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Abstract

We show that in the class of surplus division problems, where the size of the surplus may be dependent on how

it is shared, the Nash bargaining solution is the unique symmetric and Nash implementable division rule.

D 2005 Published by Elsevier B.V.

Keywords: Nash implementation; Bargaining; Surplus division

JEL classification: C78; D71; D78

1. Introduction

Let there be two players in a need to share a surplus from the joint project. The size of the surplus may

be dependent on how the surplus is divided.1 Thus the division affects players’ payoffs not only directly

but also indirectly via its effect on the size of the surplus.

A surplus function depicts the relationship between the division and the size of the surplus. Let the

domain of surplus functions consist of all bounded functions under which all pure divisions are not

Pareto-dominated by lotteries over divisions (allow randomization).

The players need to agree on the surplus division rule which specifies a division for each surplus

function. The problem is that the prevailing surplus function is known only by the players and not by

outsiders. Hence, to agree on a surplus division rule one must induce players to reveal the true surplus

function. We ask which surplus division rules can be agreed upon, i.e. Nash implemented.
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, a hold-up problem (see e.g. Hart and Moore, 1990; Maskin and Tirole, 1999b).
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Our result is that the Nash bargaining solution is the unique symmetric and Nash implementable

surplus division rule in this domain. What delivers the result is that Maskin’s monotonicity condition

implies Nash’s independent irrelevant alternatives axiom in this domain.
2. Fundamentals

2.1. Payoffs

Let {1,2} be the set of players, with typical elements i, j. Let aa [0,1] and 1�aa [0,1] be the

relative shares of surplus received by player 1 and 2, respectively, and d the disagreement outcome.

Denoted by D the set of lotteries on [0,1]v{d}. The amount of shareable surplus depends on which

element in [0,1]v{d} is chosen. Let surplus function p: 0; 1½ � [ df gYRþ reflect this relationship.

Players’ 1 and 2 vNM preferences are represented by the following linear payoff functions: for any p
and a,

v1 a;p½ � ¼ ap að Þ;

v2 a;p½ � ¼ 1� að Þp að Þ:
The expected payoff of player i=1, 2 under lottery paD is then

vi p;p½ � ¼
Z 1

0

p að Þvi a;p½ �da:

For any k ¼ k1; k2ð ÞaRþþ � Rþþ, write kv [ p , p] = (k1v1[ p , p], k1v2[ p , p]) and kv [B , p] =
{kv[p,p] :paB}, for any BpD. Note that kv[d ,p] and v[d ,p] represent the same preferences over D,
and that these preferences are dependent on p.

Denote the lower contour set of i at qaD by

Li q;pð Þ ¼ paD: vi q;p½ �zvi p;p½ �f g;
and the Pareto-optimal set of lotteries by2

P pð Þ ¼ paD: there is no q s:t: v q; p½ �zv p; p½ �f g:

Let the state space P comprise all bounded surplus functions p such that (i) [0,1]pP(p), (ii)
p(a)Np(d)=0, for all aa [0,1]. Assumption (i) guarantees that a deterministic division rule is never

socially suboptimal.3 Assumption (ii) means that any deterministic division is always strictly preferred

over disagreement. We assume that p is observed by players but not by outsiders.

Note that the family {v[D,p] :paP} of utility sets comprises all comprehensive bargaining

problems in R2
þ, i.e. v[D,p] is nonempty, convex, compact, and i’s maximal element in v[D,p] coincides

with a minimal element of j, i p j. It is well known (see e.g. Thomson and Lensberg, 1989, ch 2) that the

standard Nash axioms characterize the Nash bargaining solution in this domain.
2 Vector inequalities: given x,yaR
2, xRy means xiRyi for i =1, 2, xRy means xRy and x p y, and x Ny means xi Nyi for i =1, 2.

3 Assumption (i) effectively implies that p is a continuous function.
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2.2. Division rule

A surplus division rule is denoted by a function F: PY [0,1]. Note that F is scale invariant, i.e. only

the underlying preferences affect the rule. We say that a surplus sharing function p is symmetric if there

is k ¼ k1; k2ð ÞaRþþ � Rþþ such that (u1, u2)akv[D,p] implies (u2, u1)akv[D ,p], for all

u1; u2ð ÞaRþþ � Rþþ.

Definition 1. F is symmetric if v1[F(p),p]=v2[F(p),p] whenever p is symmetric.

Since F is a division rule, F(p)aP(p) for all paP. Thus F is Pareto-optimal.

2.3. Nash implementation

While the state is common knowledge among the players, the planner only knows the state space P.

Thus, a mechanism must be invoked to implement F.

