispose-all outcome as the disagreement outcome d = (0, 0) and
the utility vector v[d, θ ] = (0, 0) as the status quo point. By Lyapunov’s Theorem
[see e.g., Vind (1964), Lemma A], v[�, θ ] is a nonempty, convex, and compact set
in R

2+. Moreover, since v1 and v2 are strictly increasing, v1(1, θ) = v2(1, θ) = 1
and v1(0, θ) = v2(0, θ) = 0, the set v[�, θ ] is strictly comprehensive.6 Con-
versely, for any nonempty, convex, compact, and strictly comprehensive set
U ⊂ R

2+, there is θ ∈ �0 × �0 such that v[�, θ ] = U. Thus there is a surjective
function from the family {v[�, θ ]}θ∈�0×�0 of utility possibility sets to a standard
class of bargaining problems in R

2+ (see e.g., Thomson and Lensberg 1989).7

A bargaining solution is defined in the domain of bargaining problems, and
specifies a utility vector for each problem. The solution is defined directly in
terms of utilities. However, implementation forces us to concentrate on the
underlying physical structure.

A set valued bargaining solution(SBS) is a correspondence f : �0×�0 	⇒ �

such that f (θ) = {p ∈ � : v[p, θ ] = v[q, θ ] for some q ∈ f (θ)}, for all θ . That is,
f contains all outcomes that generate a desirable payoff vector. This restriction
can be defended by the standard welfarist argument. If a particular outcome
has desirable welfare properties, then another outcome generating the same
payoffs should be considered equally desirable, and not precluded from the
choice set.

However, we are also interested in a more specific form of set valued bar-
gaining solutions. An SBS f : �0 × �0 	⇒ � is a bargaining solution (BS)
if v[f (θ), θ ] is single valued for all θ . Thus while an SBS may generate many
payoff vectors, a BS generates a unique payoff vector in each state. To simplify
the notation, we customarily identify the set v[f (θ), θ ] of a BS f with the element
that it contains.

We review some of the axioms on bargaining solutions.

Definition 1 (PO) An SBS f is Pareto-optimal if f (θ) ⊆ P(θ), for all θ ∈
�0 × �0.

5 Vector inequalities: given x, y ∈ R
2, x � y means xi � yi for i = 1, 2, x ≥ y means x � y and

x �= y, and x > y means xi > yi for i = 1, 2.
6 Set U ⊂ R

2 is strictly comprehensive if, for all u, v ∈ U, u ≥ v implies w > v for some w ∈ U (see
Thomson and Lensberg (1989), p.7).
7 Note that two utility function pairs can induce the same utility possibility set.
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A bargaining problem under θ is symmetric if (u1, u2) ∈ v[�, θ ] if and only if
(u2, u1) ∈ v[�, θ ].
Definition 2 (SYM) An SBS f is symmetric if there is q ∈ f (θ) such that
v1[q, θ1] = v2[q, θ1], whenever θ ∈ �0 × �0 is symmetric.

We want the solution to improve both players’ payoffs relative to status quo.

Definition 3 (SIR) An SBS f is strictly individually rational if v[q, θ ] > 0 for all
q ∈ f (θ), for all θ ∈ �0 × �0.

SBS f is scale invariant if it is invariant to representation of vNM preferences.
To define this formally, denote the coordinatewise product (α1v1(·, θ1), α2v2
(·, θ2)) by αv(·, θ) for any α = (α1, α2) ∈ α ∈ R

2.

Definition 4 (INV) An SBS f is scale invariant if αv(·, θ) = v(·, θ ′) implies
f (θ) = f (θ ′), for all α ∈ R

2++, for all θ , θ ′ ∈ �0 × �0

Scale invariance can be equivalently stated by saying that f is sensitive only
to preferences over lotteries. Formally, if, for any pair θ , θ ′ ∈ �0 × �0, v[p, θ ] �
v[q, θ ] implies v[p, θ ′] � v[q, θ ′], for all pairs p, q ∈ �, then f (θ) = f (θ ′). To
see the equivalence, note that if αv(·, θ) = v(·, θ ′), for some α, then αv[p, θ ] =
v[p, θ ′], for all p. Thus v[p, θ ] � v[q, θ ] if and only if v[p, θ ′] � v[q, θ ′] for all p, q.
To see the other direction, suppose that αv(·, θ) �= v(·, θ ′) for all α. Then there
must be a, b ∈ A, i ∈ {1, 2}, and λ ∈ (0, 1) such that

vi(ai, θ ′
i )

vi(bi, θ ′
i )

= λ �= vi(ai, θi)

vi(bi, θi)
.

Construct lottery p = λ · b + (1 − λ) · d. Then vi[p, θ ′
i ] = vi[a, θ ′

i ] but vi[p, θi] �=
vi[a, θi].

