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Abstract

We study coalition formation processes of Konishi and Ray (2003) [27]. It is shown that an absorbing
and deterministic process of coalition formation that also forms an equilibrium – satisfies a coalitional
one-deviation property – does exist if one allows the process to be history dependent. All such dynamic
equilibrium processes of coalition formation are characterized. Absorbing outcomes of dynamic equilibrium
processes are also identified. It is shown that they always constitute a subset of the largest consistent set
of Chwe (1994) [11]. A procedure that identifies a dynamic equilibrium process of coalition formation in
finite time is constructed.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

As discussed by Ray [35], models of farsighted coalitional behavior suffer from the so-called
prediction problem: the eventual profitability of a coalitional blocking cannot be predicted unless
one knows the coalitional behavior that the blocking triggers. Since further blockings should
be evaluated according to the same criterion as the original one, there may not be a concrete
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final step that defines the payoff, and from which to start the recursion.1 This is why static
solution concepts e.g. the core, are often in trouble.2 They restrict coalitional behavior in a way
that is against its fundamental dynamic nature. The aim of much of the modern literature of
coalition formation, originated by Rosenthal [38] and further developed e.g. by Greenberg [19],
Chwe [11], Xue [41], and Konishi and Ray [27], is to cope with the problem by associating
dynamic elements into the solution.3

Konishi and Ray [27] (henceforth KR) is an important paper in the recent literature on coali-
tion formation. They develop an extension of the one-shot coalition formation framework that
solves the prediction problem in an elegant way. In KR, payoffs of the agents do not materialize
only once but they accumulate over time depending on the evolution of the coalitional blockings.
A key benefit of this approach is that it allows consistent modeling of farsighted coalitional be-
havior: current coalitional move is justified by the prediction of the coalitional behavior that the
move induces. KR’s coalitional solution – equilibrium process of coalition formation – requires
that no coalition benefits from a single deviation in the process. They show that a (possibly)
randomized or cycling equilibrium process of coalition formation always exists.

This paper shows that a version of a deterministic and absorbing equilibrium process of coali-
tion formation exist if one drops the assumption that the processes are Markovian, i.e., if one
allows coalition formation processes to be history dependent.4 Such process of coalition for-
mation specifies which – if any – coalition blocks the current outcome on the table after the
history of blockings, and which outcome does the blocking coalition take on the table for the
next round. We characterize all history dependent, absorbing and deterministic equilibrium pro-
cesses of coalition formation, and compare them to the other solutions in the literature.

The key benefit of the assumption that coalition formation processes are deterministic and
absorbing is that such processes are easy to interpret in the classic one-shot framework. If block-
ing behavior is interpreted as coalitional negotiation prior to an agreement, it is not clear which
outcome the coalitions could “agree upon” if there is no outcome that remains unblocked. This
is the case when the process is cycling. When the process is absorbing, however, there will be a
finite sequence of transitory blockings after which the outcome on the table is no longer blocked.
Such outcome can be interpreted to become implemented in the one-shot sense.

Formally, we apply a version of the solution concept of KR to the classic one-shot framework
in which coalitions negotiate by blocking the outcome on the table. When the outcome on the
table is not blocked, it becomes implemented. We look at deterministic and terminating processes
of coalition formation that implement an outcome in finite time after any history blockings. In
the context of KR, they can be interpreted as deterministic and absorbing processes of coalition
formation. To highlight that a coalition formation process may now depend on the history, and

1 Shenoy [39] is one of the first contributions on blocking cycles. Harsanyi [23] and Aumann and Myerson [1] make a
clear case for the importance of farsightedness in coalitional analysis.

2 Barberà and Gerber [5] is an impossibility result concerning static concepts.
3 Other recent models of farsighted coalition formation include Ambrus [2], Herings et al. [22], Ray and Vohra [36],

Mariotti [29], Barberà and Gerber [4], Bloch and Gomez [8], Diamantoudi and Xue [15], and Conley and Konishi [12].
Relatedly, Chatterjee et al. [10], Bloch [7], Ray and Vohra [37], and Gomes and Jehiel [20] model coalition formation
noncooperatively via a protocol.

4 That history dependency in increases the number of noncooperative equilibria is well known (see e.g. Chatterjee et al.
[10]). To the best of our knowledge, however, Hyndman and Ray [24] and Mariotti [29] are the only papers that analyze
history dependency in the coalitional set up. KR discusses on history dependent coalition formation processes but do not
analyze them in detail.
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since there are some technical differences to the solution of KR (see below), we term our solution
as the dynamic equilibrium process of coalition formation.

