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1 Introduction

• General Equilibrium theory: competition is good.

• No real interaction between the decision makers. Everyone takes the ex-
ternal parameters - such as prices - as given, and optimizes without paying
attention on (i) how his behavior affects the parameters (in the equilibrium
it does not), (ii) where do the parameters come from.

• General equilibrium theory does not have anything to about how decision
makers interact.

• Is interaction relevant?



• Game theory is a collection of analytical tools designed to help us under-
stand the phenomena we observe when decision makers interact.

• The central assumptions that underlie the theory are that decision makers
pursue well-defined exogenous objects (they are rational), and take into
account that others do too (think strategically).

• A game describes the environment where the interaction takes place. The
concept of game is self-containing: all the relevant information is spelled
out, i.e. the rules of interaction, who interact, what they know, and their
preferences.

• Interaction of rational decision makers within a game is captured by the
concept of equilibrium.



• An equilibrium is a steady state where all possible adjustment processes
have already taken place. An equilibrium concept answers the question
of what constraints does decision makers’ rationality, their knowledge of
other players rationality and so on, impose on their collective behavior.



• Game theory is a language. The models of game theory do not aim to
describe the reality but they can be useful for us to think about it.

• Applications should be viewed as thought experiments, aimed at straight-
ening the conceptual problems in our heads.

• Applications abound:

— Competition.

— Politics.

— Bargaining.

— Organizations.



— Psychology.

— etc...

• Often regarded as "mathematical". However, formality only aims at mak-
ing the language clear, crisp, and transparent.

• A high level of abstraction of the model allows it to be applied in many
contexts.

• The aim of this course: To develop the language of game theory, and
demonstrate how it can be applied when thinking applications.



2 Rationality

• Decision maker is rational in the sense that he fully understands the choice
problem he is facing:

— A set of actions A that the decision maker can take.

— An exhaustive set of possible consequences C.

— A consequence function g : A → C specifying which actions lead to
which consequences.

— Complete, transitive preferences º on the set C.

• There is a real valued utility function u on A that represents preferences,
and can be used instead of the preferences. That is, u(g(a)) ≥ u(g(b))



if and only if g(a) º g(b) for all a, b ∈ A. In applications we use
utility functions. However, it is important that the preferences are the true
primitive (why?).

• Rationality implies that the decision maker maximizes his payoffs; if u(g(b)) >
u(g(a)), for some a, b ∈ A, then b is not chosen.

• To model decision making under uncertainty, we assume that decision
maker’s preferences also satisfy von Neumann -Morgenstern axioms. That
is, if the consequence does not only depend on the decision maker’s choice
but also on a stochastic component, then the decision maker is assumed
to behave as if he maximizes his expected utility, for some utility function
u.



• More formally:

— Let the consequence depend not only decision maker’s action but also
a state in some finite set Ω.

— If the decision maker takes action a, and state ω ∈ Ω materializes,
then the decision maker’s payoff is u(g(a,w)).

— If the uncertainty is captured by a probability distribution p on Ω, the
decision maker maximizes his expected payoffX

ω∈Ω
p(ω)u(g(a, ω)).



3 Strategic games

• A strategic game is a model of interactive decision making when the de-
cision makers, "players", choose once and for all and simultaneously their
actions. The actions need not be physically simultaneous, only indepen-
dent in players’ minds.

• The strategic game is a tuple hI, (ui)i∈I, (Ai)i∈Ii where

— I is a finite set of players i, j, ... .

— Ai is the set of player i’s possible actions.

— ui : ×i∈IAi→ R is player i’s von Neumann-Morgenstern utility func-
tion.



• That is, any combination a = (ai)i∈I of actions of players generates utility
ui(a) for any player i. Rationality now means that each player i maximizes
his payoff by choosing his action in Ai optimally.

• We assume that rationality is common knowledge: All players are rational,
all players know that all players are rational, all players know that all players
know that ... .