Hence, if f is scale invariant, and there is no preference reversal when mov-
ing from θ to θ ′, then the solution should be the same under both preference
profiles. Therefore, as equilibrium behavior within a mechanism only depends
on the underlying preferences, and as the difference between two preferences
manifests itself in a preference reversal, it follows that if a mechanism imple-
ments a choice rule, then the rule must be scale invariant. This fact is stated in
Lemma 1, below.

2.3 Nash implementation

While it is common knowledge among the players that they know the true state
θ (and that they are rational), the only thing that is known by the planner is �0
(and the rationality of players). To implement f , a mechanism must be invoked
which reconciles planners’ goals with the individual incentives.

A game form � = (M1 × M2, g) consists of strategy sets M1 and M2, and an
outcome function g : M1 × M2 → �. Since players’ preferences over lotteries,
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the outcome space, change when moving from one profile to another, a game
must be defined by the state θ . Given θ , the pair (�, θ) defines a normal form
game, where player i’s real valued payoff function is defined on M1 × M2, and
satisfies wi(·) = vi[g(·), θi].

Let NE(�, θ) denote the set of Nash equilibria of (�, θ). Then m ∈ NE(�, θ) if
and only if

wi(m) ≥ wi(m′
i, mj), for all m′

i ∈ Mi and for all i �= j.

That is, m ∈ NE(�, θ) if and only if

vi[g(m), θi] ≥ vi[g(m′
i, mj), θi], for all m′

i ∈ Mi and for all i �= j.

Mechanism � is said to Nash implement SBS f if, for all θ ∈ �0 × �0,

g(NE(�, θ)) = f (θ).

If there is a mechanism � which Nash implements SBS f , then f is Nash
implementable.

3 Results

3.1 Nash implementation and the bargaining problem

Note that SBS and BS are special cases of more general classes of social choice
correspondences. Therefore, general results on the implementability of choice
correspondences apply here. Recall the condition by Maskin (1999).

Definition 5 (Maskin monotonicity) SBS f is Maskin monotonic if for all pairs
θ , θ ′ ∈ �0 × �0 it is true that p ∈ f (θ ′) and Li(p, θ ′) ⊆ Li(p, θ), for i = 1, 2,
implies p ∈ f (θ).

In words, if p is chosen by a social choice rule f under θ ′, and the ranking of p
does not strictly decrease in either players’ preferences when moving from θ ′ to
θ , then f also chooses p under θ . Maskin showed that any Nash implementable
social choice correspondence is Maskin monotonic. In our set-up, this condition
turns out to be also sufficient.

We are interested in implementing strictly individually rational SBSses. Cor-
ollary 3 of Moore and Repullo (1990) provides an operationalizable sufficient
condition for Nash implementation (see also Dutta and Sen 1991). It says that
any choice rule that satisfies Maskin monotonicity and restricted veto power,
and permits the existence of a “bad outcome” is Nash implementable.8

8 Solution f satisfies restricted veto power if i does have the power to veto p that is maximal for
j �= i if vi[q, θ ] > vi[p, θ ] for all q in the range of f . A bad outcome is strictly worse for both agents
that any outcome in the range of f .
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Now if the SBS f is strictly individually rational both players consume a
positive share of the cake. Then d can be chosen as the bad outcome and, given
that the maximal payoff of player i is generated by he consuming the whole
cake, the restricted veto power is also met.9

Proposition 1 Let SBS f satisfy SIR. Then f can be Nash implemented if and
only if it is Maskin monotonic.

By Maskin monotonicity, there has to be a preference reversal if SBS changes
from one state to another. Hence, any admissible SBS must be scale invariant.

Lemma 1 Any Maskin monotonic SBS satisfies INV.

Proof Suppose that an SBS f is Maskin monotonic. Given θ , take any α ∈ R
2++,

and let θ ′ satisfy

αv(·, θ) = v(·, θ ′).

Now, for all i ∈ {1, 2},

Li(p, θi) = {q ∈ � : vi[p, θi] ≥ vi[q, θi]}
= {q ∈ � : αivi[p, θi] ≥ αivi[q, θi]}
= {

q ∈ � : vi[p, θ ′
i ] ≥ vi[q, θ ′

i ]
}

= Li(p, θ ′
i ).

By Maskin monotonicity, p ∈ f (θ) if and only if p ∈ f (θ ′). Thus f satisfies
INV. �


It is clear that the proof applies to the case where the transformations are
affine.10 Since we are interested in Nash implementable solutions, this means
that restricting the type space to �0 is, indeed, without loss of generality.