We characterize dynamic equilibrium processes of coalition formation by identifying a collec-
tion of finitely long play paths – finite, since our focus is on terminating processes – that describe
how the play proceeds after different histories. Such collection of paths, called a consistent path
structure, has the following properties: the final outcome of a path is weakly preferred to any
outcome along the path for the coalition that is active at that outcome, and a deviation by the
active coalition from a path leads to another one in the collection of paths whose final outcome
is not preferred by the deviating coalition relative to that of the original path. Our characteriza-
tion result says that any dynamic equilibrium process of coalition formation can be associated to
a consistent path structure, and vice versa. Moreover, we demonstrate that it is without loss of
generality to focus on path structures containing only finitely many paths.

A consistent path structure and, hence, a dynamic equilibrium process of coalition formation
is shown to exists. We identify the largest consistent path structure (in the sense of set inclusion).
The set of final elements of the paths in this structure contains all the outcomes that can be
implemented via any dynamic process of coalition formation. We show that this set is a subset of
the largest consistent set of Chwe [11].

The fundamental difference between our solution and the consistent set of Chwe [11] is that
where the latter focuses on the stability of an outcome, we test the stability of the path that leads
to the implemented outcome. Since, as a special case, we also test the stability of the path at
its final step, it turns out that our solution also implies the stability criterion of Chwe [11]. This
explains why our solution can be thought as a refinement of the largest consistent set.

Our characterization allows us to establish results concerning the computability of our solu-
tion. This is an important issue in our context since the basis of our solution – the set of all finite
play paths – is typically infinite. We construct an explicit procedure that identifies the outcomes
that are implementable via any dynamic equilibrium process of coalition formation. This pro-
cedure terminates in finite (bounded) time. Moreover, we show that there is essentially no loss
of generality in assuming that the processes of coalition formation are finitistic in the sense that
they have only finite memory (they are finite state Markov chains), and that they implement an
outcome in bounded time. Thus starting from any history, there is an upper bound on the number
of rounds in which the outcome becomes implemented.

The Coase theorem famously asserts that, in the absence of deadlines and other barriers on
negotiation, interaction between agents always leads to efficiency. However, we demonstrate via
an example that dynamic equilibrium processes of coalition formation are not always efficient (in
our example every dynamic equilibrium process of coalition formation induces only inefficient
outcomes).

To see how history dependency works, let us consider the “roommate problem” in KR (Ex-
ample 10). There are three players {1,2,3}, three choices {x, y, z}, and payoffs are

x y z

Player 1 1 0 a

Player 2 a 1 0
Player 3 0 a 1

where a ∈ (0,1). The game is depicted in the commuting diagram in Fig. 1(a), where x →{2,3} y

means that coalition {2,3} may replace x on the table by taking y on the table, etc. An outcome
on the table is implemented if it is not blocked by the eligible coalition.
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(a) (b)

Fig. 1.

KR demonstrate that this game lacks an absorbing and deterministic equilibrium process of
coalition formation, i.e., a plan that specifies optimally whether an eligible coalition should block
the current outcome on the table or not, given how the process behaves in the future (a random-
ized or, depending the value of parameter a, a cyclic equilibrium process of coalition formation
does exist). We now argue that the game has an absorbing deterministic equilibrium process of
coalition formation if one lets the process have memory.

Let histories affect the coalitional process via two phases q and q ′, as follows. Divide the
set of outcome-phase configurations {x, y, z} × {q, q ′} into two groups, terminal configurations
{(x, q), (y, q), (z, q)} and transitory ones {(x, q ′), (y, q ′), (z, q ′)}. Let the phase transitions from
one configuration to another be determined as depicted in Fig. 1(b): if the process moves away
from a terminal configuration, then the phase changes from q to q ′, and if the process moves
away from a transitory configuration, then the state changes from q ′ to q . Finally, let the phase
dependent coalitional process implement the status quo outcome if the current configuration is
terminal, and let the process move to the next configuration by changing the outcome on the table
if the current configuration is transitory.

The constructed history dependent process of coalition formation reflects optimality in the
sense that no coalition benefits from a one-time deviation in it. In a terminal configuration, say
(x, q), a deviation leads to implementation of z via a transitory configuration (y, q ′). This change
is not profitable from the viewpoint of the deviating coalition {2,3}. In a transitory configuration,
say (y, q ′), a deviation would lead to the implementation of y (as this is the only alternative to
the continuation to (z, q)), instead of z. Again, this change is not profitable from the viewpoint
of the deviating coalition {1,2}.

What is crucial in this construction is that there are different continuations from a given status
quo outcome depending on the way the status quo is reached. Hence the process must have
memory.

