
Microeconomic Theory

Lecture 5



Standard Portfolio Choice

² Risk averse decision maker. Initial wealth 0 Decision problem: How
much to invest in safe versus risky assets?

² No short sales allowed.

² (1 + ) riskless return.

² (1 + e) the random return on the risky investment.

² Denote the amount of risky investment by 0 · · 0 and thus the safe
investment is ( 0 ¡ )



² Final wealth of the decision maker:

( 0 ¡ ) (1 + ) + (1 + e) = 0 (1 + ) + (e ¡ )

² Strictly concave, strictly increasing twice di¤erentiable utility function ( )

² Expected utility from a risky investment :

( ) = E ( 0 (1 + ) + (e ¡ ))

² ( ) is a strictly concave function of if Pr (e = ) 1 since

00 ( ) = E
³
(e ¡ )2 00 ( 0 (1 + ) + (e ¡ ))

´
0

² Thus FOC su¢cient for maximum:



– Interior solution (0 0)

0 ( ) = E (e ¡ ) 0 ( 0 (1 + ) + (e ¡ )) = 0

– Conrner solution ( = 0)

0 (0) = E (e ¡ ) 0 ( 0 (1 + )) · 0
This is equivalent to E(e) ·

² Hence a necessary and su¢cient (why?) condition for risky investment
is that the expected value of the investment be no larger than the safe
return.

² Thus all decision makers, risk averse or not, invest some positive amount
in risky assets if their expected return is larger than the safe rate.



² Consider two risk averse decision makers, 1and 2

² Suppose that 1 is more risk averse than 2

² Then 1 ( ) = ( 2 ( )) for some concave function

² We want to see how the optimal portfolio choices of 1 and 2 can be
compared.

² Denote the optimal risky investments by 1 and 2 respectively. From the
FOC for 2 we have:

0
2 ( 2) = E (e ¡ ) 0

2 ( 0 (1 + ) + 2 (e ¡ )) = 0 (1)



² To see how the optimal risky investment of 1 relates to 2 evaluate the
derivative of 1 (¢) at = 2

0
1 ( 2) = E ( 2 ( 0 (1 + ) + 2 (e ¡ )))

= E (e ¡ ) 0 ( 2 ( 0 (1 + ) + 2 (e ¡ ))) 0
2 ( 0 (1 + ) + 2 (e ¡ ))

² Since 00 · 0 we know that for e
0 ( 2 ( 0 (1 + ) + 2 (e ¡ ))) ¸ 0 ( 2 ( 0 (1 + )))

and similarly for e
0 ( 2 ( 0 (1 + ) + 2 (e ¡ ))) · 0 ( 2 ( 0 (1 + )))

Hence

(e ¡ ) 0 ( 2 ( 0 (1 + ) + 2 (e ¡ ))) · (e ¡ ) 0 ( 2 ( 0 (1 + ))) for all e



But then we know that

0
1 ( 2) · E (e ¡ ) 0 ( 2 ( 0 (1 + ))) 0

2 ( 0 (1 + ) + 2 (e ¡ ))

= 0 ( 2 ( 0 (1 + )))E (e ¡ ) 0
2 ( 0 (1 + ) + 2 (e ¡ )) = 0

where the last equality follows from 1. Thus by the concavity of 1 ( )

we know that 1 · 2

Proposition 1 If 1 is more risk averse than 2 then 1 does not invest more
than 2 to the risky asset .

² This proposition also yields an immediate corollary for risky investment as
a function of initial wealth.

² Let ( 0) be the optimal investement under initial wealth 0



Proposition 2 If exhibits DARA, then ( 0) ·
³

0
0

´
whenever 0

0
0

Proof. Take 2 ( ) = ( ) and 1 ( ) = ( ¡ ) and apply the previous
theorem.



Consumption and Savings

² Start with the simplest deterministic two-period model, and derive conclu-
sions for optimal savings and consumption.

² Additively separable utility function.

² In other words, the consumer has a separate Bernoulli utility function for
the consumption in each period = 0 1

² The consumer receives wealth 0 and 1 respectively in the two periods.

² She can borrow and lend as she wishes at the risk free rate



² If we let denote the savings by the consumer, then the optimization
problem can be written as

max 0 ( 0 ¡ ) + 1 ( 1 + (1 + ))

² Observe that we can allow for negative saving (i.e. borrowing) in this
model, but we require that consumption be positive in both periods (i.e.
· 0).

² Assume throughout that (¢) are strictly concave and twice continuously
di¤erentiable for = 0 1

² Hence if we let

( ) = 0 ( 0 ¡ ) + 1 ( 1 + (1 + ))



we see immediately that 00 ( ) 0

² This allows us again to locate optimal savings levels from the …rst order
conditions.

² The optimal level of savings ¤ is characterized by

0 ( ¤) = ¡ 0
0 ( 0 ¡ ¤) + (1 + ) 0

1 ( 1 +
¤ (1 + )) = 0

² If 0 = 1 = and = 0 we see the most clearly how savings are used
to smooth consumption across periods.

² From
0 ( 0 ¡ ¤) = 0 ( 1 +

¤)



we conclude by the strict concavity of that

0 ¡ ¤ = 1 +
¤

² Hence the consumption levels in the two periods are identical.

² The other main motive of saving is to increase wealth.

² This e¤ect can obviously only be seen when 0

² Again in the case where 0 = 1 = we get

0 ( 0 ¡ ¤) = (1 + ) 0 ( 1 +
¤ (1 + ))



² By concavity of we see that consumption in the second period is larger
(since the marginal utility is lower) than in the …rst period.

² Hence the consumer is willing to sacri…ce some of the consumption smooth-
ing for increases in wealth.