Nash (1950) showed that PO, SYM, INV and the axiom of independence of
irrelevant alternatives (IIA)11 determine a unique bargaining solution, the Nash
solution. Since {v[�, θ ]}θ∈�0×�0 coincides with the family of all nonempty con-
vex, compact, and strictly comprehensive utility possibility sets, Nash’s result
extends to our case.12

We now argue that the concepts of Nash solution and Nash implementation
are closely linked in the cake sharing context. There are two dimensions where
the two concepts interact: first, Lemma 1 means that INV is a necessary con-
dition for Nash implementation. Second, as the next theorem proves, Maskin

9 My thanks to a referee for pointing out that the result is implied by Moore and Repullo (1990).
10 That is, v(·, θ ′) = αv(·, θ) + β implies f (θ) = f (θ ′), for any θ , θ ′ ∈ � × �, for any α ∈ R

2++ and
β ∈ R

2.
11 The independence of irrelevant alternatives axiom in our context: For all θ , φ ∈ �0, if v[�, θ ] ⊆
v[�, φ] and v[f (φ), φ] ∈ v[�, θ ], then f (θ) = {p ∈ � : v[p, θ ] = v[f (φ), φ]}.
12 (See e.g., Thomson and Lensberg 1989 Chap. 2).
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monotonicity implies IIA and hence also IIA is a necessary condition for Nash
implementation. Therefore, by Nash’s Theorem, any Nash implementable SBS
that satisfies PO and SYM must contain the Nash solution.

More formally, denote by f N : �0 × �0 → � the Nash solution where, for
each θ ,

f N(θ) = arg max
p∈�

v1[p, θ1]v2[p, θ2]. (1)

Hence, f N is a BS that always maximizes the Nash product.

Proposition 2 Let f : �0 × �0 → � be a SBS meeting PO and SYM. If f can be
Nash implemented, then f N(θ) ⊆ f (θ) for all θ ∈ �0 × �0.

Proof Suppose that SBS f meeting PO and SYM can be Nash implemented. We
show that this implies that f N(θ) ⊆ f (θ) for all θ ∈ �0×�0. This is done by iden-
tifying θ ′ and θ ′′ such that θ is a linear transformation of θ ′ and such that since θ ′
is a Maskin monotonic transformation of θ ′′ with respect to q ∈ f N(θ ′′) ⊆ f (θ ′′).
The latter implies f N(θ ′) ⊆ f (θ ′), and the former f N(θ) ⊆ f (θ).

Linear transformation θ ′ → θ :
Let θ ′ satisfy v(·, θ ′) = αv(·, θ), for αi = vi[f N(θ), θi]−1, and for i = 1, 2. Then

v[f N(θ ′), θ ′] = (1, 1). By INV, f N(θ) = f N(θ ′) and, by Lemma 1, f (θ) = f (θ ′).
Since f N maximizes the Nash product, and v[f N(θ ′), θ ′] = (1, 1), set v[�, θ ′] is
supported by the tangent u1 + u2 = 2 at (1, 1). To show that f N(θ) ⊆ f (θ), it
suffices to find q ∈ f N(θ ′) such that q ∈ f (θ ′).

Constructing θ ′′:
Our aim is to find θ ′′ ∈ �0 × �0 such that necessarily q ∈ f (θ ′′) and such that

θ ′ is a Maskin monotonic transformation of θ ′′. Since v[�, θ ′] is supported by
tangent u1 + u2 = 2 at (1, 1), there are allocations a1, a2 ∈ {(a1, a2) : v1(a1, θ ′

1) +
v2(a2, θ ′

2) = 2} such that v1(a1
1, θ ′

1) ≥ 1 and v2(a2
2, θ ′

2) ≥ 1 (see Fig. 1).13 Con-
struct θ ′′

i ∈ �0 such that, for any (a1, a2) ∈ A and i �= j,

vi(ai, θ ′′
i ) =

{
2 − vj(1 − ai, θ ′

j ), if ai ≥ ai
i,

vi(ai, θ ′
i ), if ai < ai

i.
(2)

To guarantee that θ ′′
i is in �0, we have to verify that vi(·, θ ′′

i ) meeting (2) is an
increasing and continuous function. By construction, vi(·, θ ′′

i ) is increasing and
continuous on [0, ai

i) since vi(ai, θi) is, and on (ai
i, 1] since vj(1−ai, θ ′

j ) is. To check
the continuity of vi(·, θ ′′

i ) at ai
i, note that, by construction, v1(ai

1, θ ′
1)+v2(ai

2, θ ′
2) =

2 and ai ∈ P(θ). Thus 2−vj(1−ai
i, θ

′
j ) = vi(ai

i, θ
′
i ) and vi(ai

i, θ
′
i ) = vi(ai

i, θ
′′
i ), imply-

ing that vi(·, θ ′′
i ) is continuous at ai

i.
SYM and PO:
Identify a lottery q∗ with support {a1, a2} such that vi(a1

i , θ ′
i )q

∗(a1)+vi(a2
i , θ ′

i )

q∗(a2) = 1, for all i = 1, 2. By construction, then

vi[q∗, θ ′
i ] = vi[q∗, θ ′′

i ] = 1. (3)

