Microeconomic Theory

FDPE 2007

Hannu Vartiainen

Lecture 1: Choice Theory

- What does observed (economic) behavior tell us about decision maker?
- Observations without data organizing assumptions meaningless. What to assume?
- What is rationality? What does that imply on choice behavior?

From choice to preferences

Four elements:

- 1. The known choice set X.
- 2. Observed feasible set $B \subset X$.
- 3. Choice Rule.
- 4. Behavioral assumption.

Set of possible outcomes \boldsymbol{X}

- $\bullet~X$ is the universe of alternative choices
- Examples:
 - 1. Admissions to a Ph.D. programme in economics.
 - 2. Consumption over time.
 - 3. Speeding or not speeding.
 - 4. Occupational choice.
 - 5. \mathbb{R}^n_+

Feasible Set B

- Achievable choices
- May be dependent on external conditions.
- Examples:
 - Budget set $B(p,m) = \left\{ x \in \mathbb{R}^L_+ : \sum_{l=1}^L p_l \cdot x_l \le m \right\}$,
 - In a normal form game, $X = X_1 \times \cdots \times X_N$ each player *i* chooses independently from his strategy set in X_i . Then $B_i(x_{-i}) = \{(x_i, x_{-i}) : x_i \in X_i\}$.
- Why separate *B* and *X*?

Choice Rule

- How is choice made when B is given?
- Let *B* denote the collection of all possible feasible sets.
- c(B) is the observed choice correspondence such that $c(B) \subset B$ for all $B \in \mathcal{B}$.
- $(\mathcal{B}, c(\cdot))$ is called a choice structure.

Behavioral assumption

- Nonemptyness: $c(B) \neq \emptyset$.
- What does the observed choice c(B) tell us?

Axiom 1 (Weak axiom of revealed preference, WA): If $x, y \in B$ and $x \in c(B)$, then $x, y \in B'$ and $y \in c(B')$ imply $x \in c(B')$.

- Reflects "stationarity" or "context indepence" of choices.
- Implies the Independence of Irrelevant Alternatives:
 if x ∈ c(B) ∩ B' such that B' ⊂ B, then x ∈
 c(B').
- For a given (B, c(·)), we can define the revealed preference relation ≥* by x ≥* y if and only if x, y ∈ B and x ∈ c(B), for some B ∈ B.

• " $x \succeq^* y$ " means "x is at least as good as y" or "y is not preferred to x".

From prefences to choice

Four elements:

- 1. The choice set X.
- 2. Feasible set $B \subset X$.
- 3. Preference relation \succeq on X
- 4. Behavioral assumption $c(B, \succeq)$.

What is a preference relation?

- Preference relation ≽ is a binary relation, a subset of X × X, but written for convenience x ≽ y if and only if (x, y) ∈ ≥.
- Interpretation

Rational choice

Axiom 2 (Completeness): For all $x, y \in X$ either $x \succeq y$ or $y \succeq x$.

Axiom 3 (Transitivity): For all $x, y, z \in X, x \succeq y$ and $y \succeq z$ imply that $x \succeq z$.

Other binary relations derived from \succeq :

- Indifference: Write $x \sim y$ if $x \succeq y$ and $y \succeq x$.
- Strict preference: Write $x \succ y$ if not $x \succeq y$ and not $y \succeq x$.

Other properties can be derived for rational preferences:

• \succeq is reflexive: For all $x \in X, x \succeq x$.

- \succ is asymmetric: For all $x, y \in X, x \succ y$ implies not $y \succ x$.
- \succ is negatively transitive: For all $x, y, z \in X, x \succ z$ implies $y \succ z$ or $x \succ y$.

Note

- Problem 1: Framing
- Problem 2: Judgements that are hard
- Problem 3: Aggregation

Behavioral assumption

• The choice is induced from preferences according to the following:

 $c^*(B, \succeq) = \{x \in B : x \succeq y, \text{ for all } y \in B\}.$

• This defines the decision-maker's most preferred alternatives in *B*.