² Finally, we can totally di¤erentiate the FOC with respect to and to
get

¤

0
=

00
0 ( 0 ¡ ¤)h

00
0 ( 0 ¡ ¤) + (1 + )2 00

1 ( 1 + ¤ (1 + ))
i 0

¤

1
=

¡ 00
1 ( 1 +

¤ (1 + ))h
00
0 ( 0 ¡ ¤) + (1 + )2 00

1 ( 1 + ¤ (1 + ))
i 0



² Hence an increase in the …rst period income increases savings, and an
increase in the second period income decreases savings.

² With these preliminaries in place, we can start the analysis of the optimal
savings problem in a world of uncertainty.

² The …rst question that we ask is whether the optimal savings are larger in a
model where the second period income is random than in the deterministic
model.

De…nition 3 A utility function is prudent if adding an uninsurable zero mean
risk to the second period income increases the savings.



² To characterize prudent utility functions, let e1 = 1 + e where e is
assumed to be uninsurable and Ee = 0

² Denote the new expected utility from savings by:

( ) = 0 ( 0 ¡ ) + E 1 ( 1 + (1 + ) + e)

² ( ) inherits the curvature of the functions.

² Analyze comparative static questions by evaluating the derivative of ( )

at point ¤ such that 0 ( ¤) = 0 i.e. at the optimal savings level of the
deterministic model.



² Observe that 0 ( ¤) ¸ 0 if

E 0
1 ( 1 +

¤ (1 + ) + e) ¸ 0
1 ( 1 +

¤ (1 + )) (2)

² Notice that on the left hand side of the inequality, we have the expected
utility from a random variable.

² On the right hand side, we have the utility from the expected value of the
random variable.

² This is exactly the de…nition of a risk loving utility function since 1 and
e are arbitrary.



² As risk loving functions are convex, we deduce that 2 holds for all 1 and
e if and only if 0

1 is convex.

² Hence we have proved the following proposition.

Proposition 4 A utility function is prudent if and only if 0
1 is convex.

² From this point on, we could develop a theory for comparing prudence of
di¤erent individuals or the prudence of a given individual at various wealth
levels.

² Much of this theory has been done by Miles Kimball, and the central
concept for the analysis is the coe¢cient of absolute prudence:

( ) =
¡ 000 ( )
00 ( )



² We conclude this section on precautionary savings by recalling from the
previous lecture the derivation for decreasing absolute risk aversion, DARA.

( ) = ( )
h

( )¡ ( )
i

² Hence there are two arguments for believing in the prevalence of prudent
utility functions.

² First of all, there is direct econometric evidence on the savings behavior of
individuals with various degrees of uninsurable risk positions.

² Second, there is overwhelming empirical support for DARA.

² As the formula above indicates, DARA is only possible for prudent utility
functions.



First Look at a Behavioral Economics Question

Commitment and Temptation

² Is choice over time a decision problem or a game?

² Commodities are (in principle) di¤erentiated by time, location and contin-
gency. Why couldn’t we treat decision makers in the same way?

² Will your preferences tomorrow regarding future choices congruent with
your preferences today over those same choices?

² Example: Do you want one apple today or two apples tomorrow? Do you
want an apple in 30 days or two apples in 31 days?



² Suppose there is some con‡ict between the preferences over choices at
di¤erent points in time. Then an intertemporal choice problem becomes
a game between decision makers at di¤erent times. How can we capture
such preference reversals in a simple model?



Hyperbolic discounting (or ¡ -model)

² Standard model: Let be the choice in period . Let x0 = ( 0 1 2)

be the sequence of choices.

(x0) =
3P
=1

( )

s.t.
3P
=1

·

FOC

0( 0) =
0( 1) and 0( 1) =

0( 2) and
1P
=1

=



² Hyperbolic discounting (Strotz, REStud 1955): for all = 0 1 2

(x ) = ( ) +
P
¸ +1

( )

for some 1.

² FOC: in period 0

0( 0) =
0( 1) and 0( 1) =

0( 2) and
3P
=1

=

However, in period 1, FOC implies

0( 1) =
0( 2) and

3P
=2

= ¡ 0

Thus the hyperbolic discounter wants to reallocate the savings at period
1 which is in con‡ict with the inital e¢ciency.



² Example: Take = 1
2, = 1 and let ( ) = ln How does your optimal

saving strategy depend on what you know about your future behavior?
Would you like to commit to a plan of action at = 0? How would you
do that?

² A huge literature on this model. Topics include:

– Saving for retirement (Laibson).

– Addiction (O’Donoghue and Rabin)

– Deadlines in optimal contracts (O’donoghue and Rabin).



² Are There Alternative Explanations for Preference for Commitment? Temp-
tation and Self-Control by Gul and Pesendorfer, (Econometrica, 2001):

– Standard neoclassical preference model on an extended domain. Let
denote the set of lotteries. 2 are sets of lotteries or menus. 2
is the set of all possible menus. Preferences are de…ned on 2 . Pref-
erences are rational, satisfying a form of continuity and independence
axiom for singleton menus.

– Preference for ‡exibility Kreps :

If ½ then º

Even if º for all 2 and 2 , we can have Â .

– Temptation (Set Betweenness):



If º then º [ º



Theorem 1 (Gul and Pesendorfer): The binary relation º satis…es Rationality,
continuity, independence and Set Betweenness if and only if there are continuous
linear functions such that

( ) := max
2
( ( ) + ( ))¡max

2
( )

for all and represents º.



² This formulation also gives rise for a preference for ‡exibility. Note the
di¤erences:

² A single decision maker.

² Welfare comparisons much easier.

² Are there assumptions about own future behavior?