13 If v[�, θ ′] (i.e. v[�, θ ]) is strictly convex, then a1 = a2 = a∗ such that v(a∗, θ ′) = (1, 1).



Nash implementation and the bargaining problem

v[A, ’]

v(a2, ’)

v(a1, ’)

v[ , ’’]

v[fN( ’), ’]

v[ , ’]

2

2

Fig. 1

Since f N is a SBS, and since v[f N(θ ′), θ ′] = (1, 1), we have q∗ ∈ f N(θ ′). More-
over, since v[�, θ ′′] is the convex hull of points (0, 2), (2, 0) and (0, 0), and since
SBS f meets SYM and PO, it follows that also q∗ ∈ f (θ ′′), as desired.

Monotonicity of transformation θ ′′ → θ ′ :
We now show that θ ′ is a Maskin monotonic transformation of θ ′′. Let q∗ ∈

f (θ ′). First, for any ai ∈ [0, 1],

vi(ai, θ ′′
i ) − vi(ai, θ ′

i ) =
{

2 − vj(1 − ai, θ ′
j ) − vi(ai, θ ′

i ), if ai ≥ ai
i,

0, if ai < ai
i.

(4)

By the convexity of v[�, θ ′] and the fact that v[�, θ ′] is supported by tangent
u1 + u2 = 2 at (1, 1), it must be that vj(1 − ai, θ ′

j )+ vi(ai, θ ′
i ) ≤ 2. Thus (4) is non-

negative, or vi(ai, θ ′′
i ) ≥ vi(ai, θ ′

i ), for all (a1, a2) ∈ A. Since p puts non-negative
weight on elements of A, also vi[p, θ ′′

i ] ≥ vi[p, θ ′
i ] for any p ∈ �. By (3), then

vi[p, θ ′′
i ] − vi[q∗, θ ′′

i ] ≥ vi[p, θ ′
i ] − vi[q∗, θ ′

i ], for all p ∈ �, for i = 1, 2. (5)

If the left hand side of (5) is non-positive, so is the right hand side. That is,

Li(q∗, θ ′′
i ) ⊆ Li(q∗, θ ′

i ), for i = 1, 2.

By Maskin monotonicity, then, q∗ ∈ f (θ ′′) implies q∗ ∈ f (θ ′). Since also q∗ ∈
f N(θ ′) the proof is completed. �
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The proof is based on the following simple - and standard - geometric argu-
ment. Take θ ∈ �0 × �0, and scale it to θ ′ such that v[f N(θ ′), θ ′] = (1, 1) as
depicted in Fig. 1.

Now there are outcomes a1 and a2 (not necessarily distinct) in the Pareto
frontier such that a lottery over them induces a (1, 1)-payoff. Then one finds
θ ′′

1 which expands 1’s payoffs for all a1 ≥ a1
1, and θ ′′

2 that expands 2’s payoffs
for all a2 ≥ a2

2 such that the resulting v[�, θ ′′] coincides with the convex hull of
points (0, 2), (2, 0), and (0, 0). Pareto-optimality and symmetry then require that
outcomes generating (1, 1) belong to f under θ ′′, hence also f N(θ ′′) is contained
by f (θ). Since payoffs are increased when moving from from θ to θ ′′, it follows
by Maskin monotonicity that f (θ ′′) must be contained by f (θ ′). Thus f N(θ ′′) is
contained by f (θ ′). A fortiori, since f N(θ ′′) and f N(θ ′) have a common element,
f N(θ ′) is contained by f (θ ′). Finally, by scale invariance, f N(θ) is contained by
f (θ).

Thus, any Pareto-optimal, symmetric, and Maskin monotonic SBS must gen-
erate the Nash bargaining payoffs. Is, then, the Nash solution Nash implement-
able? The next example shows it is not.

Example 1 Take θ1, θ2 and θ ′
2 such that v1(a1, θ1) = a1 and v2(a2, θ2) = a2 and

v2(a2, θ ′
2) = √

a2/2. Then (1/2, 1/2) ∈ f N(θ) while {(2/3, 1/3)} = f N(θ1, θ ′
2).

Note that, v2(1/2, θ2) = v2(1/2, θ ′
2) = 1/2. Moreover,

v2[p, θ2] =
∫

A

a2 dp(a).

