Microeconomic theory

Lecture 7

Producer Theory

- Start with a single firm facing given prices
- Production set describes technology, not resources
- Comparative statics involve only substitution effects
- *Exogenous*: prices
- Endogenous: output and input demands

• First look at aggregate behavior and the fundamental theorems of welfare economics

Primitives:

1. Commodity space \mathbb{R}^{K}

In contrast to consumer theory, also negative numbers are possible.

For any $y = (y_1, ..., y_K) \in \mathbb{R}^K$,

- Input implies $y_i < 0$.
- Output implies $y_i > 0$.
- 2. Production set $Y \subset \mathbb{R}^{K}$:

Summary of the technologically feasibe outcomes.

Any $y \in Y$ is feasible, any $y \not\in Y$ is not.

- 3. With prices $p = (p_1, ..., p_K)$, profit is $p \cdot y$ for any $y \in Y$.
- 4. Behavioral assumption:

Maximize profit in Y, given p.

- 5. Y completely general language to describe production possibilities. Possible assumptions include
 - (a) Y is non-empty and closed.

- (b) Y is convex.
- (c) $y \in Y \cap \mathbb{R}^K_+$ implies y = 0, i.e. positive output requires input, and inactivity is feasible.
- (d) $y y' \in Y$ for all $y \in Y$ and $y' \in \mathbb{R}_+^K$, i.e. free disposal.
- (e) $y \in Y$ and $-y \in Y$ imply y = 0, i.e. irreversibility: a committed production cannot be undone.
- (f) $y \in Y$ implies $\alpha y \in Y$ for all $\alpha \in [0, 1]$, i.e. decreasing returns to scale. Conversely,
 - Increasing returns to scale: $y \in Y$ implies $\alpha y \in Y$ for all $\alpha \in [1, \infty)$.
 - Constant returns to scale: $y \in Y$ implies $\alpha y \in Y$ for all α .

(g) $y + y' \in Y$ for all $y, y' \in Y$, i.e. free entry.

- Alternative ways of describing the technology set:
- 1. General case: Transformation function $F : \mathbb{R}^K_+ \to \mathbb{R}$ such that

$$Y = \{ y \in \mathbb{R}^K : F(y) \le \mathbf{0} \}$$

F is 0 on the frontier of Y, i.e. $\partial Y = \{y \in \mathbb{R}^K : F(y) = 0\}$ is the *transformation frontier*. The slope of the level curves of F are called the marginal rate of transformation.

- 2. Single output -case: Production function $f : \mathbb{R}^{K-1}_+ \to \mathbb{R}_+$ where
 - the Kth good reflects the output $q \in \mathbb{R}_+$.
 - $y = (y_1, ..., y_{K-1}) \in \mathbb{R}^{K-1}_+$ the vector of inputs.

• Then

$$Y = \left\{ (-y,q) \in \mathbb{R}_{+}^{K} : q \leq f(y) \right\}.$$

• Note that with single output Y is *convex* only if f is *concave*.

Profit Maximization Problem (PMP)

 $\max_{y \in Y} p \cdot y.$

- Observe: No budget constraint.
- Question: When is the problem well posed (i.e. when does it have a solution)?
- Denote the value function to PMP by $\pi(p)$.
- $\pi(p)$ is called the profit function.

- Let y(p) denote the set of optimal choices at price p.
- There is a duality between $\pi(p)$ and Y: If Y is convex, then

$$Y = \left\{ y \in \mathbb{R}^{K} : p \cdot y \leq \pi(p) \text{ for all } p \in \mathbb{R}_{++}^{K} \right\}.$$

Revealed Profit Approach

• For any $y, y' \in Y$, we know that if $y \in y(p)$ and $y' \in y(p')$, then

$$p \cdot y \geq p \cdot y'$$
, and
 $p' \cdot y' \geq p' \cdot y$.

Let

$$\Delta p = \left(p' - p
ight)$$
 and $\Delta y = \left(y' - y
ight).$

Then the inequalities can be written as:

$$-p \cdot \Delta y \geq 0$$
 and $p' \cdot \Delta y \geq 0$.

Summing these two inequalities gives the Law of Supply:

 $\Delta p \cdot \Delta y \ge \mathbf{0}$

Optimal production

- Assume the single output model q = f(y).
- Denote the (strictly positive) input prices by $w = (w_1, ..., w_{K-1})$.
- The problem reduces to

$$\max_{y \in \mathbb{R}_{+}^{K-1}} pf(y) - w \cdot y.$$
(1)

• FOCs: for all k = 1, ..., K - 1,

$$\begin{array}{ll} \displaystyle \frac{\partial f\left(y\right)}{\partial y_k} &\leq \displaystyle \frac{w_k}{p}, \text{ and} \\ \displaystyle \frac{\partial f\left(y\right)}{\partial y_k} &= \displaystyle \frac{w_k}{p}, \text{ if } y_k > \mathbf{0}. \end{array}$$

• Marginal rate of substitution:

$$MRTS_{kj} = \frac{\partial f(y) / \partial y_k}{\partial f(y) / \partial y_j}.$$

Slope of the isoquant $\{y' \in \mathbb{R}^{K-1}_+ : f(y') = q\}$ at y.