• The requirement that player j’s preferences are now defined over A =

×i∈IAi rather than Ai distinguishes a strategic form game from a single
player decision problem. Or from the Walrasian markets: Each player
(may) not only care about his own action but also the actions of all other
players.



• Concept check: By von Neumann -Morgenstern utilities we mean that
the underlying preferences over lotteries on A = ×i∈IAi meet the von
Neumann - Morgenstern axioms. If they do, then each player i acts as
if there is a payoff function ui with respect to which he maximizes his
expected payoff.



3.1 Dominated strategies

• What does rationality alone imply for behavior in strategic form games?

Prisoner’s Dilemma: Let I = {1, 2}, Ai = {C,D} for all i, and let payoffs
be determined as follows:

2
C D

1 C 3, 3 0, 4
D 4, 0 1, 1

Whatever strategy the other player chooses, it is player i’s best response
to choose D and not C. Thus C is a dominated strategy.

• A rational player would never choose an action that he could not justify,
i.e. that is not a best response to any of the strategies of the other players.



Definition (strict dominance): A strategy ai is strictly dominated if there is
another strategy a0i such that

ui(a
0
i, a−i) > ui(ai, a−i), for all a−i ∈ ×j 6=iAj.

• If strategy ai is strictly dominated for i, then i would never lose by choosing
the strategy that dominates it. Thus rationality of i implies that such
strategy would never be chosen.

• This argument can be pushed further. Since rationality is common knowl-
edge, it is known that no player uses dominated strategies. Since this fact
is known, players face a new decision problem, in which new strategies be-
come eliminated by a second use of rationality. The elimination process can
be continued until no further strategies can be eliminated. The survived
strategies are called iteratively undominated strategies.



Definition (iterative dominance): Set X ⊆ A of strategies are iteratively
undominated if Xi = Ai\∪∞k=1Dk

i where D
k
i ⊂ Ai, k = 1, ..., is defined

such that ai ∈ Dk
i if and only if

ui(a
0
i, a−i) > ui(ai, a−i), for all a−i ∈ ×j 6=iAj\ ∪k−1l=1 Dl

j,

and D0 = ∅.

• Strict dominance is attractive since it is directly implied by rationality :
Common knowledge of rationality means that players would only use strate-
gies in X.

• In two-player games, the converse is also true. Rational players may use
any stragies in X.



Example (Cournot competetion): Let us model the two-firm Cournot model
as a game h{1, 2}, (ui), (Ai)i , where Ai = R+ and, for any (a1, a2) ∈
A1 ×A2,

u1(a1, a2) = β(a1, a2)a1,

u2(a1, a2) = β(a1, a2)a2.

where β is a linear (inverse) demand function

β(a1, a2) = 1− (a1 + a2).

Thus i’s payoff is

u1(a1, a2) = (1 + a2)a1 − a21.

Taking the derivative gives the effect of a marginal increase in ai on i’s
payoff:

∂ui(ai, aj)

∂ai
= 1− aj − 2ai. (1)



If (1) is positive (negative) under (ai, aj), then marginally increasing (de-
creasing) ai increases i’s payoff. If this holds continuously in the interval
[a, b] of i’s choices under aj, then increasing ai from a to b increases i’s
payoff.

• By (1), ai = 1/2 strictly dominates any ai > 1/2, given that aj ≥ 0.

Thus

D1i =
½
ai : ai >

1

2

¾
.

Applying the symmetric argument to j,

Aj\D1j =
½
aj : 0 ≤ aj ≤

1

2

¾
.

By (1), ai = 1/2 − (1/2)2 strictly dominates any ai < 1/2 − (1/2)2,



given that 0 ≤ aj ≤ 1/2. Thus

D2i =

(
ai : ai <

1

2
−
µ
1

2

¶2)
.

Applying the symmetric argument to j,

Aj\
³
D1j ∪D2j

´
=

(
aj :

1

2
−
µ
1

2

¶2
≤ aj ≤

1

2

)
.