By Jensen’s inequality,

v2[p, θ ′
2] =

∫

A

√
a2

2
dp(a)

≤
√∫

A a2dp(a)

2

=
√

v2[p, θ2]
2

.

Hence, if v2[p, θ2] ≤ 1/2 then v2[p, θ ′
2] ≤ 1/2. This implies that if p ∈ L2(1/2,

1/2, θ2) then p ∈ L2(1/2, 1/2, θ ′
2). However, (1/2, 1/2) ∈ f N(θ)\f N(θ1, θ ′

2). Thus
f N violates Maskin monotonicity.

Thus, the Nash bargaining solution is not Nash implementable on the domain
�0 × �0.14 Maskin monotonicity is too restrictive when players’ risk attitudes

14 For example, see Howard (1992) and Serrano (1997).



Nash implementation and the bargaining problem

vary (cf. Kihlström et al. 1981). In fact any risk sensitive BS fails Maskin mono-
tonicity.15 By Proposition 2 and Example 1, we have the following negative
result.

Corollary 1 There is no Nash implementable BS meeting PO and SYM on
�0 × �0.

3.2 Minimal set valued bargaining solution

Ideally, a solution induces a unique payoff vector, i.e. is a BS. One way to go
around the impossibility result in Corollary 1 is to allow the solution to be
multi-valued SBS. It is clear that there are large enough symmetric and Pareto-
optimal SBSs that are Nash implementable (take the Pareto correspondence
f (·) = P(·)). We now look for the SBSs that are Nash implementable and con-
tain the least amount of indeterminacy. The minimality property below captures
our desideratum.

Definition 6 (Minimal SBS) Let F be a family of SBSs. Then f ∈ F is minimal
in F if f (θ) ⊆ g(θ) for all g ∈ F , for all θ ∈ �0 × �0.

Minimality weakens in a natural way a desire to have a single valued payoff
vector in each state. If a set valued SBS exists having desired properties, and
this solution is minimal in the class of all SBSs having these properties, then the
solution would be a natural choice by an ambiguity averse planner: a minimal
solution, if it exists, contains the least amount of indeterminacy.

The appealing properties that we want a SBS to have are Pareto-optimality,
symmetry and Nash implementability, given the domain �0 of utility functions.
Define

F∗ = {
f : �0 × �0 ⇒ � : f is PO, SYM and Nash implementable

}
.

Since the Pareto correspondence is Nash implementable, symmetric, and
Pareto-optimal, F∗ is nonempty.

A midpoint gives the winner of a coin toss the right to choose an outcome.
The property of midpoint domination requires that the solution should never be
dominated by the midpoint. More formally, denote by e the lottery that awards
the cake to 1 with probability 1/2 and to 2 with probability 1/2. That is,

e = 1
2

· δ(1,0) + 1
2

· δ(0,1),

where δa is the Dirac measure on a ∈ A.

15 Risk sensitive solution gives a smaller share to a player whose payoff function becomes more
concave.
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Definition 7 (Midpoint domination) An SBS f satisfies midpoint domination if,
for all θ ∈ �0 × �0,

f (θ) ⊆ M(θ) = {
p ∈ � : v[p, θ ] � v[e, θ ]} .

An intuitive motivation for condition of the midpoint domination is that a
player may justifiably object an outcome by demanding the midpoint instead.
Salonen (85) (see also Sobel 1981) studies bargaining solutions with the condi-
tion. He shows that most of the solutions proposed in the literature satisfy it.
In particular, in the class of convex, compact and comprehensive problems, the
Nash solution meets the midpoint dominance.

Proposition 3 An SBS f is minimal in F∗ if and only if f (θ) = P(θ) ∩ M(θ), for
all θ ∈ �0 × �0.

That P∩M belongs to F∗ follows from Proposition 1. The minimality of M∩P
in F∗ is based on fact that whichever midpoint dominating, Pareto-optimal out-
come p∗ we choose under θ , we can find another state θ ′′ that spans a symmetric
utility possibility set such that p∗ belongs by PO and SYM to the SBS, and
such that we can monotonically transform θ ′′ to θ ′ and linearly θ ′ to θ . It then
follows that p∗ must belong to the choice set of the Nash implementable SBS
that symmetric, and Pareto-optimal SBS.