A game form C=(M,g) consists of the strategy space M=M1�M2 and an outcome function g:

MYD. Pair (C,p) now constitutes a normal form game. Let NE (C,p) denote the set of Nash equilibria

of game (C,p). Then maNE(C,p) if and only if

vi g mð Þ;p½ �zvi g miV;mj

� �
;p

� �
; for allmiVaMi andfor all i p j:

Mechanism C Nash implements F if and only if

v g NE C;p;ð Þ;pð � ¼ v F pð Þ; p½ �; for allpaP:½

If there is a mechanism C which Nash implements F, then F is Nash implementable. Any Nash

implementable F is clearly scale invariant.
3. The result

Recall the condition by Maskin (1999) [working paper 1977]: F is (Maskin) monotonic if

Li(F(pV),pV)pLi(F(pV),p) for i=1, 2, implies F(pV)=F(p), for all p,pVaP. Maskin showed that any

Nash implementable choice rule is monotonic. Using Moore and Repullo (1990), monotonicity is also

sufficient in our context.4

Theorem 1. F can be Nash implemented if and only if it is monotonic.

Given state p, the Nash product on [0,1] is defined byY
i¼1;2

vi a;p½ � ¼ a 1� að Þp að Þ2:
4 Use d as a bbad outcomeQ.
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The Nash bargaining rule to the surplus sharing problem is

N pð Þ ¼ arg max
aa 0;1½ �

Y
i¼1;2

vi a; p½ �: ð1Þ

Nash (1950) showed that N is the unique rule that satisfies symmetry, Pareto-optimality, scale

invariance, and the axiom of independence of irrelevant alternatives.

Which symmetric choice rules can be Nash implemented? In general, monotonicity is a too

demanding condition to implement any bargaining solution (see Vartiainen, 2004). However, the surplus

sharing restriction on the domain allows us to avoid the impossibility result. The following lemma is the

key consequence of our structural assumption.

Lemma 1. Fix aa [0, 1]. Then, for any p,p VaP, there is c̄c̄ ¼ c; cð ÞaR
2
þþ such that v[a,p] =̄c̄v[a,p V].

Proof. Take any p,p VaP. Choose c=p(a) /p V(a). Then

v a; p½ � ¼ ap að Þ; 1� að Þp að Þð Þ

¼ acp V að Þ; 1� að ÞcpV að Þð Þ

¼ c̄v a;p V½ �: ð2Þ
5

That is, either v[a,p]Rv[a,pV] or v[a,pV]Rv[a,p]. In Fig. 1, the three dashed lines represent

utility vectors that can be induced by surplus functions p,pV and pW for given a, aV or aW. It is clear
v [ a’’, . ]

v [ a, . ]

v [ a’, . ]

v2

v [ . , π’]

v [ . , π]

v [ . , π’’]

v1

Fig. 1. Utility frontiers induced by three surplus functions.
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that any convex, closed, and comprehesive utility possibility set can be induced by some surplus

function in P.

Note that F satisfies Pareto-optimality by assumption, and scale invariance by construction. We now

show that independence of irrelevant alternatives is implied by the (Maskin) monotonicity condition.

Thus Nash implementability and symmetry alone characterize the Nash solution in this domain.

Theorem 2. F is symmetric and Nash implementable if and only if F=N.

Proof. Sufficiency: N is symmetric. By Theorem 1, it suffices to show that F is monotonic on P. Take

any paP, and identify N(p). Suppose that, for some pVaP,

Li N pð Þ; pVð ÞpLi N pð Þ; pð Þ; for i ¼ 1; 2: ð3Þ

We show that then N(p)=N(pV), too.
By Lemma 1, there is c̄c̄ ¼ c; cð ÞaR

2
þþ such that

c̄v N pð Þ;pV½ � ¼ v N pð Þ;p½ �: ð4Þ

Suppose, ad absurdum, that for some aa [0,1],

cvi a;pV½ �Nvi a;p½ �: ð5Þ
Then, by Lemma 2,

cvj a;p V½ �Nvj a;p½ �; for j p i:

Since N(p)a [0,1] and aa (0,1), there is ka{1,2} such that

cvk a;pV½ �Nvk N pð Þ; p½ �:

Construct lottery p=a d p(a)+d d (1�p(a)), where p(a)a (0,1) satisfies

cvk p;pV½ � ¼ cvk a;pV½ �p að Þ ¼ cvk N pð Þ; pV½ �: ð6Þ

Then paLk(a*,pV). However, by Eqs. (4), (5), and (6),

vk p; p½ � ¼ vk a; p½ �p bð Þ
Ncvk a; p V½ �p bð Þ
¼ cvk N pð Þ;pV½ �
¼ vk N pð Þ; p½ �:

