
Microeconomic Theory

Lecture 4



² Uncertainty an unsepararable part of individual decision making.

² But what is uncertainty?

² How can it be quanti…ed?

² How we should think about choice under uncertainty?



² How should one assess the following probabilities?

– ‘This coin toss results in Heads’

– ‘Social Democrats will be the largest party in the next election’

– ‘Rome is more northern than Madrid’

² Classical view: Probability of an event is the long run frequency of the
occurrence of the event in a sequence of independent experiments

² Subjectivist view: There is no other meaning to the probability of an event
except as a feature of a decision maker’s preferences in a choice situation.

² In the subjectivist view, probability can be deduced from choice behavior.



² Hence in classical view, only the …rst result can have a probabilistic mean-
ing whereas in the subjectivist view all of these statements can have a
probabilistic interpretation.

² Clearly the subjective view is the more relevant one for economic theory.



² Consider …rst a …nite set of possible outcomes or consequences .

² To talk about random experiments on we de…ne events.

² Events are a family A of subsets of A satis…es:

1. 2 A

2. 2 A implies that 2 A

3. 2 A implies that [1=1 2 A.

² Probability is a non-negative real valued function on A. In general, we
require:



1. (;) = 0

2. ( ) = 1

3. ( [ ) = ( ) + ( ) if \ = ; for 2 A

4.
³
[1=1

´
= §1=1 ( ) if \ = ; for all 6= and 2 A

for all

² If is a …nite set, then let A = 2 .

² For a …nite the set

L =
(
( ) 2 :

P
2

= 1 and ¸ 0 for all 2
)



contains all the relevant information. We call L the set of simple lotteries with
a typical element = ( ) 2



² Distinctions made in literature:

1. Probabilities are exogenously given $ risk.

2. Probabilities subjectively evaluated $ uncertainty.

– Objective: von Neumann and Morgenstern.

– Subjective: Savage.

– Combination of the two (horse race/coin ‡ipping/roulette wheel):
Anscombe and Aumann.



von Neumann - Morgenstern

² We assume here for simplicity that is …nite.

Axiom 1 % is a rational preference relation on L

² Observe that L is a convex set (why?) and hence it makes sense to talk
about compound lotteries. Take 0 2 L. A compound lottery 2 L
is obtained by setting:

= + (1¡ ) 0

² The meaning of this is that if = ( ) 2 and 0 =
¡ 0 ¢

2 then
=

¡
+ (1¡ ) 0 ¢

2



² We formulate the continuity axiom slightly di¤erently from abstract choice
theory:

Axiom 2 (Archimedean Axiom) Take 0 00 2 L such that Â 0 Â 00

Then the sets f 2 [0 1] : + (1¡ ) 00 % 0g and f 2 [0 1] : 0 %
+ (1¡ ) 00g are closed.

² That is, together with completeness this implies that small changes in
probabilities do not a¤ect the (strict) orderings of lotteries. This form
of continuity is implied by the standard notion of continuity in Euclidean
spaces.

² The condition implies a bound on how good or bad some outcomes can
be: no outcome can be incomparably painful.



² Continuity and rationality imply the existence of a continuous representa-
tion : L ! R

² How to describe behavior? L is in general too complicated.

² We want to deduce the existence of an assignment of utility numbers
: ! R that allow a straightforward represention of %.

² We call the von Neumann-Morgenstern utility function of the decision
maker if, for some (¢) it holds that ( ) =

P
2 ( ) for all =

( ) 2

² The next axiom is the key to the representation result.



Axiom 3 (Independence Axiom) For any 0 2 L, we have

% 0 if and only if + (1¡ ) 00 % 0 + (1¡ ) 00

for all 2 [0 1] and for all 00 2 L.

² It should be clear that an axiom of this type makes only little sense for
choice under certainty (recall the de…nition of separable preferences).

² Does it make sense for theory of choice under uncertainty? Independence
of irrelevant (counterfactual) alternatives.

² Normative vs. positive implications.



Theorem 4 (Expected Utility Theorem) A rational preference % on L satis…es
the Archimedean and Independence axiom if and only if there exists a utility
function : ! R such that

% 0 if and only if
P
2

( ) ¸ P
2

0 ( )

Furthermore, and 0 are such representations if and only if 0 = +

where 0



Proof. i) It is easy to verify that the axioms must be satis…ed if a representation
exists.

ii) We show that the axioms imply the existence of such a representation.
Denote by 1 the degenerate lottery that assigns probability 1 on consequence
2

Consider …rst 1 Since is …nite, there exist worst and best outcomes ±
and ± such that 1 ± % 1 % 1 ± for all By independence axiom, % 1 ±
for all 2 L and 1 ± % for all 2 L. If 1 ± » 1 ± we can take to be
any constant function and the theorem is proved. Assume thus that 1 ± Â 1 ±
Choose ( ±) = 0 and ( ±) = 1

We argue next that for each 2 L there is a unique ( ) such that »
( ) 1 ± + (1¡ ( )) 1



By Archimedean axiom,
f : 1 ± + (1¡ ) 1 ± % g and f : % 1 ± + (1¡ ) 1 ±g are closed.