By (1), ai = 1/2− (1/2)2 + (1/2)3 strictly dominates any ai > 1/2−
(1/2)2 + (1/2)3, given that 1/2− (1/2)2 ≤ aj ≤ 1/2. Thus

D3i =

(
ai : ai >

1

2
−
µ
1

2

¶2
+
µ
1

2

¶3)
.

Applying the symmetric argument to j,

Aj\
³
D1j ∪D2j ∪D3j

´
=

(
aj :

1

2
−
µ
1

2

¶2
≤ aj ≤

1

2
−
µ
1

2

¶2
+
µ
1

2

¶3)
.



Continuing this way for k (odd) steps, we get

Aj\
³
∪kl=1Dl

j

´
=

aj :
1
2 −

³
1
2

´2
+
³
1
2

´3 − ...−
³
1
2

´k−1
≤ aj ≤

1
2 −

³
1
2

´2
+
³
1
2

´3 − ...+
³
1
2

´k
 .

Letting k go to infinity, both the end points of the interval converge to

1/2

1− (1/2)2 −
(1/2)2

1− (1/2)2 =
1

3
.

Thus µ
1

3
,
1

3

¶
is the unique strategy pair that survives the iterated elimination of strictly
dominated strategies.



• However, this strict dominance turns out to be a weak restriction on strate-
gies. In many interesting games, it does not imply anything.

• A slightly stronger restriction is weak dominance:

Definition (weak dominance): A strategy ai is weakly dominated if there is
another strategy a0i such that

ui(a
0
i, a−i) ≥ ui(ai, a−i), for all a−i ∈ ×j 6=iAj,

with at least one strict inequality.

• It is always at least as profitable for i to choose a0i than ai, and sometimes
more profitable, no matter what strategy the other players choose.



• The motivation for weak dominance is insurance: A risk sensitive player
would never choose a weakly dominated actions since he can always do at
least as well by doing something else.

• Weak dominance can also be iterated. However, it may not always be
obvious how to do it.

Example 1: Consider the game

2
b1 b2 b3 b4

a1 2, 1 2, 1 −1, 0 −1, 0
1 a2 −1, 0 −1, 0 0, 3 0, 3

a3 3, 1 0, 0 3, 1 0, 0
a4 0, 0 1, 3 0, 0 1, 3



Step 1: Delete a2

b1 b2 b3 b4
a1 2, 1 2, 1 −1, 0 −1, 0
a3 3, 1 0, 0 3, 1 0, 0
a4 0, 0 1, 3 0, 0 1, 3

Step 2: Delete b3 and b4

b1 b2
a1 2, 1 2, 1
a3 3, 1 0, 0
a4 0, 0 1, 3

Step 3: Delete a4

b1 b2
a1 2, 1 2, 1
a3 3, 1 0, 0



Step 4: Delete b2

b1
a1 2, 1
a3 3, 1

Step 5: Delete a1. The unique remaining strategy is (a3, b1).

• The key problem with weak dominance is that the order of iteration may
affect the conclusion.

• Iteratively undominated strategies always exist (why?). However, domi-
nance typically has only limited power.



Example (Battle of Sexes):

2
Ballet Soccer

1 Ballet 3, 1 0, 0
Soccer 0, 0 1, 3

3.2 Nash equilibrium

• Since iterative dominance does not have much power, rationality alone
does not provide much insight into reasonable individual behavior in social
situations. To constraint further individuals’ behvior, something stronger
needs to be assumed.



• Nash equilibrium is a more stringent condition on strategic behavior. It is
not derived through recursive reasoning, which is the case with dominated
strategies, but through counterfactual one. Players ask not only what
are their best responses against the potential best responses of the other
players but also what are their best responses if the best responses of the
other players are correct.

• Nash equilibrium requires that each player’s strategy be a best response to
the other players’ strategies. In the battle of sexes -game, there are two
distinct Nash equilibria.

• However, there need not be determined choices that satisfy the criteria for
the Nash equilibrium.



• In the matching pennies -game, one of the players always wants to change
his strategy; there is no rest point in the associated best response -
dynamics.