Connections between the choice- and preferencebased approaches

• From preferences to WA:

Proposition 4 If \succeq is a rational preference relation, then the strucure $(\mathcal{B}, c^*(\cdot, \succeq))$ induced by \succeq satisfies WA. • From WA to preferences:

Proposition 5 Let \mathcal{B} include all subsets of X with two or three elements. If $(\mathcal{B}, c(\cdot))$ satisfies WA, then the induced revealed preference relation \succeq^* is rational. Moreover, \succeq^* is the unique preference relation that induces $c(\cdot)$, i.e. $c(B) = c^*(B, \succeq^*)$ for all $B \in \mathcal{B}$.

- Why is the restriction on the sets in Proposition 2 important?
- Example 1: $X = \{x, y, z\}$, $\mathcal{B} = \{\{x, y\}, \{y, x\}, \{x, z\}\}$
- Example2: As Ex. 1 but add X to \mathcal{B} .

Conclusion:

- If the sample of observations is sufficiently rich (*B* includes all subsets of *X* with two or three elements), then the Weak Axiom of Revealed Preference is *equivalent* to rationality, i.e. completeness and transivity of preferences.
- Taking rational preferences as the starting point means that the analysis is based on (potentially) *observ-able* chabracterisitics of the decision maker (assuming WA).
- Empirically testable?

Utility representation

- In most models we work with a utility function for convenience: it can be easily manipulated, and it nicely summarizes the information contained in preferences.
- Then utility function *represents* preferences.
- Is it OK to let a real-valued function to represent potentially complicated preferences over the choice set?
- What are we exactly assuming when taking this approach?
- Our objective: reveal the relationship between the axioms and the utility function

Representation for \succeq

• We are looking for numerical representation of rational \succeq , which is a function $u: X \to \mathbb{R}$ such that

$$u(x) \ge u(y)$$
 if and only if $x \succeq y$. (1)

Proposition 6 If there exists a utility function representing \succeq , then \succeq is rational. **Proposition 7** If the choice set X is finite and \succeq is rational, then \succeq has a representation.

Notes

- If u represents \succeq , then so does $f \circ u$ for any increasing $f : \mathbb{R} \to \mathbb{R}$
- Note that u maps into real line on which the complete and transtive binary relation " \geq ".
- The restriction on X in Proposition 4 is sometimes too demanding
- Example: Lexicographic preferences. $X = [0, 1] \times [0, 1]$. Let

$$(x_1, x_2) \succeq (y_1, y_2)$$

if and only if
 $x_1 \ge y_1$ or $[x_1 = y_1 \text{ and } x_2 \ge y_2].$

Assuming a representation u for these preferences leads to a contraction. Implication: we need further restrictions on the preference relation.

- To ask whether a utility function exists equivalent to asking whether the
 <u>></u> -ordered set X is similar to a (sub)set of reals.
- A subset $S \subset X$ is order dense in X if, for any $x, y \in X, x \succ y$ implies that there is $z \in S$ such that $x \succeq z$ and $z \succeq y$.
- Note that the set of rationals is order dense in the set of reals.

Proposition 8 Let \succeq be a rational preference relation on X. Then \succeq has a utility representation u if X has a countable order dense subset.

- Let $X = \mathbb{R}^{L}_{+}$, e.g. the set of commodity bundles.
- Define the *upper contour set* (or simply upper set) at x as follows

$$U(x,\succeq) = \{y \in X : y \succeq x\}.$$

 Similarly, the *lower contour set* (or simply lower set) at x is given by:

$$L(x, \succeq) = \{y \in X : x \succeq y\}.$$

- The set U (x, ≥) is closed if and only if for all sequences {y_n} such that y_n → y and y_n ∈ U (x, ≥), we have y ∈ U (x, ≥). Such a preference relation is continuous, that is, it is preserved under limits.
- Note that a path from y ∈ U (x, ≥) to z ∈ L (x, ≥) passes through a point of indifference.

Axiom 9 Preferences \succeq are continuous if, for all $x \in X$, the sets $U(x, \succeq)$ and $L(x, \succeq)$ are closed.

Proposition 10 If \succeq is rational and continuous, then there exists a continuous u(x) that represents \succeq .

• Does not require assumptions regarding tastes (convexity, monotonicity)