To see how the solution restricts outcomes that can be implemented, think of the case of
Prisoners Dilemma. There are four outcomes CC, CD, DC, DD, and payoffs



676 H. Vartiainen / Journal of Economic Theory 146 (2011) 672–698
2
C D

1 C 3,3 0,4
D 4,0 1,1

The play can be moved from any outcome to another by the grand coalition, between outcomes
on a row by the row player 1, and between outcomes on a column by the column player 2. As
discussed by Chwe [11], the largest consistent set contains only the cooperative outcome CC.
Hence also any dynamic equilibrium process of coalition formation implements CC. To see
why, note that any dynamic equilibrium process of coalition formation can only implement CC

or DD. Otherwise, under CD (DC), the row (column) player would benefit from a one-time
deviation. This is since the row player must be active if the equilibrium play moves away from
DD, and hence the deviation cannot make him worse off relative to DD. Of the two potentially
implementable outcomes CC and DD, the only feasible one is CC since otherwise the grand
coalition would benefit from a one-time deviation to the process, given that the only possible
continuation path from CC can only lead to the implementation of CC – the other alternative
DD makes both the players worse off. Hence the one-time deviation principle implies that a
terminating process of coalition formation implements CC even if the process may be history
dependent.

There are two technical differences to the way the solution is formulated in KR (apart from
history dependency). First, our focus is on the properties of the solution that reflect coalitional
optimality. These considerations are captured by a coalitional version of the one-deviation prin-
ciple. As a consequence, we only require a weak coalitional preference for transition from the
current status quo to the next one (as opposed to KR who require strict preference when the status
quo outcome is not an efficient move for all coalitions). Second, when interpreted the solution
in the real-time framework of KR, we evaluate the intertemporal payoffs of the players by the
limit-of-the-means criterion rather than discounting. In the modeling of KR, this case can be seen
as the full farsightedness-benchmark. These differences notwithstanding, the key aspects of the
solutions (i.e., the coalitional optimality and farsightedness) are the same.

It is important to recognize that our focus on deterministic and absorbing coalition formation
processes is not a restriction on the players’ rationality. Rather, it is an additional condition on
top of the other conditions that reflect coalitional rationality (due to KR). The purpose of this
extra condition is to make the solution applicable in one-shot coalitional games. Note that our
solution concept requires coalitional rationality also at off-equilibrium histories.

There are interesting connections to other coalitional solutions concepts, in particular to the
largest consistent set of Chwe [11], the conservative stable standard of behavior of Greenberg
[19] and Xue [41], and the full coalitional equilibrium of Mariotti [29]. Formal discussion of the
connections to this literature is found in Section 6.

Independently of this study, Flesch et al. [18] prove that a subgame perfect equilibria always
exists in a class of perfect information recursive games. While their existence result does not
imply (nor is it implied by) our existence result, the core arguments are similar. An additional
contribution of our paper is, however, the complete characterization of equilibria in terms of play
paths and, in particular, the maximally large equilibria. We also give the equilibrium a “solution”
interpretation by characterizing the outcomes that are implementable within it, and compare it to
the other solutions in the literature.

Section 2 defines the model and the solution concept. Section 3, which constitutes the main
part of the paper, characterizes dynamic equilibrium processes of coalition formation and demon-
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strates its existence. Section 4 establishes a finite procedure to compute a dynamic equilibrium
process of coalition formation and Section 5 discusses the finitistic aspects of the solution.
Section 6 compares our solution to the aforementioned solutions in the literature. Section 7 com-
ments briefly the efficiency of the solution, and Section 8 concludes with some discussion.

2. Coalitional game

A coalitional game (see Rosenthal [38], Greenberg [19], Chwe [11]) is defined by a list

Γ = 〈
N,X, (FS)S⊆N, (�i )i∈N

〉
,

where N is a finite set of players, X is a nonempty finite set of states or nodes or outcomes,
a choice set FS(x) ⊆ X ∪ {∅} such that ∅ ∈ FS(x) specifies the set of actions or effectiveness
relations FS(x) available to a coalition S ⊆ N at node x ∈ X. Each player i ∈ N has a preference
relation �i over the set of outcomes X.

The game is played in the following manner: There is an initial status quo x0. At period t =
0,1, . . . , coalition S can challenge the current status quo outcome xt by demanding an outcome
y ∈ FS(xt ). In such case, y becomes the new status quo at period t +1. If no coalition challenges
xt , then x becomes implemented. Only one coalition may be active at a time.