Example (Matching Pennies):

2
H T

1 H 1,−1 −1, 1
T -1, 1 1,−1

.

3.2.1 Mixed strategies

• To avoid the cyclical best response dynamics, we need to enlarge the class
of strategic alternatives available to the players.



• We allow players to randomize over their choices. A randomized strategy
is called mixed. A mixed strategy is a lottery over the choices of a player.

• The set of lotteries on Ai is denoted by ∆i, with a typical element σi.
Denote by σ a typical element of ×i∆i.

• In mixed strategy σi, player i assigns probability σi(ai) to choice ai. If σi
is degenerate, i.e. σi(ai) = 1 for some ai, then σi is pure.

• Player i’s expected payoff, when all players adhere to mixed strategy σ,
can now be written (assuming finite A),

ui(σ) =
P
a∈A

Q
j∈I

σj(aj)u(a).



• Nash equilibrium (by Nash, 1951) is the central solution concept in game
theory.

Nash Equilibrium: Mixed strategy σ∗ forms a Nash equilibrium in game hI, (ui), (Ai)i
if

ui(σ
∗
i , σ

∗−i) ≥ ui(σi, σ
∗−i), for all σi ∈ ∆i, for all i ∈ I.

• If a single strategy survives iterative elimination of strictly dominated
strategies, then this strategy must form a unique Nash equilibrium.

Example (Cournot comp., cont.): Recall condition (1), the derivative of firm
i’s payoff given the other firm’s choice in the Cournot competition model.



Firm i’s payoff is maximized when

∂ui(ai, aj)

∂ai
= 1− aj − 2ai = 0.

From this first order condition we derive the two best response functions:

BR1(a2) =
1

2
− a2
2
, (2)

BR2(a1) =
1

2
− a1
2
.

The Nash equilibrium (a∗1, a∗2) satisfies.

a∗1 = BR1(a
∗
2),

a∗2 = BR2(a
∗
1).



By equation (2) it follows that

a∗1 =
1

2
− a∗2
2
,

a∗2 =
1

2
− a∗1
2
.

Thus we obtain

(a∗1, a∗2) =
µ
1

3
,
1

3

¶
.

The equilibrium coincides with the unique strategy pair that survives the
itarated elimination of dominated strategies. Is this a coincidence?

Equilibrium payoffs are

u1

µ
1

3
,
1

3

¶
= u2

µ
1

3
,
1

3

¶
=
µ
1− 2

3

¶
1

3
=
1

9
.

• A Nash equilibrium, and only a Nash equilibrium has the property that



rational players predict correctly what the other players choose, predicts
that their rational opponents predict it, and so on.

• On the one hand, playing Nash equilibrium can be agreed upon, since
no-one can benefit by unilaterally deviating from the agreement. On the
other hand, any viable agreement must induce Nash equilibrium play since
otherwise someone wants to renege on the agreement. Thus players can
agree on playing certain strategy if and only if this strategy forms a Nash
equilibrium.

• Pure Nash equilibrium puts positive probability only to a single strategy.
Such equilibria commonly fail to exists (cf. mathcing pennies).

• The existence of Nash equilibrium in mixed strategies is the key result in
game theory. It is based on a fixed point theorem.



Kakutani’s Fixed Point Theorem: Let X be a compact, convex subset of a
finitely dimensional Euclidean space. Let F : X → X be a set valued
function for which (i) F (x) is non-empty and convex for all x ∈ X, (ii)
the graph of F is closed. Then there is a fixed point x∗ ∈ X such that
x∗ ∈ F (x∗).

• Function F has a closed graph if any sequence {xk} converging to y

supports a sequence {f(xk)}k such that f(xk) ∈ F (xk) for all k = 0, ...,
that converges in F (y).

• Sketch of the proof the existence of Nash equilibrium: Denote the best
response function of i by

BRi(σ−i) = {σi ∈ ∆i : ui(σi, σ−i) ≥ ui(σ
0
i, σ−i), for all σ0i ∈ ∆i}.



