
Microeconomic Theory

Lecture 2-3



Consumer with preferences

• From lecture 1: If % is rational, i.e. complete and
rational, then c∗(·,%) satisfies WA.

• Let x(p,w) = c∗(B(p,w),%).

• If x(p,w) is homogenous of degree 0 in (p,w) and
satisfies Walras’ Law, then x(p,w) also satisfies com-
pensated law of demand and hence the Slutsky ma-
trix is negative semidefinite.

• Since B(p, w) = B(λp, λw), for all λ > 0,.x(p,w)
is homogenous of degree 0.

• For Walras’ Law, we need new assumptions.



Axiom 1 Preferences % are monotonic if, for all x, y ∈
X,

xi ≥ yi, for all i imply x % y.

They are strongly monotonic if, for all x, y ∈ X,

x ≥ y and x 6= y imply x Â y.

Axiom 2 Preferences % are locally nonsatiated if for all
x ∈ X and for all δ > 0, there exists y ∈ X such that

ky − xk < δ and y Â x.

• Local satiation is implied by strong monotonicity but
not vice versa.

• Local non-satiation of % implies Walras’ law, thus
strict monotonicity implies it.



• Other classical assumptions guarantee further struc-
ture, and stronger results.

Axiom 3 Preferences % are convex if for all x, y,∈ X

and for all t ∈ [0, 1],
x % y implies (tx+ (1− t)y) % y.

They are strictly convex if for all x, y,∈ X and for all
t ∈ (0, 1),

x % y implies (tx+ (1− t)y) Â y.

• Recall the upper and lower setsU (x,%) = {y ∈ X : y % x

and L (x,%) = {y ∈ X : x % y} .

Axiom 4 Preferences % are continuous if, for all x ∈ X,
the sets U (x,%) and L (x,%) are closed.



• Recall the definition of quasi-concave functions:

Definition 5 Let f be defined on the convex set X ⊂
Rn. It is a quasiconcave function if and only if

f(tx1 + (1− t)x2) ≥ min[f(x1), f(x2)]
for every x1, x2 ∈ X,and 0 ≤ t ≤ 1.

Theorem 6 Let f be defined on the convex setX ⊂ Rn.
It is quasiconcave if its upper sets U(f, α) = {x : x ∈
X, f(x) ≥ α} are convex sets for every real α.



Proposition 7 Let rational preferences% be continuous,
convex, and strongly monotonous. Then there is a con-
tinuous utility function u which represents those prefer-
ences. Moreover, u is quasiconcave and convex valued.

• Notice from here the connection between quasicon-
cavity of a representation and the convexity of the
underlying preferences. Note also that a concave
function is quasiconcave but not vice versa.

• If % is strictly convex, then x(p, w) is a singleton
for all p,w.



• Assume from now on:

— Budget setB (p,w) = {x ∈ X : p · x ≤ w} and
pÀ 0.

— Monotonous, strictly convex, and continuous pref-
erences %.



• Thus there is a continuous u that represents % and
a single valued x (p,w) that solves.

max
x∈B(p,w)

u (x) .

or, equivalently,

max
x≥0 u (x)

s.t. p · x ≤ w .

• Does x(p,w) always exist?

Proposition 8 (Weierstrass). Let f : X → R be a con-
tinuous function and X a compact set. Then f attains
its maximum on x, i.e. there is a point x∗ ∈ X such
that

f (x∗) = max
x∈X f (x) .

• Recall: X ⊂ Rn is compact if and only if it is closed
and bounded.



• It is easy to see through counterexamples that con-
tinuity, boundedness and closedness are all required
for the result.

• We have assumed p À 0, so that B (p,w) is a
compact convex set, and u is continuous, hence a
utility maximizer does exist.



• How to characterize x(p,w)?

• Assuming an interior solution, construct a Lagrangian
L(x, λ) = u (x)− λ (p · x−w) ,

where λ ∈ R is the Lagrange multiplier.

• If x∗ = x (p,w) solves the Lagrangian, then it meets
the first order conditions

∂u (x∗)
∂xl

− λpl = 0 for all l = 1, ...L,

p · x∗ = w.

• Thus
∂u (x∗) /∂xl
∂u (x∗) /∂xk

=
pl
pk
.

• The ratio pl/pk is the marginal rate of substitution
between goods l and k at x∗.



• On the ther hand
∂u (x∗)
∂pl

= λpl

• Lagrange multiplier λ gives the marginal (shadow)
value of relaxing the constraint, i.e. the marginal
value of wealth w. To see this, recall that by the
first order condition,

DxL(x∗, λ) = Du (x∗)− λp = 0,

and by Engel aggregation

p ·Dwx (p,w) = 1.