Figure 2a, b, c clarify the situation. Let vi(1, θ) = 2 for all i. Choose any
p∗ ∈ P(θ)∩M(θ). Then find θ ′, the scaled version of θ , such that v[p∗, θ ′] = (1, 1).
That is, v[p∗, θ ′] = v[e, θ ]. The new utility set is supported at (1, 1) by a tangent
T with slope −c, for c ∈ [0, 1] (depending on the choice of axis, see Fig. 2a).
Then we find, θ ′′

2 that expands, say, 2’s payoffs such that all divisions (1 − a2, a2)

in the range a2 ≥ 1 − b1 induce payoffs in the line ((0, 2), (2, 0)) (see Fig. 2b).
By construction L2(p∗, θ ′′

2 ) ⊆ L2(p∗, θ ′
2). Finally, we find θ ′′

1 that changes 1’s
payoffs such that all (a1, 1 − a1) in the range a1 ≥ b1 also induce payoffs in the
line ((0, 2), (2, 0)) (see Fig. 2c). Since v1[p∗, θ ′

1] = v1[p∗, θ ′′
1 ] it now follows that

L1(p∗, θ ′′
1 ) ⊆ L1(p∗, θ ′

1). This follows from the fact that v[·, (θ ′
1, θ ′′

2 )] lies below
the tangent T which crosses the line ((0, 2), (2, 0)) at (1, 1). Since p∗ ∈ f (θ ′′)
by Proposition 2, the desired result is now implied by Maskin monotonicity
(first when moving from θ ′′ to (θ ′

1, θ ′′
2 ) and then from (θ ′

1, θ ′′
2 ) to θ ′), and scale

invariance (when moving from θ ′ to θ).

Proof First we prove that if f (θ) = P(θ) ∩ M(θ) for all θ , then f is Nash imple-
mentable and, hence, f ∈ F∗. By construction, f (θ) satisfies SIR. By Proposition
1, it suffices that f is Maskin monotonic.

Take any θ , θ ′ and q ∈ f (θ). Suppose that Li(q, θi) ⊆ Li(q, θ ′
i ) for i = 1, 2. We

show that q ∈ f (θ ′). First, since q ∈ P(θ) it follows that L1(q, θ1)∪L2(q, θ2) = �.
Thus also L1(q, θ ′

1) ∪ L2(q, θ ′
2) = � and, consequently, q ∈ P(θ ′). Second, since

q ∈ M(θ) it follows that e ∈ L1(q, θ1) ∩ L2(q, θ2). Thus also e ∈ L1(q, θ ′
1) ∩

L2(q, θ ′
2) and, consequently q ∈ {

p ∈ � : v[p, θ ′] � v[e, θ ′]} = M(θ ′). Collecting
the results, q ∈ P(θ ′) ∩ M(θ ′), as desired.
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Now we prove that if f is Nash implementable, and satisfies SYM and PO,
then P(θ) ∩ M(θ) ⊆ f (θ) for all θ , and hence f is minimal in F∗. Take any
θ and p∗ ∈ P(θ) ∩ M(θ). We find θ ′′ such that necessarily p∗ ∈ f (θ ′′). Then
we conduct two successive Maskin monotonic transformations of payoffs to θ ′.
Finally we make a linear transformation of payoffs from θ ′ to θ . To keep track
on transformations, they are done in the reversed order.

Linear transformation θ ′ → θ :
Without loss of generality, assume vi(1, θi) = 2 for i = 1, 2. By construction,

there is αi ∈ (0, 1] and θ ′
i ∈ �0 such that αivi[·, θi] = vi[·, θ ′

i ], and vi[p∗, θ ′
i ] = 1,

for all i. Then
vi(1, θ ′

i ) = 2αi ≤ 2, for all i = 1, 2. (6)

Constructing θ ′′
2 :

Since p∗ ∈ P(θ ′) and v[p∗, θ ′] = (1, 1). v[�, θ ′] is supported by a tangent
ui + cuj = 1 + c, for some i �= j, and some c ∈ [0, 1]. Assume, without loss of
generality, that i = 1 and j = 2. Then,

v1(a1, θ ′
1) + cv2(1 − a1, θ ′

2) ≤ 1 + c, for all a1 ∈ [0, 1]. (7)

Find a b1 ∈ [0, 1] such that (see Fig. 2a)

b1 = min
b

{
b : v1(b, θ ′) + v2(1 − b, θ ′) = 2

}
.

Since v1(·, θ ′
1) and v2(·, θ ′

1) are continuous functions, and v1[p∗, θ ′]+v2[p∗, θ ′] =
2, such b1 exists. Since v[�, θ ′] is a convex set, and (7) supports v[�, θ ′] at (1, 1),
we have

v1(b1, θ ′) ≤ 1 ≤ v2(1 − b1, θ ′). (8)

Find θ ′′
2 ∈ �0 such that, for any a1 ∈ [0, 1],

v2(1 − a1, θ ′′
1 ) =

{
2 − v1(a1, θ ′

1), if a1 ≤ b1,
v2(1 − a1, θ ′

2), if a1 > b1.