This model embodies several classic models, such as characteristic function games, games
in strategic form or majority voting games. However, it can also encompass games in partition
function form (e.g. Banerjee et al. [3], Bogomolnaia and Jackson [9], Papai [34], Diamantoudi
and Xue [14] and [15], Ray and Vohra [36], Barberà and Gerber [4]), or networks (e.g. Jackson
and Wolinsky [26], Dutta and Mutuswami [13], Jackson and van den Nouweland [25], Page
et al. [33]). For concrete examples of games falling into these categories, see Chwe [11] or
Ray [35]. In its general abstract form, the game has been analyzed by Chwe [11], Xue [40], and
Konishi and Ray [27]. The origins of this modeling tradition were laid down by Rosenthal [38]
and Greenberg [19].

In the remainder of this paper, we make the following assumption which simplifies the expo-
sition: For all x, y ∈ X, there is at most one coalition S such that y ∈ FS(x). This coalition is
denoted by S(x, y).

The only role of this assumption is to reduce the notational burden, so that when moving from
x to y we do not need to specify which coalition induces the move.5 To see why the assumption
is without loss of generality note that it actually only requires that each outcome be indexed by
the coalition that brought the outcome as the status quo (and the initial outcome is indexed by the
empty set).6 Hence the assumption imposes no restrictions on the underlying physical structure.
In particular, it does not affect any of the results.7

Paths. A path is a finite sequence (x0, . . . , xK) of outcomes such that xk+1 ∈ ⋃
S FS(xk), for all

k = 0, . . . ,K . The length of the path (x0, . . . , xK) is K . Denote the set of all paths by

5 The assumption allows presenting the histories of play in terms of the nodes alone. Otherwise, a history should also
specify which coalitions have been active along the play path.

6 If Y is the underlying physical outcome space, then we may let X = Y × 2N such that (y, S) ∈ X if and only if y is
the physical outcome on the table and S is the most recent active coalition, and S = ∅ if y = x∗.

7 The only consequence of the assumption is that some of the outcomes may have multiple representations in the set of
outcomes. Since no restrictions are imposed on preferences over outcomes, this does not affect the characterization nor
the existence results.
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X =
{
(x0, . . . , xK): xk+1 ∈

⋃
S

FS(xk), for all k = 0, . . . ,K, for all K = 0,1, . . .

}
.

Further, denote the set of paths that start from node y by

Xy = {
(x0, . . . , xK) ∈ X : x0 = y

}
.

For any collection B ⊆ X of paths, denote the subcollection of paths that start from node y by

By = B ∩ Xy.

A path is abbreviated by x̄ = (x0, . . . , xK). By our expositional assumption, a path x̄ also implic-
itly defines the coalitions that are active along the play. Denote the final element xK of the path
(x0, . . . , xK) by

μ
[
(x0, . . . , xK)

] = xK.

Process of coalition formation. Denote the set of finite histories by H := Xx0 . A deterministic
process of coalition formation PCF σ is a function σ : H → X ∪{∅}. The interpretation of a PCF
is that if σ(h, x) = y ∈ X, then the coalition S(x, y) changes the status quo from x to y, and
if σ(h, x) = ∅, then no coalition is active and x becomes implemented. Thus, a PCF specifies
which – if any – coalition is active at a given history, and which outcome is the new status quo.

Denote, in the usual way, by σ t (h) the t th iteration of σ starting from h, i.e., σ 0(h) = σ(h)

and σ t (h) = σ(h,σ 0(h), . . . , σ t−1(h)), for all t = 1, . . . . A PCF σ is terminating if, for any
h ∈ H there is Th < ∞ such that σTh+1(h) = ∅. That is, after any history h, the process will
implement the outcome σTh(h).

Let σ̄ (h) denote the sequence of status quos in X that is induced by the strategy σ from the
history h onwards

σ̄ (h) = (
σ 0(h), σ 1(h), . . .

)
.

If σ is terminating, then σ̄ (h) is finite and μ[σ̄ (h)] is well defined, for all h. Specifically, for a
terminating PCF σ , if coalitional action a ∈ X ∪ {∅} is chosen at history (h, x) ∈ H , then

μ[σ̄ (h, x, a)] =
{

μ[σ̄ (h, x, y)], if a = y ∈ X,

x, if a = ∅.
(1)

In particular, μ[σ̄ (h, σ (h))] = μ[σ̄ (h)].

The solution. Our primary question is whether equilibrium reasoning is compatible with the
idea that a deterministic PCF is terminating. Our equilibrium condition, which is an amended
version of the solution in KR, is defined next.

Use the following notation for group preferences. For any S ⊆ N , and x, y ∈ X,

y �S x if y �i x, for all i ∈ S,

y �S x if y �i x, for all i ∈ S.