Thus, by the chain rule,

Dwu (x (p,w)) = Du (x∗) ·Dwx (p,w)

= λ[p ·Dwx (p,w)]

= λ.



• Define the indirect utility function by condition
v (p,w) = u (x (p,w)) .

• What are the properties of v (p,w) implied by the
utility maximization problem?

• Conversely, if v (·, ·) is known, can we recover the
utility function u (·) , i.e. the preferences %?



• Let u represent monotonic, strictly convex, and con-
tinuous preferences %. Then v (·, ·) is:

— Homogenous of degree 0.

— Increasing in w, nonincreasing in p.

— Continuous.

— Quasiconvex (that is −v(p,w) is quasiconcave,
or {(p,w) : v(p,w) ≤ v} is a convex set).

• If % is strongly monotonic, then v is strictly increas-
ing in w.



Proposition 9 If v (p,w) satisfies i-iv, then there exists
a monotonic, continuous, and quasiconcave u (x) such
that v (p,w) = u (x (p,w)) .

• We can solve for such a u (x) from the problem
min

p∈RL++
v (p,w)

s.t.p · x = w.



Proposition 10 (Roy’s Identity) Given an indirect utility
function v (p,w) , the Walrasian demand x (p,w) can be
recovered from

xl (p,w) = −
∂v (p,w) /∂pl
∂v (p,w) /∂w

.

• To see this, note that
∂v (p,w)

∂pl
=

∂u (x (p,w))

∂pl

=
∂u (x (p,w))

∂xl
·Dplx (p,w)

= λpl ·Dplx (p,w)

= −λxl (p,w)
where the third equality follows from optimizing the
Lagrangean and the last one from Cournot aggrega-
tion. Moreover, recall the wealth effect:

∂v (p, w)

∂w
=

∂u (x (p,w))

∂w
= λ.



Duality

• Given utility function u(·), denote by h (p, u) the
outcome that solves the expedinture minimizing prob-
lem given utility of at least u and prices p:

min
x∈RL+

p · x

s.t. u (x) ≥ u.

• Notice that even though the feasible set is not bounded,
the problem has a solution when p ∈ RL++.



• h (p, u) is called the Hicksian or compensated de-
mand function.

• Denote the value function of the expedinture mini-
mization problem by e (p, u); the expenditure func-
tion.

e (p, u) = p · h (p, u) .

• The following observation is key to the development
that follows.

Proposition 11 Fix a price vector p ∈ RL++.

• 1. If x∗ = x (p,w) , then x∗ = h (p, u (x∗)) =
h (p, v (p,w)) .

2. If x∗ = h (p, u) , then x∗ = x (p, p · x∗) =
x (p, e (p, u)) .



• Summarizing:
x (p,w) = h (p, v (p,w)) and h (p, u) = x (p, e (p, u)) .

• Obviously then also:
w = e (p, v (p,w)) and u = v (p, e (p, u)) .



Proposition 12 Let u represent monotonic, strictly con-
vex, and continuous preferences %. Then, for all (p,w)

h (p, u) = Dpe (p, u) .

• To see this,
Dpe (p, u) = Dp[p · h (p, u)]

= h (p, u) + [p ·Dph (p, u)]
T

= h (p, u) + [λ−1Dpu(h(p, u)) · h (p, u)]
= h (p, u) .

where the second equality follows from the first order
condition, and the third from the fact that u(h(p, u)) =
u for all p.

• Hicksian demand h (·, ·) thus satisfies

— Adding up: p · h (p, u) = w.

— Homogeneity of degree 0 in prices: h (αp, u) =
h (p, u) for all p, u, and scalars α > 0.



— Convexity: if % is convex, then h (p, u) is a con-
vex set; if % is strictly convex, then h (p, u) is a
function.

— Matrix Dph (p, u) negative semidefinite, sym-
metric, and satisfies Dph (p, u) p = 0.



• Expedinture function e(·, ·) satisfies:

— e (p, u) is homogenous of degree 1 in p.

— Increasing in u and non-decreasing in pl for all l.

— Concave in p.

— Continuous in p, u.



• Dph (p, u) can be computed from x (p,w) which is
observable and thereby potentially testable. How to
express Dph (p, u) in terms of x (p,w)?

• Recall :
h (p, u) = x (p, e (p, u)) .

Therefore (Slutsky Equation):

Dph (p, u)

= Dpx (p, e (p, u)) +Dwx (p, e (p, u))Dpe (p, u)

= Dpx (p, e (p, u)) +Dwx (p, e (p, u))h (p, u)
T

= Dpx (p,w) +Dwx (p,w)x (p,w)
T ,

where we have set w = e (p, u) = e (p, v (p,w)) .