Function v2(·, θ ′′
2 ) is increasing and continuous since v1(·, θ ′

1) and v2(·, θ ′
2) are,

and since v1(b1, θ ′) = 2 − v2(1 − b1, θ ′).
Monotonicity of the transformation θ ′′

2 → θ ′
2 :

Suppose p ∈ L2(p∗, θ ′′
2 ). Since v2(a2, θ ′′

2 ) ≥ v2(a2, θ ′
2) for all a2, also v2[p, θ ′′

2 ]
≥ v2[p, θ ′

2], for any p ∈ �. Hence,

1 − v2[p, θ ′
2] ≥ 1 − v2[p, θ ′′

2 ], for all p ∈ �. (9)

From (9) it is clear that 1−v2[p, θ ′′
2 ] ≥ 0 implies 1−v2[p, θ ′

2] ≥ 0. Since necessar-
ily v2[p∗, θ ′′

2 ] = v2[p∗, θ ′
2] = 1 (see Fig. 2b), it follows that p ∈ L1(p∗, θ ′′

1 ) implies
p ∈ L1(p∗, θ ′

1), for any p. That is,

L2(p∗, θ ′′
2 ) ⊆ L2(p∗, θ ′

2).
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Constructing θ ′′
1 :

Construct θ ′′
1 ∈ �0 such that

v1(a1, θ ′′
1 ) =

{
2 − v2(1 − a1, θ ′

2), if a1 ≥ b1,
v1(a1, θ ′

1), if a1 < b1. (10)

Function v1(·, θ ′′
1 ) is increasing and continuous since v1(·, θ ′

1) and v2(·, θ ′
2) are,

and since 2 − v2(1 − b1, θ ′
2) = v1(b1, θ ′

1). By (10),

v1[p, θ ′′
1 ] =

∫

{a:ai≥b1}
v1(a1, θ ′′

1 )dp(a) +
∫

{a:ai<b1}
v1(a1, θ ′′

1 )dp(a)

=
∫

{a:ai<b1}
v1(a1, θ ′

1)dp(a) +
∫

{a:ai≥b1}
[2 − v2(1 − a1, θ ′

2)]dp(a).

Thus,

1−v1[p, θ ′′
1 ] =

∫

{a:ai<b1}
[1−v1(a1, θ ′

1)]dp(a)−
∫

{a:ai≥b1}
[1−v2(1−a1, θ ′

2)]dp(a). (11)

By (7),

v1[p, θ ′
1] =

∫

{a:ai<b1}
v1(a1, θ ′

1)dp(a) +
∫

{a:ai≥b1}
v1(a1, θ ′

1)dp(a)

≤
∫

{a:ai<b1}
v1(a1, θ ′

1)dp(a) +
∫

{a:ai≥b1}
[1 + c − cv2(1 − a1, θ ′

2)]dp(a).

After some manipulation,

1 − v1[p, θ ′
1] ≥

∫

{a:ai<b1}
[1 − v1(a1, θ ′

1)]dp(a) − c
∫

{a:ai≥b1}
[1 − v2(1 − a1, θ ′

2)]dp(a).

(12)
Lemma 3.1 v1[p∗, θ ′

1] = v1[p∗, θ ′′
1 ] = 1.

For proof, see the appendix.
Monotonicity of the transformation θ ′′

1 → θ ′
1 :

Suppose that p ∈ L1(p∗, θ ′′
1 ), for any p. By Lemma 3.1,

1 − v1[p, θ ′′
1 ] ≥ 0. (13)

To obtain p ∈ L1(p∗, θ ′
1) it suffices, by Lemma 3.1, that (12) is nonnegative.

By (8), 1 ≥ v1(a1, θ ′
1) for all a1 < b1 which means that the first term in the
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right-hand-side of (12) is nonnegative. There are two subcases. If

∫

{a:ai≥b1}
[1 − v2(1 − a1, θ ′

2)]dp(a) ≤ 0,

then both terms in (12) are nonnegative, and hence

1 − v1[p, θ ′
1] ≥ 0.

Conversely, if

∫

{a:ai≥b1}
[1 − v2(1 − a1, θ ′

2)]dp(a) > 0,

then (13), (11), and (12) imply, since c ∈ [0, 1], that

1 − v1[p, θ ′
1] ≥

∫

{a:ai<b1}
[1 − v1(a1, θ ′

1)]dp(a) −
∫

{a:ai≥b1}
[1 − v2(1 − a1, θ ′

2)]dp(a)

= 1 − v1[p, θ ′′
1 ]

≥ 0.

Thus 1 − v1[p, θ ′′
1 ] ≥ 0 implies 1 − v1[p, θ ′

1] ≥ 0. Since p is arbitrarily chosen, we
have

L1(p
∗, θ ′′

1 ) ⊆ L1(p
∗, θ ′

1).