Fix a PCF σ and a history (h, x). We say that coalition S has a weakly preferred move a ∈ FS(x)

from x if μ[σ̄ (h, x, a)] �S x. Further, a move a ∈ FS(x) is efficient for coalition S if there is no
b ∈ FS(x) such that μ[σ̄ (h, x, b)] �S μ[σ̄ (h, x, a)].

Now we specify our equilibrium condition. To avoid repetition, we use the abbreviation of the
term in the main body of the paper.
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Definition 1 (DEPCF). A deterministic terminating process of coalition formation σ is a dynamic
equilibrium process of coalition formation (DEPCF) if, for all (h, x) ∈ H ,

1. σ(h, x) ∈ X implies that σ(h, x) is an efficient and weakly preferred move from x for coali-
tion S(x,σ (h, x)).

2. σ(h, x) = ∅ implies that ∅ is an efficient move from x, for any coalition S.

Thus a coalition is allowed to change the current status quo only if all its members agree on
the move to the new status quo and cannot find any strictly better alternative, given that the PCF
is followed ever after. Moreover, if there is a strictly profitable move for some coalition, then the
status quo must change.

Our solution can be interpreted as a coalitional version of the one-deviation principle: after
any history there is no profitable one-shot deviation for any coalition. Note that this also implies
that there cannot be a finitely long deviation that is profitable for all the coalitions along the
deviation sequence.

To understand the novel aspects of the solution concept, it may be useful to divide possible
solutions into two cases. In case 1, the coalitional action is only dependent to the current status
quo outcome. Then, starting from any given status quo outcome, the implemented outcome is
uniquely achieved in finite sequence of coalitional moves. This case corresponds the equilibrium
notion of KR. However, in case 2, our equilibrium process may depend on the past history of
play. That is, the continuation play path and the eventually implemented outcome does no longer
depend on the status quo alone. However, since the history is always uniquely defined, the process
does determine uniquely and in finite steps (since the process is terminating) the outcome that
is to be implemented. This also applies to the initial history. The interpretation of the process is
now analogous to that of a strategy in infinitely long noncooperative games.

Note also that the equilibrium condition of KR is slightly more stringent in that it requires
that if there is a strictly profitable move for some coalition, then the equilibrium move must also
be strictly preferred for some (not necessarily the same) coalition.8 Our condition only requires
the move to be weakly preferred. Closer discussion of the relation to KR and other solutions is
found in Section 4.

Inducible paths and implementable outcomes. In the remainder of this study, we characterize
DEPCFs and verify their existence. Since the play path as well as the eventually implemented
outcome may be sensitive to the choice of the initial status quo, which is usually somewhat
arbitrary, it is natural to focus on paths that are inducible in DEPCF independently of how
their first element has been reached. Our main interest is in outcomes that are implementable
in DEPCF after some initial history.

More formally, paths that are induced in a PCF σ after some history of play are

σ̄ (H) = {
x̄ ∈ X : σ̄ (h) = x̄ and h ∈ H

}
.

Denoting the set of final outcomes of a collection paths B by μ[B] = {μ[x̄]: x̄ ∈ B}, the set of
outcomes that are implementable in a terminating PCF σ is written as

μ
[
σ̄ (H)

] = {
x ∈ X: μ[x̄] = x and x̄ ∈ σ̄ (H)

}
.

8 That is, μ[σ̄ (h, x)] �S x for some S.
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Any outcome in μ[σ̄ (H)] ⊆ X, and nothing outside, can be implemented in a PCF σ by changing
the initial history.

3. Characterization

A path (x0, . . . , xK) ∈ X is said to be feasible if

xK �S(xk+1,xk) xk,, for all k = 0, . . . ,K − 1. (2)

That is, a path is feasible if following the path is not worse for any member of the active coalitions
than stopping the game would be, provided that the final outcome of the path will be reached.
Denote the set of feasible paths by F ⊆ X . Property 1 of Definition 1 means that any path that
is played in DEPCF is necessarily feasible. It is therefore convenient to work directly in terms of
feasible paths.

Now we characterize DEPCFs in terms of the primitive data alone, i.e., in terms of feasible
paths. To this end, we define a dominance relation over the paths. Recall that Fy is the set of
feasible paths that originate from node y.

Definition 2 (Path Dominance). A path ȳ ∈ F dominates a path x̄ ∈ X at the kth step, denoted
by ȳ �k x̄, if y ∈ FS(xk), ȳ ∈ Fy , and μ[ȳ] �S μ[x̄], for S = S(xk, xk+1).