• Recall the properties of S(p,w), the substitution
matrix defined in the choice-based approach.

• Dph (p, u) is symmetric but S(p,w) need not be.

• The restrictions under the preference-based approach
are stronger, so we obtain additional observable im-
plications.



1. Homothetic Preferences

2. Quasilinear Preferences

3. Additively Separable Preferences

Definition 13 A continuous rational preference relation
% is said to be homothetic if for all α > 0, we have
x % y ⇔ αx % αy.

Exercise 14 Show that for homothetic preferences, x (p, αw) =
αx (p, w) .

Engel curves are rays through origin.

Let u (x) be a representatition of % .



Exercise 15 If u (x) is linearly homogenous (i.e. u (αx) =
αu (x) for all x), then % is homothetic.

Clearly all representations of % cannot be linearly ho-
mogenous.

Exercise 16 If % is homothetic, then there exists a rep-
resentation u (x) that is linearly homogenous.

Hint: Let e = (1, ..., 1) ∈ RL+. Show that for each x ∈
RL+, there is a unique λ (x) ∈ R, such that x ∼ λ (x) e.

Show that if % is homothetic, then λ (x) is linearly ho-
mogenous.

Denote now the first unit vector by e1 = (1, 0, ..., 0) .

Definition 17 A continuous rational preference relation
% on (−∞,∞) × RL−1+ is said to be quasilinear with
respect to commodity 1 (the numeraire) if x ∼ y implies
that (x+ αe1) ∼ (y + αe1) for all α ∈ R and x +

αe1 Â x for all α > 0.



Here the Engel curves are lines parallel to x1 axis.

Exercise 18 A rational preference relation% on (−∞,∞)×
RL−1+ is quasilinear with respect to commodity 1 if and
only if it admits a utility representation of the form u (x) =
x1 + φ (x2, ..., xl) . (Show only the if part)

1. v (p,w) = p1w + θ (p) .

2. xl (p,w) = ξl (p) for l ∈ {2, ..., L}.

3. e (p, u) = u
p1
− ζ (p) .

Utility functions of the form

u (x) = ΣL
l=1ul (xl)

are called additively separable. It can be shown that the
following restriction on preferences is equivalent to addi-
tive separability:



Definition 19 A continuous rational preference relation
% is additively separable if for all L ⊂ {1, .., L} we have¡
xL, y−L

¢ % ³
x0L, y−L

´
⇐⇒

³
xL, y0−L

´
%
³
x0L, y0−L

´
for all y−L, y0−L ∈ ×R

L−n(L)
+ , where n (L) is the num-

ber of elements in L.

Exercise 20 Show that whenever a utility representation
is additively separable, then the above property holds.
(The converse is hard.)

1. If u is strictly quasiconcave, then either all goods are
normal or one is normal and all others are inferior.

2. If ul (xl) = uk (xk) and u00 (xl) < 0, then all
goods are normal.

3. If ul (xl) = uk (xk) and −xlu
00(xl)

u0(xl)
< 1, then

∂xl(p,w)
∂pk

> 0 for all k 6= l.



4. For all separable u, ∂xi(p,w)/∂pk
∂xj(p,w)/∂pk

= ∂xi(p,w)/∂w
∂xj(p,w)/∂w

.

5. Element sij of the slutsky matrix is of the form

− λ (p,w)

Dwλ (p,w)

∂xi
∂w

∂xj

∂w
for i 6= j,

and for sii it is of the form

λ (p,w)

piDwλ (p,w)

∂xi
∂w

µ
1− pi

∂xi
∂w

¶
.



Proposition 21 Suppose that u(x) is quasiconcave and

∆u (x∗) 6= 0, for all x ∈ B (p,w) .

Then, if x∗satisfies the Kuhn-Tucker first-order condi-
tions, x∗ solves UMP.

Note:



Marginal rate of substitution (MRS) between goods l and
k.

For all l, k such that x∗l , x∗k > 0, we have:

∂u(x∗)
∂xl

∂u(x∗)
∂xk

=
pl
pk
.



Let z (q̄) denote value function depending on a parameter
vector q̄

Objective is f(x; q̄) and g1 (x(q̄); q̄) , ...gm (x(q̄); q̄) are
constraints.

The Envelope Theorem for the constrained optimization
problem says that

∇z (q̄) = ∇qf(x(q̄); q̄)−
MX

m=1

λm∇qgm (x(q̄); q̄)

For the UMP, this equation gives the interpretation for λ
discussed above.