Maskin monotonicity:
Since transformation θ ′′

1 → θ ′
1 is monotonic, if p∗ ∈ f (θ ′′), then p∗ ∈ f (θ ′

1, θ ′′
2 ).

Since transformation θ ′′
2 → θ ′

2 is monotonic, if p∗ ∈ f (θ ′
1, θ ′′

2 ), then p∗ ∈ f (θ ′).
Thus if p∗ ∈ f (θ ′′), then p∗ ∈ f (θ ′).

Nash solution:
Since v[�, θ ′′] is the convex hull of points (0, 2), (2, 0) and (0, 0), and v[p∗, θ ′′]

= (1, 1), we have p∗ ∈ f N(θ ′′). By Proposition 2, p∗ ∈ f (θ ′′). By Maskin mono-
tonicity, p∗ ∈ f (θ ′). Since transformation θ ′ → θ is linear, by Lemma 1 and INV,
p∗ ∈ f (θ). �


If a planner does not know players’ payoff functions, then the best she can
do is to choose from the Pareto-optimal and midpoint dominating set of lot-
teries. This is to be contrasted against the well known impossibility results in
the implementation literature.16 What is novel is the explicit expression of the
minimal implementable, Pareto-optimal and symmetric choice rule.

16 E.g. Hurwicz and Schmeidler (1978) prove the impossibility of Nash implementing two-player
Pareto-optimal social choice function.
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4 Conclusion

We focus on a cake sharing problem, and argue that Maskin monotonicity is
the main obstacle in Nash implementing interesting bargaining solutions. In
particular, there are no Pareto-optimal and symmetric, single valued bargain-
ing solutions that can be Nash implemented. A natural way to Nash implement
a Pareto-optimal and symmetric solution is to extend the solution, to allow it
contain many payoff vectors in a given state. The main contribution of the paper
is to identify the minimal set valued bargaining Pareto-optimal, symmetric, and
Nash implementable solution in the domain of all increasing and continuous
utility functions. Such solution implements the set of Pareto-optimal and mid-
point dominating outcomes in each state.

The impossibility of implementing a single valued solution crucially depends
on the generality of the domain of preferences, i.e. that all combinations of con-
tinuously increasing vNM utility function over the cake are possible. In some
scenarios, however, one may be able to rule out some combinations. In such
case, more permissive results become possible. Trockel (2002b) (see also van
Damme 1986) shows that the Nash solution can be implemented in a meta game
where the players bargain over solutions (see also Naeve 1999). Trockel (2000)
implements the Nash solution in “Walrasian equilibrium”.

The analysis here can be extended beyond the cake sharing structure. The
obvious extension is towards the general “economic environment”, of which the
current, one good scenario is a special case. In the general case also preferences
over pure outcomes may reverse. This means that, since more preference rever-
sals is potentially available, at least as many solutions are Nash implementable.
However, since Leontief preferences over many goods are isomorphic to pref-
erences over one good, not more solutions can be implemented if the domain
allows all convex, continuous preferences over bundles. Thus, all our results
would hold unchanged.
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A Appendix

Proof Lemma 3.1 By construction, 1 = v1[p∗, θ ′
1]. If p∗ is degenerate, then, also

by construction, 1 = v1[p∗, θ ′′
1 ]. If p∗ is a non-degenerate measure, then, since

p∗ is in P(θ ′), and tangent T = {(u1, u2) : u1 + cu1 = 1 + c} supports v[�, θ ′] at
(1, 1), the support of p∗ must be in T. Thus
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0 = 1 − v1[p∗, θ ′
1]

=
∫

{a:v1(a1,θ ′
1)≥1}

[1 − v1(a1, θ ′
1)]dp∗(a) +

∫

{a:v1(a1,θ ′
1)≤1}

[1 − v1(a1, θ ′
1)]dp∗(a)

= c
∫

{a:v1(a1,θ ′
1)≥1}

[1 − v2(1 − a1, θ ′
2)]dp∗(a)

+c
∫

{a:v1(a1,θ ′
1)≤1}

[1 − v2(1 − a1, θ ′
2)]dp∗(a),

where the third equality follows from the definition of T. Thus, dividing by c,

0 =
∫

{a:v1(a1,θ ′
1)≥1}

[1 − v2(1 − a1, θ ′
2)]dp∗(a)+

∫

{a:v1(a1,θ ′
1)≤1}

[1 − v2(1 − a1, θ ′
2)]dp∗(a)

=
∫

{a:v1(a1,θ ′
1)≥1}

[1 − v1(a1, θ ′′
1 )]dp∗(a) +

∫

{a:v1(a1,θ ′
1)≤1}

[1 − v1(a1, θ ′′
1 )]dp∗(a)

= 1 − v1[p∗, θ ′′
1 ],

where the second equality from (10), and the definition of b1. �
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