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1 Introduction

• That computers are able to communicate in the "new
economy" affects strategic behavior of men in a non-
standard way.

• Example: Two players in e-bay auction who program
a computer to play the game for them.

— If the computers are programmed in an open ac-
cess environment, where the source code of any
program is public, then a computer can be pro-
grammed to scan the other player’s program be-
fore implementing its actions.

— This affects the optimal programming strategies.
Programmer A needs to take into account not
only what action player B’s computer is programmed
to take but also whether the B’s computer has
been programmed to scan A’s computer before
implementing its action.



• Resulting program equilbrium (Tennenholz, 2004) is
the theme of this paper.

• Model programs by finite automata.

• A program equilibrium need not exists. However,
this is true only if no computational limitations.

• Main interest is in program equilibria under low com-
plexity costs.

• Conjecture:

1. In coordination games, beneficial coordination is
guaranteed with zero cost. Computers thus en-
hances welfare as coordination failures cannot oc-
cur.

2. In competitive games á la Matching Pennies the
converse holds; competition becomes more in-
tense and leads to additional loss of resources.



2 Model

• Two players 1 and 2

• Symmetric "underlying game" with action set A.

• A finite automaton M = (δ, τ ,Q, q0) of player i

— δ : Q→ A

— τ : Q×X → Q,

— finite set of states Q,

— initial state q0 ∈ Q.

• |M | the size of machine M, measured by the cardi-
nality of Q.



• Denote the set of all finite machinesM (countably
infinite).

• Finite alphabet X.

• Given input x = (x0, ..., xn),machineM = (δ, τ ,Q, q0)

implements action δ[x] ∈ A, where δ[x] = δ(q) for
q ∈ Q such that q = qn and τ(qk, xk) = qk+1 for
all k = 0, ..., n− 1.

• M is enconded and distinguished by a string ξ(M)

of alphabets. Assume:

A1 If equally long ξ(M) and ξ(M 0) differ only in the
final entry, then δi[x] 6= δ0i[x] for all x.

A2 If |M | > ¯̄
M 0¯̄ , then the length of ξ(M) is at least

ξ(M 0).



• Player i’s vNM preferences are represented by a util-
ity function uof the form

ui(ai, aj)− c(M), (1)

where function c :M→ R+ is the complexity cost
such that

c(M) ≥ c(M) if |M | ≥ |M | .

• The machine game is defined as follows. First play-
ers choose machines M1 and M2. Then machine
Mi takes as input ξ(Mj), the code of machine Mj,

j 6= i. Finally, machineMi = (δi, τ i,Qi, q
0
i ) imple-

ments δi[ξ(Mj)]. Given machines (M1,M2) player
i’s poayff is

ui(δi[ξ(Mj)], δj[ξ(Mi)])− c(Mi).

• Let σis a probability distribution onM. Given pair



(σ1, σ2), the expected payoff of i is

vi(σ, σj)

=
P

M 0
1∈M

P
M2∈M

σ1(M1)σ2(M2)ui(δ[ξ(Mj)], δj[ξ(Mi

− P
M 0

i∈M
σi(Mi)c(Mi)

Strategy (σ1, σ2) forms a program equilibrium if

vi(σi, σj) ≥ vi(σ
0
i, σj), for all σ

0
i, for all i = 1, 2.

• If c(M) = 0 for all M, then the agent i is said to
be complexity neutral. In such case (σ1, σ2) forms a
program equilibrium if ui(σi, σj) ≥ ui(σ

0
i, σj), for

all σ0i, for all i = 1, 2.



3 Complexity Neutral Agents

Matching Pennies:

1
A B

2 A 1,−1 −1, 1
B −1, 1 1,−1

Take any mixed strategy σ. We argue that a best re-
sponse by j is a pure strategy or does not exist.

Lemma 1 For any Mi ⊂M, there is Mj such that

ui(δi[ξ(Mj)], δj[ξ(Mi)]) = −1,
uj(δi[ξ(Mj)], δj[ξ(Mi)]) = 1.

Lemma 2 For any {M1
i , ...,M

k
i } ⊂ M, there is Mj

such that,

ui(δi[ξ(Mj)], δj[ξ(M
l
i)]) = −1,

uj(δi[ξ(Mj)], δj[ξ(M
l
i)]) = 1.

for all l = 0, ..., k.



• For any finite set S ⊂M, there isMj that is a best
response against all M ∈ S.

• This holds, in particular, for any finite subset of the
support of i’s strategy σ.

Proposition 3 Let agents be complexity neutral. There
is no program equilibrium in the Matching Pennies game..



4 Complexity Averse Agents

B c is unbounded.

• For any n ∈ N there is M ∈M such that c(M) >

n. Now there is a finite subset S ofMsuch that

max
M∈S minai,aj

[ui(ai, aj)−c(M)] > max
ai,aj,
M 6∈S

[ui(ai, aj)−c(M)].

• Thus only machines in S can possibly be chosen in
program equilibrium. Since S is finite and payoffs
continuous with respect to the randomization over
S, a program equilibrium exists.

Proposition 4 Under B, a program equilibrium exists.



4.1 Small Complexity Costs

• Let c(·) = ξ · y(·), where ξ > 0 is a scalar and y(·)
is nondercreasing, continuous and bounded. Interest
in the limit ξ → 0.

Proposition 5 In Matching Pennies, the program equi-
librium payoffs approach −1 when ξ → 0.

• Define a coordination game:
1
A B

2 A 0, 0 1, 1
B 1, 1 0, 0

Proposition 6 In the coordination game, the payoffmax-
imizing symmetric program equilibrium payoffs approach
1 when ξ → 0.