By the completeness of % the union of these sets is [0 1], which is connected,
and hence the intersection of the sets must be nonempty.

By the independence axiom and the assumption that 1 ± Â 1 ±,

1 ± + (1¡ ) 1 ± Â 01 ± +
³
1¡ 0´ 1 ± if 0

(why?) Thus

f : 1 ± + (1¡ ) 1 ± % g \ f : 1 ± + (1¡ ) 1 ± ¹ g

must be a singleton. Choose ( ) for the unique element in the intersection.



We claim that there is : ! R such that ( ) =
P

2 ( ) All we
need is that for all 0 and 2 [0 1] we have:

³
+ (1¡ ) 0´ = ( ) + (1¡ )

³ 0´

(Why is this su¢cient?). This is the case since

+ (1¡ ) 0

» [ ( ) 1 ± + (1¡ ( )) 1 ±] + (1¡ ) [
³ 0´ 1 ± +

³
1¡

³ 0´´
1 ±]

» [ ( ) + (1¡ )
³ 0´]1 ± + [ (1¡ ( )) + (1¡ )

³
1¡

³ 0´´
]1 ±

And thus
³

+ (1¡ ) 0´ = ( ) + (1¡ )
³ 0´

Thus we can take ( ) = (1 ) and ( ) = ( )



iii) If 0 and 00 are the Bernoulli utility functions, let 0 and 00 be the
corresponding von Neumann-Morgenstern utility functions. The claim is proved
if we prove it for 0 and 00

As before, let 0 ( ) solve

0 ( ) = 0 ( ) 0 (1 ±) +
³
1¡ 0 ( )

´ 0 (1 ±)

Thus

0 ( ) =
0 ( )¡ 0 (1 ±)
0 (1 ±)¡ 0 (1 ±)

But now since 00 is also a representation, we have

00 ( ) = 0 ( ) 00 (1 ±) +
³
1¡ 0 ( )

´ 00 (1 ±)

Plugging in the value of 0 ( ) and rearranging, we get:

00 ( ) = 0 ( ) +



where

=
00 (1 ±)¡ 00 (1 ±)
0 (1 ±)¡ 0 (1 ±)

and

= 00 (1 ±)¡ 0 (1 ±)
00 (1 ±)¡ 00 (1 ±)
0 (1 ±)¡ 0 (1 ±)



² Observations: A huge simpli…cation for use in descriptive applications.

² Can be put to use in normative exercises: i.e. construct more complicated
preferences from simple preferences.

² Can be generalized to a large extent ) game theory.

² Evolutionary defence: Dutch book -argument.



² Fails in experiments

– Independence axiom: Allais’ Paradox

z }| {
2 500 000 500 000 0

1 0 1 0
0
1 0,1 0,89 0,01

2 500 000 500 000 0
2 0 0,11 0,89
0
2 0,1 0 0,90

– Response: Relax the independence axiom to accommodate this behav-
ior ) non-expected utility.

² Betweenness: Dekel (1986), JET.



² Rank-Dependent Utility: Quiggin (1982), JEBO.

– Ellsberg’s Paradox show failure of probability model.

² Recall the distinction between risk and uncertainty.

² Ambiguity aversion: Choice in the face of non-additive probabilities.

² Minmax preferences vs. Choquet integrals.



Other Extensions:

² Preference for ‡exibility: Kreps (1979) and Dekel, Lipman and Rustichini
(2002).

² Preference for commitment: Gul and Pesendorfer (2002).

² Loss Aversion: Kahnemann and Tverksy (1979).



Risk

² From now on, consequences are monetary amounts: 2 R+ is the …nal
wealth of the decision maker.

² Analyze di¤erent : R+! R.

² ( ) denotes the distribution function of a monetary lottery.

² Discrete or continuous.



² Expected Utility theorem:

( ) =
Z
2R+

( ) ( )

Or for discrete distributions:

( ) =
X
¸0

( ) ( )

where ( ) is the mass function of the lottery.

² When do the integrals and sums above converge? (cf. St.Petersburg’s
paradox).

² Note the symmetry in the formula between ( ) and ( ).



