
Microeconomic Theory

Lecture 4



Choice under uncertainty

• Uncertainty an unsepararable part of individual decision making.

• But what is uncertainty?

• How can it be quantified?

• How we should think about choice under uncertainty?



Approaches towards probability

• How should one assess the following probabilities?

— ‘This coin toss results in Heads’

— ‘Social Democrats will be the largest party in the next election’

— ‘Rome is more northern than Madrid’

• Classical view: Probability of an event is the long run frequency of the
occurrence of the event in a sequence of independent experiments

• Subjectivist view: There is no other meaning to the probability of an event
except as a feature of a decision maker’s preferences in a choice situation.



• In the subjectivist view, probability can be deduced from choice behavior.

• Hence in classical view, only the first result can have a probabilistic mean-
ing whereas in the subjectivist view all of these statements can have a
probabilistic interpretation.

• Clearly the subjective view is the more relevant one for economic theory.



Probabilities

• Consider first a finite set of possible outcomes or consequences C.

• To talk about random experiments on C, we define events.

• Events are a family A of subsets of C. A satisfies:

1. C ∈ A,

2. A ∈ A implies that AC ∈ A,

3. Ai ∈ A implies that ∪∞i=1Ai ∈ A.



• Probability is a non-negative real valued function on A. In general, we
require:

1. P (∅) = 0,

2. P (C) = 1,

3. P (A ∪B) = P (A) + P (B) if A ∩B = ∅, for A,B ∈ A,

4. P
³
∪∞i=1Ai

´
= Σ∞i=1P (Ai) if Ai∩Aj = ∅ for all i 6= j, and Ai ∈ A

for all i.

• If C is a finite set, then let A = 2C.



• For a finite C, the set

L =
(
(pc)c∈C :

P
c∈C

pc = 1 and pc ≥ 0 for all c ∈ C

)

contains all the relevant information. We call L the set of simple lotteries with
a typical element L = (pc)c∈C.



Objective of this class: Find useful representation of preferences on L

• Distinctions made in literature:

1. Probabilities are exogenously given ↔ risk; von Neumann - Morgen-
stern.

2. Probabilities subjectively evaluated↔ uncertainty; Savage

• — Combination of the two (horse race/coin flipping/roulette wheel): Anscombe
- Aumann.



von Neumann - Morgenstern

• We assume here for simplicity that C is finite.

Axiom 1 % is a rational preference relation on L.

• Observe that L is a convex set (why?) and hence it makes sense to talk
about compound lotteries. Take L,L0 ∈ L. A compound lottery Lα ∈ L
is obtained by setting:

Lα = αL+ (1− α)L0.

• The meaning of this is that if L = (pc)c∈C , and L0 =
¡
p0c
¢
c∈C , then

Lα =
¡
αpc + (1− α) p0c

¢
c∈C .



• We formulate the continuity axiom slightly differently from abstract choice
theory:

Axiom 2 (Archimedean Axiom) Take L,L0, L00 ∈ L such that L Â L0 Â L00.
Then the sets {α ∈ [0, 1] : αL + (1− α)L00 % L0} and {α ∈ [0, 1] : L0 %
αL+ (1− α)L00} are closed.

• That is, together with completeness this implies that small changes in
probabilities do not affect the (strict) orderings of lotteries. This form
of continuity is implied by the standard notion of continuity in Euclidean
spaces.

• The condition implies a bound on how good or bad some outcomes can
be: no outcome can be incomparably painful.



• Continuity and rationality imply the existence of a continuous representa-
tion U : L→ R.

• How to describe behavior? L is in general too complicated.

• We want to deduce the existence of an assignment of utility numbers
u : C → R that allow a straightforward represention of %.

• We call U the von Neumann-Morgenstern utility function of the decision
maker if, for some u(·), it holds that U (L) = P

c∈C pcu(c), for all L =
(pc)c∈C.

• The next axiom is the key to the representation result.



Axiom 3 (Independence Axiom) For any L,L0 ∈ L, we have
L % L0 if and only if αL+ (1− α)L00 % αL0 + (1− α)L00

for all α ∈ [0, 1] and for all L00 ∈ L.

• It should be clear that an axiom of this type makes only little sense for
choice under certainty (recall the definition of separable preferences).

• Does it make sense for theory of choice under uncertainty? Independence
of irrelevant (counterfactual) alternatives.

• Normative vs. positive implications.



Theorem 4 (Expected Utility Theorem) A rational preference % on L satisfies
the Archimedean and Independence axiom if and only if there exists a utility
function u : C → R such that

L % L0 if and only if P
c∈C

pcu(c) ≥ P
c∈C

p0cu(c).

Furthermore, u and u0 are such representations if and only if u0 = βu + γ

where β > 0.



Proof. i) It is easy to verify that the axioms must be satisfied if a representation
exists.

ii) We show that the axioms imply the existence of such a representation.
Denote by 1c the degenerate lottery that assigns probability 1 on consequence
c ∈ C.