• Let BR(σ) = ×iBRi(σ−i) for all σ ∈ ×i∆i. Now BR is a set valued
functions from ×i∆i to ×i∆i.

• We argue that BR meets the conditions imposed in Kakutani if A is finite.
It is easy verify that BRi(σ−i) is nonempty and convex.

• To see that BR has a closed graph, it suffices that the graph is closed
in each of its dimension. Suppose that there is a sequence {σk−i} of
strategies, converging to σ−i such that {σki }, where σki ∈ BRi(σ

k−i) for
all k, would converge to σi 6∈ BRi(σ−i). Then there is σ0i and ε > 0

such that

ui(σ
0
i, σ−i)− ui(σi, σ−i) > ε.



Since ui is continuous in probabilities, there is k0 such that for all k > k0,

ui(σ
0
i, σ−i)− ui(σ

k
i , σ

k−i) > ε/2.

Similarly, there is k00 > k0 such that for all k > k00,

ui(σ
0
i, σ

k−i)− ui(σ
k
i , σ

k−i) > ε/3.

But this contradicts σki ∈ BRi(σ
k−i).

• Since each ∆i is a finitely dimensional standard simplex, ×i∆i is a convex
set.

• Thus, by Kakutani’s Theorem, there is σ∗ such that σ∗ ∈ BR(σ∗), i.e.
σ∗i ∈ BRi(σ

∗−i) for all i.



Theorem (Nash 1950): If A is finite, then the game hI, (ui), (Ai)i has a
Nash equilibrium.

• Do people randomize? Mixed strategies have alternative interpretations:
steady state of a learning process, beliefs that derived from a distribution,...
.

• Finiteness of A is needed. Consider the game I = {1, 2}, Ai = Z, and
ui(a1, a) = 1 if ai > a2, and = 0 otherwise.

• A very useful feature of mixed strategy equilibria is the following: σ∗ is
a Nash equilibrium only if every pure action in the support of σi, i.e. in



{ai : σ∗i (ai) > 0}, is a best response to σ∗−i and hence yields i the same
payoff. That is, if σ∗i (ai) > 0, for some ai ∈ Ai, then

ui(ai, σ
∗−i) ≥ ui(a

0
i, σ

∗−i), for all a0i ∈ Ai.

• This follows from the linearity of u in probabilities. For if the claim would
not hold, i could improve his payoff by moving probability mass to those
actions that generate him a higher payoff (keeping other players strategies
fixed).

Example (Matching Pennies, cont.): The unique mixed strategy Nash equi-
librioim both players mix 50/50 between H and T.

Example (Advertizing): Two firms compete over consumer’s attention through
(noninformative) advertizment campaings. The firm who invests more to



its campaign sells the good to the consumer. Campaigns are chosen si-
multaneously. The consumer pays 1000 C= for the good. If firm i wins its
payoff is 1000− ai, and if it loses it is −ai, where i’s investment ai can
be any nonnegative number. In the case of a tie, the consumer randomizes
50/50 from who to buy.

There are no pure Nash equilibria. For if there is, then either (i) a1 = a2,

or (ii) ai > aj for some choice of i, j. In case (i), i would deviate by
incresing ai slightly above aj. In case (ii), i would benefit from slightly
decreasing ai so that it is still above aj.

In a continuous, symmetric equilibrium (it can be shown to be unique),
firm i chooses an atomless mixed strategy over some interval [a, b]. Since
the strategy is mixed, the firm must be indifferent between any choice in
the intervall. Denoting the mixed strategy of i by a c.d.f. Σi with density
σ, the probability of i winning when choosing action ai is the probability



of j choosing less than ai, i.e. Σj(ai). Since Σj(·) is an atomless c.d.f.,
Σj(a) = 0, and thus the probability of winning at a is zero. This implies
that a cannot be above 0 since otherwise i would rather choose ai = 0

than ai = a, which is against our assumption. Since choosing ai = a

is part of i’s Nash equilibrioum strategy, and he is indifferent between all
his choices, his expected payoff must be zero. Since by choosing b firm
i guarantee positive payoff if b is below 1000, and i is indifferent in all
choices [a, b], is must be that b = 1000. Thus in Nash equilibrium,

Σj(ai) · 1000− ai = 0, for all ai ∈ [0, 1000].
That is σj(ai) = 1/1000, for all ai ∈ [0, 1000], for all i, j.