² When considering expected utility, we can consider variations in each of
these two components.

1. Risk attitudes: Fix ( ) and compare di¤erent ( ).

2. Riskiness of lotteries: Fix ( ) and compare di¤erent ( ).

De…nition 5 The certainty equivalent ( ) of a lottery for a decision
maker with utility function is de…ned by

( ( )) =
Z

( ) ( )

² We can discuss attitudes towards risk by comparing the certainty equiva-
lents of a …xed lottery under di¤erent utility functions.



De…nition 6 A decision maker with a utility function is risk averse if, for all
,

( ) ·
Z

( )

² It is easy to prove that

Proposition 7 Utility function is risk averse if and only if it is concave.

² Risk loving attitudes are de…ned with the opposite inequalities.

² Can second derivatives be used to measure risk aversion? But not robust
against linear transformations of !



De…nition 8 The Arrow-Pratt measure of absolute risk aversion, ( ) of
utility function at wealth level is given by:

( ) = ¡
00( )
0( )

(1)

² ( ) re‡ects the curvature of at without accounting linear trans-
formations.

² The following results shows that ( ) is a good measure of risk aver-
sion.



Proposition 9 The following are equivalent:

i) ( 2) ¸ ( 1) for all .

ii) ( 2) · ( 1) for all ( )

iii) There is a concave function (¢) such that 2( ) = ( 1( ))

² The more-risk-averse-than relation is a partial ordering of utiity functions:
it is not possible to say for all and 0 which is more risk averse.



² Are wealthier individuals willing to take bigger risks than others?

De…nition 10 exhibits decreasing (constant) absolute risk aversion, DARA,
(CARA, resp.) if ( ) is a decreasing (constant, resp.) function of

² exhibiting DARA is less sensitive towards risk when his wealth increases,
i.e. he is willing to pay less to get rid of risk as his wealth increases.

Proposition 11 The following are equivalent:

i) exhibits DARA.

ii) if 2 1 then there is a concave function (¢) such that ( ( 1+ )) =

( 2 + ) for all



iii) if ( ) = ( + ) for all then ¡ ( ) is decreasing in for all

² Thus a person with DARA utility function is less risk-averse when richer.



² A stronger condition: exhibits decreasing (constant) absolute risk aver-
sion, DRRA, (CRRA, resp.) if ( ) = ( ) is a decreasing in

² Requires decreasing risk aversion subject to proportional gambles: willing-
ness to risk half of the wealth for a 10% increase in wealth.

² Strong condition, DRRA implies DARA: 0 ( ) ¡ ( ) for all



² How do changes in the distribution a¤ect expected payo¤?

² Distribution …rst order stochastically dominates if, for all nondecreas-
ing functions we have

Z
( ) ( ) ¸

Z
( ) ( )

² This is equivalent to saying that · . Thus shifting probability mass
forward increases expected payo¤.

² Distribution second order stochastically dominates if they have the
same mean Z

( ) =
Z

( )



and for all nondecreasing, concave functions we have
Z

( ) ( ) ¸
Z

( ) ( )

² Shift from to is a mean preserving spread, disliked by any risk-averter.



Subjective probabilities - Savage

Building Blocks:

² Consequences, States of the World, Acts.

² Consequences as before, .

² State of the World: Complete list of all relevant data for the problem at
hand, - .

² Acts: Functions : - !



² Preferences are de…ned on F the set of all possible acts.

² From the preferences, we can deduce:

1. A subjective probability assessment ( ) on -

2. A utility function on : ! R such that for all 0 2 F

% 0 if and only if
Z

( ( )) ( ) ¸
Z ³ 0 ( )

´
( )

or

% 0 if and only if
X
2-

( ( )) ( ) ¸
X
2-

³ 0 ( )
´
( )

Notice that the end result looks pretty much the same as in von
Neumann-Morgenstern theory. Hence we’ll be agnostic about subjec-
tive vs. objective uncertainty.



² A conclusion: if one believes the Savage axioms, then one can recover the
beliefs and and utility functions of the individuals with su¢cient data.

² Since also the probabilities need to be accounted, more axioms needed
(than under vNM). As a consequence, the characterization complex.



Anscombe-Aumann (1963)

² Assume that acts are

: - ! ¢( )

or in words, acts assign objective lotteries to states of the world.

² Technically simpler than the fully subjective view. Same end result.



State-dependent preferences

² We’ll use sometimes in applications state-dependent utility functions:

: - £ ! R

This is a convenient device to handle situations where is directly chosen
by the decision maker, and is chosen exogenously “by nature”.

² Expected utility formula in this framework is:

( ) =
X
2-

( ) ( )