Consider first 1cn. Since C is finite, there exist worst and best outcomes c◦
and c◦ such that 1c◦ % 1c % 1c◦ for all c. By independence axiom, L % 1c◦
for all L ∈ L and 1c◦ % L for all L ∈ L. If 1c◦ ∼ 1c◦, we can take u to be
any constant function and the theorem is proved. Assume thus that 1c◦ Â 1c◦.
Choose u (c◦) = 0 and u (c◦) = 1.

We argue next that for each L ∈ L, there is a unique α (L) such that L ∼
α (L) 1c◦ + (1− α (L)) 1c.



By Archimedean axiom,
{α : α1c◦ + (1− α) 1c◦ % L} and {α : L % α1c◦ + (1− α) 1c◦} are closed.

By the completeness of %, the union of these sets is [0, 1], which is connected,
and hence the intersection of the sets must be nonempty.

By the independence axiom and the assumption that 1c◦ Â 1c◦,
α1c◦ + (1− α) 1c◦ Â α01c◦ +

³
1− α0

´
1c◦ if α > α0.

(why?) Thus

{α : α1c◦ + (1− α) 1c◦ % L} ∩ {α : α1c◦ + (1− α) 1c◦ ¹ L}
must be a singleton. Choose α (L) for the unique element in the intersection.



We claim that there is u : C → R such that α (L) = P
c∈C pcu(c). All we

need is that for all L,L0 and γ ∈ [0, 1] we have:
α
³
γL+ (1− γ)L0

´
= γα (L) + (1− γ)α

³
L0
´
.

(Why is this sufficient?). This is the case since

γL+ (1− γ)L0

∼ γ[α (L) 1c◦ + (1− α (L)) 1c◦] + (1− γ) [α
³
L0
´
1c◦ +

³
1− α

³
L0
´´
1c◦]

∼ [γα (L) + (1− γ)α
³
L0
´
]1c◦ + [γ(1− α (L)) + (1− γ)

³
1− α

³
L0
´´
]1c◦.

And thus

α
³
γL+ (1− γ)L0

´
= γα (L) + (1− γ)α

³
L0
´
.

Thus we can take u(c) = α (1cn) and U (L) = α (L) .



iii) If u0 and u00 are the Bernoulli utility functions, let U 0 and U 00 be the
corresponding von Neumann-Morgenstern utility functions. The claim is proved
if we prove it for U 0 and U 00.

As before, let α0 (L) solve

U 0 (L) = α0 (L)U 0 (1c◦) +
³
1− α0 (L)

´
U 0 (1c◦) .

Thus

α0 (L) = U 0 (L)− U 0 (1c◦)
U 0 (1c◦)− U 0 (1c◦)

.

But now since U 00 is also a representation, we have

U 00 (L) = α0 (L)U 00 (1c◦) +
³
1− α0 (L)

´
U 00 (1c◦) .

Plugging in the value of α0 (L) and rearranging, we get:

U 00 (L) = βU 0 (L) + γ,



where

β =
U 00 (1c◦)− U 00 (1c◦)
U 0 (1c◦)− U 0 (1c◦)

and

γ = U 00 (1c◦)− U 0 (1c◦)
U 00 (1c◦)− U 00 (1c◦)
U 0 (1c◦)− U 0 (1c◦)

.



• Observations: A huge simplification for use in descriptive applications.

• Can be put to use in normative exercises: i.e. construct more complicated
preferences from simple preferences.

• Can be generalized to a large extent ⇒ game theory.

• Evolutionary defence: Dutch book -argument.



Problems with the expected utility -theory

• Fails in experiments

— Independence axiom: Allais’ Paradox

Cz }| {
2 500 000 500 000 0

L1 0 1 0
L01 0,1 0,89 0,01

2 500 000 500 000 0
L2 0 0,11 0,89
L02 0,1 0 0,90

— Response: Relax the independence axiom to accommodate this behav-
ior ⇒ non-expected utility.



• Betweenness: Dekel (1986), JET.

• Rank-Dependent Utility: Quiggin (1982), JEBO.

— Ellsberg’s Paradox show failure of probability model.

• Recall the distinction between risk and uncertainty.

• Ambiguity aversion: Choice in the face of non-additive probabilities.

• Minmax preferences vs. Choquet integrals.



Other Extensions:

• Preference for flexibility: Kreps (1979) and Dekel, Lipman and Rustichini
(2002).

• Preference for commitment: Gul and Pesendorfer (2002).

• Loss Aversion: Kahnemann and Tverksy (1979).



Risk

• From now on, consequences are monetary amounts: x ∈ R+ is the final
wealth of the decision maker.

• Analyze different u : R+→ R.

• F (x) denotes the distribution function of a monetary lottery.

• Discrete or continuous.



• Expected Utility theorem:

U(F ) =
Z
x∈R+

u(x)dF (x).

Or for discrete distributions:

U(F ) =
X
x≥0

u(x)p(x),

where p(x) is the mass function of the lottery.

• When do the integrals and sums above converge? (cf. St.Petersburg’s
paradox).

• Note the symmetry in the formula between u(x) and F (x).



• When considering expected utility, we can consider variations in each of
these two components.