The expected aggregate costs of advertizing areZ 1000
0

aσ1(a)da+
Z 1000
0

aσ2(a)da =
2

1000

Z 1000
0

ada

=
2

1000
· 1000

2

2
= 1000.

Thus the expected costs of advertizing match exactly with the consumer
surplus, destroing any social surplus.

• The above argument can be applied to lobbying, doping, in sports, cosmetic
surgery,... .

• Things become more problematic if there are many equilibria. Then little
can be said which will be selected. There is no obvious process that leads
to the Nash equilibrium.



3.2.2 Multiplicity of Equilibria

Example (Coordination game): Equilibria may be Pareto rankable.

2
D H

1 D 4, 4 0, 3
H 3, 0 1, 1

.

• It would be natural to assume that Pareto dominant equilibrium be played,
especially if players could coordinate before they play. But this is not
obvious. As argued by Aumann (1990), pre-play communication can only
have value if it conveys new information on how players will behave in the
game. In the Coordination game, a player always wants his opponent to
choose D strategy regardless of what they themselves intend to choose.
Hence messages convey no information about what players intend to do,



only about what they want their opponents to do. This information is
already common knowledge to the players, and so communication cannot
affect the outcome of the game.

• A game may exhibit mixed strategy Nash equilibria together with pure
strategy equilibria.

Example (Burning money) Consider a coordination game

2
L R

1 U 3, 1 0, 0
D 0, 0 1, 3

This game has two pure Nash equiilibria (U,L) and (D,R). Player 1
prefers the first one, 2 the latter one. There is no way to choose among
them.



Allow now player 1 to burn one unit of money before playing the coordina-
tion game. However, the strategies cannot be implemented personally but
through a mediator. Both players submit simultaneously complete instruc-
tions of how to choose to a mediator who, after seeing both instructions,
implementes them.

A strategy of 1 specifies whether to burn the money or not, and whether
to choose U or D.

A strategy of 2 specifies, conditional on 1 burning the money, whether to
choose L or R .

Thus both players have four options (in the matrix below, L,R means 2



chooses L if 1 burns the money, and R if not, and so on).

2
L,L L,R R,L R,R

Burn, U 2, 1 2, 1 −1, 0 −1, 0
1 Burn, D −1, 0 −1, 0 0, 3 0, 3

Not burn, U 3, 1 0, 0 3, 1 0, 0
Not burn, D 0, 0 1, 3 0, 0 1, 3

Compare this to Example 1!

Example (Hawk-Dove): Each player wants to be a hawk against a dove, but
not hawk against a hawk.

2
D H

1 D 3, 3 1, 4
H 4, 1 0, 0

.



3.2.3 Zero-sum games

• A two player game h{1, 2}, (ui), (Ai)i has a zero-sum property if u1(a1, a2) =
−u2(a1, a2), for all (a1, a2) ∈ A1 ×A2. This implies, in particular, that
u1(σ1, σ2) = −u2(σ1, σ2), for all σ ∈ ∆1 ×∆2.

• Many games have the zero-sum property, sports, contests, politics,... .

• Player 1’s minimax payoff is
ū1 = min

σ2∈∆2
max
σ1∈∆1

u1(σ1, σ2),

and player 2’s minimax payoff is

ū2 = min
σ1∈∆1

max
σ2∈∆2

u2(σ1, σ2).



• The next proposition shows that in zero-sum game every Nash equilibrium
generates players the same payoffs. Thus the payoffs of the game are
uniquely specified.

Proposition: Every Nash equilibrium induces payoffs (ū1, ū2).