That is, if outcome xk is reached along the path x̄, then there is an active coalition at xk

that benefits from moving the play to path ȳ under the hypothesis that the final element of ȳ is
implemented and reached rather than that of x̄.

Definition 3 (Consistent Path Structure). A collection of feasible paths C ⊆ F is a consistent
path structure (CPS) if,

(i) Cx is nonempty, for all x ∈ X,
(ii) for any x̄ ∈ C, there are no k and y such that ȳ �k x̄ for all ȳ ∈ Cy .

A consistent path structure can be given a “blocking” interpretation as follows. (i) For any
initial status quo node there is a feasible path in the consistent path structure that guides how the
play evolves. (ii) If an active coalition along the play path deviates from the path to a new node,
then there is a path in the consistent path structure that starts from the new status quo and ends in
an outcome that does not improve the payoffs of the members of the deviating coalition relative
to what would be obtained if the original path had been followed.

We now claim that a consistent path structure features stability in the sense required by DE-
PCF. The core of the argument is that any path of a consistent path structure is sustainable if any
deviant coalition can be punished. However, according to Definition 3(ii), punishment is feasible
if it is true that any path of a consistent path structure can be played. Hence an element of a
consistent path structure is robust against one-shot (finitely many) deviations in a consistent way.

Intuitively, a consistent path structure does not aim to rule out outcomes only with confidence,
as does the largest consistent set of Chwe [11]. Rather, the idea is to identify precisely the paths
that are playable in equilibrium. The challenge is to answer what will happen after a (counter-
factual) deviation since the knowledge of this makes the deviation unprofitable for the deviating
coalition. Since this test should be passed by all paths, including the one that is followed after
the (counterfactual) deviation and so on, there are no paths that are “unreasonable”.
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Now we verify the above argument formally, i.e., that for any consistent path structure there
exists a DEPCF. Let C be a consistent path structure. Identify a function ξ on C ×N×X such that
ξ(x̄, k, y) ∈ Cy and ξ(x̄, k, y) �k x̄, for all (x̄, k, y) such that y ∈ FS(xk,xk+1)(xk) \ {xk}. Since C
satisfies Definition 3, such a function does exist.

We now construct a deterministic and terminating PCF σ ∗ : H → X that is based on the
function ξ . It is convenient to describe σ ∗ as a deterministic Markov chain (σ ∗ : Q,g, x̄0), where
Q is a set of states on which the process σ ∗ operates, g is a transition function from Q×X to Q,
and x̄0 ∈ Cx0 is an initial path (which exists by Definition 3(i)). In Section 5 we shall argue that
it is without loss of generality to assume that the set of states Q is finite.

Let the set of states Q consist of pairs of paths and integers as follows:

Q = {
(x̄, k): x̄ = (x0, . . . , xK) ∈ C and 0 � k � K

}
. (3)

Start with the path x̄0. Let the transition function g satisfy, for any x̄ = (x0, . . . , xK) ∈ C , for any
k = 0, . . . ,K − 1, and for any y ∈ X,

g
(
(x̄, k), y

) =
{

(x̄, k + 1), if y = xk+1,

(ξ(x, k, y),0), if y �= xk+1.
(4)

Proceeding recursively from x0, the set of histories H is partitioned by the set Q.
Let the PCF σ ∗ be conditional on the current state (x̄, k) ∈ Q, where x̄ = (x0, . . . , xK), such

that:

σ ∗(x̄, k) =
{

xk+1, if k < K,

∅, if k = K.
(5)

That is, the PCF continues along the path x̄ = (x0, . . . , xK) and implements xK when the end of
the path is reached.

Lemma 1. σ ∗ is a dynamic equilibrium process of coalition formation.

Proof. Termination: Take (q, y) ∈ Q×X and let g(q, y) = (x̄, k) ∈ Q, where x̄ = (x0, . . . , xK).
Then, applying (4) and (5) recursively, σ ∗ implements an outcome in at most K − k steps. Since
(q, y) was an arbitrary element of Q × X, σ ∗ is terminating.

To obtain equilibrium condition (1), take any path x̄ = (x0, . . . , xK) and state (x̄, k) ∈ Q.
Suppose that σ ∗(x̄, k) is not an efficient move from xk for coalition S = S(xk+1, xk). Then there
is y ∈ FS(xk) \ {xk+1} that induces a path ξ(x̄, k, y) such that μ[ξ(x̄, k, y)] �S μ[x̄]. But by
the definition of dominance, ξ(x̄, k, y) �k x̄ which contradicts part (ii) of a definition of CPS C .
Moreover, by construction, x̄ ∈ F , which implies that μ[x̄] �S xk .