• At the optimum,

$$MRTS_{kj} = \frac{w_k}{w_j}$$

• The following characterizes the solution (also more generally when Y is closed and satisfies the free disposal property.).

Proposition 1 (Properties of $\pi(p, w)$) Let y(p, w) be the solution to (1) and $\pi(p, w) = pf(y(p, w))$.

- 1. $\pi(\cdot)$ is homogenous of degree one.
- 2. $\pi(p, w)$ is convex.

- 3. y(p, w) is homogenous of degree zero.
- 4. If Y is convex, then y(p, w) is convex valued. If Y is strictly convex then y(p, w) is either empty or single valued.
- 5. If y(p, w) is single valued at (p, w), then $\pi(p, w)$ is differentiable at (p, w)and $D\pi(p, w) = (f(y(p, w)), y(p, w))$. (Hotelling's lemma; use the envelope thrm).
- 6. If y(p, w) is a function and differentiable at (p, w), then $D(f(y(p, w)), y(p, w)) = D^2 \pi(p, w)$ is a symmetric and positive semidefinite.

• From properties 2 and 5 we get immediately:

$$rac{\partial f(y(p,w))}{\partial p} \ge 0 ext{ and } rac{\partial y_k(p,w)}{\partial w_k} \le 0, ext{ for all } k = 1,...,K-1.$$

- Interpretation: If the price of an output increases, then the supply increases: "Law of Supply".
- Also: If the price of an input increases, the demand for the input decreases:."Law of Input Demand".

Cost minimization

- For each quantity of output, q, find the least cost input combination that yields q.
- The problem:

$$\min_{z \in \mathbb{R}^{K-1}_+} w \cdot z$$

s.t. $q = f(z)$.

• Denote the solutions by x(w,q), i.e. the *conditional factor demands*.

• The value function is the cost function, c(w,q)

$$c(w,q) = w \cdot z(w,q).$$

• z(w,q) is completely analogous to h(p,u) in consumer theory and c(w,q) is analogous to e(p,u).

Proposition 2 (Properties of c(w,q)**)** Assume a single output and that Y is closed and satisfies the free disposal property. Then,

- 1. c is homogenous of degree 0 in w and nondecreasing in q.
- 2. c is concave in w.

3. if
$$\{z \ge 0 : f(z) \ge q\}$$
 is convex for all q , then $Y = \{(-z,q) : w \cdot z \ge c(w,q),$ for all $w \in \mathbb{R}_{++}^{K-1}\}$

4. z(w,q) is homogenous of degree 0 in w

- 5. if $\{z \ge 0 : f(z) \ge q\}$ is convex, then z(w,q) is a convex set; if $\{z \ge 0 : f(z) \ge q\}$ is strictly convex, then z(w,q) is a function
- 6. if z(w,q) is a function, then z(w,q) is differentiable at w and satisfies $D_w c(w,q) = z(w,q)$ (Shepard's Lemma; envelope thrm)
- 7. if z(w,q) is differiable at w, then $D_w z(w,q) = D_w^2 c(w,q)$ is symmetric and negative semidefinite with $D_w z(w,q) w = 0$
- 8. if f is homogenous of degree 1, then c and z are homogenous of degree 1 in q
- 9. if f is concave, then c is convex in q.

...back to optimal production

• Choose the optimal level of production.

$$\max_{q\in\mathbb{R}}pq-c\left(w,q\right).$$

$$p = \frac{\partial c(w,q)}{\partial q}.$$

For competitive firms, marginal cost equals price.

• Once the cost minimizing input is determined, the problem of optimal production one dimensional!

Big Difference between Consumer and Producer Theory:

- Preference representation u is unique only up to increasing transformations.
- Production function f is a unique description of technology.
- Conclusion: Not only ordinal but also cardinal differences have meaning under f. E.g. concavity of f matters!

Aggregation - the general case

- Since there are only substitution effects along the production frontier, the aggregation theory for the supply side is straighforward.
- Let Y₁,..., Y_J be the collection of production sets with profits and supply correspondences π_j(p) and y_j(p) of firms j = 1, ..., J.
- The aggregate supply

$$y(p) = \sum_{j=1}^{J} y_j(p) = \left\{ y \in \mathbb{R}^K : y = \sum_{j=1}^{J} y_j, \text{ for } y_j \in y_j(p) \text{ for all } j \right\}$$

- The properties of $y_j(p)$ are preserved under addition. In particular, $Dy(p) = D^2\pi(p)$ is a symmetric and positive semidefinite.
- The Law of (aggregate) Supply follows:

$$\Delta p \cdot \Delta y \ge \mathbf{0}.$$

• Let Y be the aggregate production set:

$$Y=Y_1+....+Y_J=\{y\in \mathbb{R}^K: y=\sum_j y_j$$
, for some $y_j\in Y_j$, $j=1,..,J\}$

• Let $\pi^*(p)$, $y^*(p)$ be the corresponding profits and supply correspondences.

Proposition 3 For all $p \in \mathbb{R}_{++}^{K}$,

1.
$$\pi^{*}(p) = \sum_{j} \pi_{j}(p)$$
,

2.
$$y^{*}(p) = \sum_{j} y_{j}(p)$$
.