• Suppose that (σ∗1, σ∗2) is a Nash equilibrium of the game. Then u2(σ∗1, σ∗2) ≥
u2(σ

∗
1, σ2), for all σ2. Since u1 = −u2, we have u1(σ∗1, σ∗2) ≤ u1(σ

∗
1, σ2),

for all σ2. Thus u1(σ∗1, σ∗2) ≤ minσ2 u1(σ∗1, σ2) ≤ maxσ1 minσ2 u1(σ1, σ2).
Further, u1(σ∗1, σ∗2) ≥ u1(σ1, σ

∗
2) for all σ1. In particular, u1(σ

∗
1, σ

∗
2) ≥

minσ2 u1(σ1, σ2), for all σ1, so that u1(σ
∗
1, σ

∗
2) ≥ maxσ1 minσ2 u1(σ1, σ2).

Thus u1(σ∗1, σ∗2) = maxσ1 minσ2 u1(σ1, σ2) = ū1. Similarly for player 2.

• Note that since ū1 = −ū2 = −maxσ2 minσ1 u2(σ1, σ2) = minσ2 maxσ1−u2(σ1, σ2) =
minσ2 maxσ1 u1(σ1, σ2), we haveminσ2 maxσ1 u1(σ1, σ2) = maxσ1 minσ2 u1(σ1, σ2).



• Consider the game of tennis. Let pfb denote the probability that the server
(S) wins a point when he serves to forehand (f) when the responder (R)
anticipates a serve to the backhand (b) corner, and so on. Assume that
0 ≤ pff , pbb < pfb, pbf ≤ 1. That is, that the server wins with a higher
probability if he manages to serve to the corner to which the responder
does not expect the ball to come. The payoffs are

R
Fore Back

S Fore pff , 1− pff pfb, 1− pfb
Back pbf , 1− pbf pbb, 1− pbb

• The probability of winning when S serves to forehand is σR(Fore)pff +
σR(Back)pfb and to backhand σR(Fore)pbf + σR(Back)pbb. In the
unique mixed strategy Nash equilibrium, player S randomizes:

σR(Fore)pff + σR(Back)pfb = σR(Fore)pbf + σR(Back)pbb.



Thus, in equilibrium, the probability of winning a point from either corners
is equal, for any winning probability system pff , pbb, pfb, pbf . A testable
hypothesis!

3.3 Correlated equilibrium

• In Nash equilibrium, players actions are independent.

• One of the motivations of mixed strategy is that pure actions are actually
conditional on random, independent signals.

• What if the signals are not independent?



Correlated equilibrium: Probability distribution π over A is a correlated equi-
librium of strategic game hI, (ui)i∈I, (Ai)i∈Ii ifX

a−i
π(ai, a−i)ui(ai, a−i) ≥

X
a−i

π(ai, a−i)ui(a0i, a−i),

for all i, for all ai, for all a
0
i.

• That is, player i should not be able to gain by disobeyng the recommen-
dation to play ai if every other played obeys the recommendation.

• Every Nash equilibrium is a correlated equilibrium but not vice versa. The
Battle of Sexes game indeces a correlated equilibrium where plauers get
expected payoff (2/3, 2/3) (contrast this to the mixed Nash equilibrium).
This is achieved by tossing a fair coin, an conditioning the pure equilibria
to he result.



• Correlated equilibria have nice geometric features.

Theorem: Let A be finite. The set of correlated equilibria is convex.

• Rewriting the equilibrium conditionX
a−i

π(ai, a−i)δ(i, ai, a0i, a−i) ≥ 0, (3)

where where for all δ(i, ai, a0i, a−i) = (ui(ai, a−i)− ui(a
0
i, a−i)), for all

ai, for all a0i, and α−i shows that π is restricted by a finite collection of
linear constraints in a finitely dimensional equclidean space. Thus the set
of correlated equilibria is convex.

• This implies that also the utility set induced by correlated equilibria is a
convex. This can be handy in applications. The problem of maximizing



joint surplus in a social activity by some contractual arrangement reduces
to a linear programming problem: maxmimize surplus under the constraint