Equilibrium condition (2) is now obtained by replacing k < K with k = K , coalition
S(xk+1, xk) with any coalition S, and y ∈ FS(xk) \ {xk+1} with y ∈ FS(xK), and following the
first sentence of the proof of condition (1). �

To fully characterize equilibrium strategies, consistent path structures need to be completed
in the following sense: A consistent path structure C is complete if (x0, . . . , xK) ∈ C implies
(xk, . . . , xK) ∈ C , for all k = 0, . . . ,K . That is, following a path in C is consistent with staying on
a path in C . Note that the completion is a purely expositional operation; existence of a complete
C or its uniqueness is never an issue once C is specified.

Given a complete consistent path structure C and strategy σ ∗ defined on it, let σ̄ ∗(q) denote
the path followed once q ∈ Q has materialized. By construction,
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σ̄ ∗(x̄, k) = (xk, . . . , xK), for all (x̄, k) ∈ Q.

In particular, by the construction of σ ∗,

σ̄ ∗(x̄,0) ∈ C.

Thus, by the definition of completeness of C ,

σ̄ ∗(x̄, k) ∈ C, for all (x̄, k) ∈ Q.

Thus σ̄ ∗(Q) ⊆ C . Moreover, since σ̄ ∗(x̄,0) = x̄, for all x̄ ∈ C , it follows that C ⊆ σ̄ ∗(Q). We
therefore have

σ̄ ∗(Q) = C. (6)

That is, for any consistent path structure C , we can find a DEPCF that induces the corresponding
complete C .

Now we prove the converse of Lemma 1, which is that a consistent path structure characterizes
behavior in any DEPCF, i.e., that any collection of equilibrium paths is equivalent to a consistent
path structure.

Lemma 2. Let σ be a dynamic equilibrium process of coalition formation. Then there is a com-
plete consistent path structure C ⊆ F such that σ̄ (H) = C .

Proof. Take any (h, x) ∈ H . Then a finite path σ̄ (h, x) exists since σ is terminating. We check
both the defining conditions of CPS.

(i) By construction, σ̄ (h, x) ∈ Xx . Since σ is a DEPCF, σ̄ (h, x) ∈ F . Thus σ̄ (h, x) ∈ Fx .
(ii) Let σ̄ (h, x0) = (x0, . . . , xK) = x̄. First, take any k < K and any y ∈ FS(xk) \ {xk+1}, for

S = S(xk, xk+1). Since xk+1 is efficient for S, it must be the case that μ[ȳ] �S μ[x̄], where
σ̄ (h, x0, . . . , xk, y) = ȳ. That is, for any choice of k and y there is ȳ ∈ σ̄ (H) ∩ Fy such that
ȳ �k x̄.

Second, take k = K and any y ∈ FS(xK), for S = S(xK,y). Since ∅ is efficient for S, it must
be the case that μ[ȳ] �S μ[x̄] = xK , where σ̄ (h, x0, . . . , xk, y) = ȳ. That is, for any choice of y

there is ȳ ∈ σ̄ (H) ∩ Fy such that ȳ �K x̄.
Finally, we argue that the CPS is also complete. Let (x0, . . . , xK) = σ̄ (h). It suffices to

show that (x1, . . . , xK) = σ̄ (h, x0). But this follows from the recursive structure of σ̄ (h, x0) =
(σ (h), x1, . . . , xK). �

One the one hand, by Lemma 1 and condition (6), any consistent path structure can be sup-
ported by a DEPCF. On the other hand, by Lemma 2, a DEPCF induces behavior consistent with
a consistent path structure. We compound these observations in the following characterization.

Theorem 1. A deterministic and terminating process of coalition formation σ is a dynamic equi-
librium process of coalition formation if and only if there is a complete consistent path structure
C such that C = σ̄ (H).

Theorem 1 permits us also to characterize the outcomes that are implementable within a DE-
PCF. The set of outcomes that are implementable within a consistent path structure C coincide
with the set of outcomes that are inducible via a DEPCF and, conversely, the set of outcomes that
are implementable within an equilibrium coincide with the set of outcomes that are inducible
within C . Summing up these results provides a useful corollary.
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Corollary 1. There is a dynamic equilibrium process of coalition formation σ such that
μ[σ̄ (H)] = B if and only if there is a consistent path structure C such that μ[C] = B .

This result does not, however, say anything about the existence of a consistent path structure
nor how it can be identified. The next section identifies the maximal consistent path structure,
and shows that it always exists. This guarantees the existence of a solution.