Hence, pgLk(N(p),p). But this violates Eq. (3). Hence Eq. (5) must be false. This means that

c̄c̄v a; pV½ �Rv a;p½ �; for all aa 0; 1½ �:
But then also

c̄c̄v p; pV½ �Rv p; p½ �; for all paD;

or,

c̄c̄v D; pV½ � � v D;p½ �: ð7Þ
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By Eq. (4) and N(p)a [0,1], this implies that

max
aa 0;1½ �

Y
i¼1;2

cvi a;pV½ � ¼ max
aa 0;1½ �

Y
i¼1;2

vi a;p½ � ¼
Y
i¼1;2

vi N pð Þ; p½ � ¼
Y
i¼1;2

cvi N pð Þ;pV½ �:

Thus N(p)=N(pV), as desired.
Necessity: to see that N is the only Nash implementable Pareto-optimal and symmetric rule, fix paP.

Define

v1 N pð Þ; p½ � ¼ N pð Þp N pð Þð Þ ¼ k�1
1 ;

v2 N pð Þ; p½ � ¼ 1� N pð Þð Þp N pð Þð Þ ¼ k�1
2 :

Choose scale k. Then kv[N(p),p]= (1,1).
Let Nash implementable F be symmetric. Construct function p V: 0; 1½ �YRþ such that

p V að Þ ¼ 2

ak1 þ 1� að Þk2
; for all aa 0; 1½ �:

Then

ap V að Þk1 þ 1� að Þp V að Þk2 ¼ k1v1 a; p V½ � þ k2v2 a; p V½ � ¼ 2; for all aa 0; 1½ �:
Hence v[[0,1],pV] coincides with the line ((0,2 /k2), (2 /k1,0)). Thus pV clearly is a member of P.

Moreover,

N pð Þk1 ¼ 1� N pð Þð Þk2 ¼
1

p N pð Þð Þ :

Thus

k1v1 N pð Þ; pV½ � ¼ 2N pð Þk1
N pð Þk1 þ 1� N pð Þð Þk2

¼ 1;

k2v2 N pð Þ; pV½ � ¼ 2 1� N pð Þð Þk2
N pð Þk1 þ 1� N pð Þð Þk2

¼ 1:

Now kv[D,pV] is a convex hull of points (0,2), (2,0), and (0,0). By symmetry, kv[F(pV),pV]= (1,1).
Since F(pV)a [0,1], necessarily N(p)=F(pV). Since

v D; p½ �pkv D;pV½ �;

it follows by Lemma 1 that

vi a;p½ �Vkivi a; pV½ �; for all aa 0; 1½ �; for all i ¼ 1; 2:

Thus also

vi p;p½ �Vkivi p; pV½ �; for all paD; for all i ¼ 1; 2:



v [ a’, . ]

v [ a, . ]

v [ N(π) , π] = λ v [ N(π’) , π’]

1

1

v [ . , π’]

Fig. 2. Maskin monotonicity of the Nash solution.
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As v[N(p),p]=kv[N(p),pV], it follows that

Li N pð Þ; pð ÞpLi N pð Þ; pVð Þ; for i ¼ 1; 2:

By monotonicity, N(p)=F(p). 5

To understand the necessity part of proof, take any aa [0, 1]. Then any payoff vector in the line

running through the origin with slope a / (1�a) can be induced by some p(a). In Fig. 2, we have

constructed function pV such that the normalized symmetric Pareto frontier kv[d ,pV] runs through the

point v[N(p),p] and lies above the frontier v[d ,p]. Under p, any symmetric rule F(pV) satisfies

F(pV)=N(pV). By monotonicity, then, F(p)=N(p).
4. Remarks

It is natural to interpret the surplus sharing problem as a closed form representation of a hold-up

problem. Motivation for the hold-up framework stems from contractual incompleteness: since parties

have problems in describing physical contingencies, details are left out from the contract. Hence some

relevant decisions are made via bargaining.

More specifically, a hold-up problem typically assumes an ex ante stage, where project specific

investments are sunk, and an ex post stage, where bargaining over profits takes place. Since the ex post

bargaining procedure determines how profitable it is for individual player to invest at the ex ante stage, it

also affects the level of investment and, a fortiori, to the induced surplus. It is typical to assume Nash

bargaining at the ex post stage.
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Instead of asking how the ex post profits are shared, we study how to divide the overall surplus of the

project, including the ex ante investment costs. Thus our model answers how to agree at the ex ante stage

on the bargaining procedure at the ex post stage. But what if the details of the physical environment are

not describable at the ex ante stage? As argued by Maskin and Tirole (1999a), implementation only

requires that payoff contingencies are describable. Thus a surplus sharing rule should be implementable

as long as payoff contingencies can be contracted upon.
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