1. Risk attitudes: Fix F (x) and compare different u(x).

2. Riskiness of lotteries: Fix u(x) and compare different F (x).

Definition 5 The certainty equivalent c(F, u) of a lottery F for a decision
maker with utility function u is defined by

u(c(F, u)) =
Z
u(x)dF (x)

• We can discuss attitudes towards risk by comparing the certainty equiva-
lents of a fixed lottery under different utility functions.



Definition 6 A decision maker with a utility function u is risk averse if, for all
F ,

c(F, u) ≤
Z
xdF (x).

• It is easy to prove that

Proposition 7 Utility function u is risk averse if and only if it is concave.

• Risk loving attitudes are defined with the opposite inequalities.

• Can second derivatives be used to measure risk aversion? But not robust
against linear transformations of u!



Definition 8 The Arrow-Pratt measure of absolute risk aversion, rA(x, u) of
utility function u at wealth level x is given by:

rA(x, u) = −
u00(x)
u0(x)

.

• rA(x, u) reflects the curvature of u at x without accounting linear trans-
formations.

• The following results shows that rA(x, u) is a good measure of risk aver-
sion.



• When is u1 unambigiously more risk averse than u2?

Proposition 9 The following are equivalent:

i) rA(x, u2) ≥ rA(x, u1) for all x.

ii) c(F, u2) ≤ c(F, u1) for all F (x).

iii) There is a concave function φ(·) such that u2(x) = φ(u1(x)).

• The more-risk-averse-than relation is a partial ordering of utiity functions:
it is not possible compare all u and u0 in this sense.



• Do wealthier individuals take bigger risks than others?

Definition 10 u exhibits decreasing (constant) absolute risk aversion, DARA,
(CARA, resp.) if rA(x, u) is a decreasing (constant, resp.) function of x.

• If u exhibits DARA, then the decion maker is less sensitive towards risk
when his wealth increases, i.e. he is willing to pay less to get rid of risk as
his wealth increases.

Proposition 11 The following are equivalent:

i) u exhibits DARA.



ii) if x2 < x1, then there is a concave function φ(·) such that φ(u(x1+ z)) =

u(x2 + z) for all z.

iii) if ux(z) = u(x+ z) for all z, then x− c(F, ux) is decreasing in x, for all
F.

• Thus a person with DARA utility function is less risk-averse when richer.



• A stronger condition: u exhibits decreasing (constant) absolute risk aver-
sion, DRRA, (CRRA, resp.) if rR(x, u) := xrA(x, u) decreases in x.

• Requires decreasing risk aversion subject to proportional gambles: e.g.
willingness to risk all ones wealth to double it.

• Strong condition, DRRA implies DARA: r0A(x, u) < −rA(x, u)/x for all
x.



• How do changes in the distribution affect expected payoff?

• Distribution F first order stochastically dominates G if, for all nondecreas-
ing functions u we haveZ

u(x)dF (x) ≥
Z
u(x)dG(x).

• This is equivalent to saying that F ≤ G. Thus shifting probability mass
forward increases expected payoff.

• But first order stochastic dominance may concern the mean values of the
lotteries and hence be independent of their risk properties.



• Distribution F second order stochastically dominates G if they have the
same mean Z

xdF (x) =
Z
xdG(x),

and for all nondecreasing, concave functions u we haveZ
u(x)dF (x) ≥

Z
u(x)dG(x).

• Shift from F to G is a mean preserving spread, disliked by any risk-averter.



Subjective probabilities - Savage

Building Blocks:

• Consequences, States of the World, Acts.

• Consequences as before, C.

• State of the World: Complete list of all relevant data for the problem at
hand, Ω.

• Acts: Functions f : Ω→ C.



• Preferences are defined on F , the set of all possible acts.

• From the preferences, we can deduce:

1. A subjective probability assessment p (ω) on Ω.

2. A utility function on u : C → R such that for all f, f 0 ∈ F ,

f % f 0 if and only if
Z
u (f (ω)) dp (ω) ≥

Z
u
³
f 0 (ω)

´
dp (ω) .

or

f % f 0 if and only if
X
ω∈Ω

u (f (ω)) p (ω) ≥ X
ω∈Ω

u
³
f 0 (ω)

´
p (ω) .

Notice that the end result looks pretty much the same as in von
Neumann-Morgenstern theory. Hence we’ll be agnostic about subjec-
tive vs. objective uncertainty.



• A conclusion: if one believes the Savage axioms, then one can recover the
beliefs and and utility functions of the individuals with sufficient data.

• Since also the probabilities need to be accounted, more axioms needed
(than under vNM). As a consequence, the characterization complex.



Anscombe-Aumann (1963)

• Assume that acts are
f : Ω→ ∆ (C) ,

or in words, acts assign objective lotteries to states of the world.

• Technically simpler than the fully subjective view. Same end result.



State-dependent preferences

• We’ll use sometimes in applications state-dependent utility functions:
u : Ω× C → R.

This is a convenient device to handle situations where C is directly chosen
by the decision maker, and ω is chosen exogenously “by nature”.

• Expected utility formula in this framework is:

U (c) =
X
ω∈Ω

u (ω, c) p (ω) .