4. Existence

The aim of this subsection is to prove that a consistent path structure and, hence, a DEPCF
does exist. To this end, we need to develop some new concepts. The concepts, which are cru-
cial for the existence result, are inspired by their cousins in the social choice literature.9 For
expositional reasons, we shall use abbreviations of the concepts in the main body of the paper.

Let B be a set of paths.

Definition 4. Path x̄ ∈ X is covered in B via node y if there is k such that ȳ �k x̄, for all ȳ ∈ By .

That is, a path x̄ is covered via node y in set B of paths if, at some particular node (the
“kth”) of x̄, the members of the active coalition profit by directing the play to node y rather than
continuing along x̄, no matter which paths in the set B set is followed after the deviation (under
the hypothesis that the final element of played path is implemented).

Denote by uc(B) the subset of elements in B that are uncovered in B ⊆ X , i.e.,

uc(B) = {x̄ ∈ B: x̄ is not covered in B}.
By construction, uc(B) ⊆ X ∪ {∅}.

We now strengthen the concept by iterating the uncovered-operator until no paths are left
to be covered. Set UC0 = F , and let UCt+1 = uc(UCt ) ⊆ F , for all t = 0, . . . . The ultimate
uncovered set UUC ⊆ F satisfies UUC := UC∞.

Our aim is to show that UUC is a consistent path structure. That is, in addition to the condi-
tions stated in Definition 3, we need to verify that UUC is a well-defined concept, and that under
all status quos it contains a path that gives guidance how to proceed. It suffices to show that UUC
is reached in finitely many iterations, and that UCt

y is nonempty for all y and t .

Lemma 3. The ultimate uncovered set UUC does exist. Moreover, UUCy is nonempty, for all
y ∈ X.

The proof of this important result is relegated to Appendix A. The difficult part is to show that
UCt

y is nonempty for all y and t .
We now state our existence result: the ultimate uncovered set UUC is a consistent path struc-

ture.10 By Lemma 3, it suffices to show that no element in UUC is covered in UUC.

Theorem 2. The ultimate uncovered set UUC is a consistent path structure.

9 See Fishburn [17], Miller [31], and Dutta [16]. Laslier [28] is an in-depth survey. The existence result in Chwe [11]
is based on a similar iterative argument.
10 See also Flesch et al. [18].
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Proof. By construction, UUC ⊆ F . Thus it suffices to check parts (i) and (ii) of Definition 3.
(i) By Lemma 3, UUCy is nonempty, for all y ∈ X.
(ii) By the construction of UUC, uc(UUC) = UUC. Thus x̄ ∈ UUC is not covered in UUC,

i.e., there is no y and k such that ȳ �k x̄, for all ȳ ∈ UUCy . �
The next result shows that UUC is the (unique) maximal consistent path structure in the sense

of set inclusion.

Theorem 3. The ultimate uncovered set UUC contains as a subset any consistent path structure.

Proof. Let C be a CPS. Take any x̄ ∈ C .
1st iteration: Since x̄ satisfies Definition 3(ii), and C ⊆ F , it follows that x̄ is not covered in

UC0 = F . Hence x̄ ∈ uc(F ) = UC1. Since x̄ was arbitrary, C ⊆ UC1.
2nd iteration: Since x̄ satisfies Definition 3(ii), and C ⊆ UC1, it follows that x̄ is not covered

in UC1. Hence x̄ ∈ uc(UC1) = UC2. Since x̄ was arbitrary, C ⊆ UC2.
...

T th iteration: Since x̄ satisfies Definition 3(ii), and C ⊆ UCT −1, it follows that x̄ is not cov-
ered in UCT −1. Hence x̄ ∈ uc(UCT −1) = UCT . Since x̄ was arbitrary, C ⊆ UCT =: UUC. �

Since the UUC is obtained via a well-defined recursive process, there is no question about its
existence. By Theorems 2 and 1, one can construct a DEPCF on UUC. Hence we can conclude
that a dynamic equilibrium process of coalition formation is guaranteed to exist.

Corollary 2. There is a dynamic equilibrium process of coalition formation σ such that σ̄ (H) =
UUC.

By Theorem 3, we have also characterized outcomes that are implementable with any equi-
librium.

Corollary 3. The set of outcomes that are implementable via any dynamic equilibrium process
of coalition formation is contained in μ[UUC].

5. Computational considerations

The problem with game theoretic solution concepts is often their computability. Such ques-
tions are particularly acute here since the set of paths X typically contains an infinite number
of elements. It is not clear a priori whether coalitional equilibria, or the outcomes they imple-
ment, can be identified via a procedure that terminates in finite time. The applicability of such a
solution would be questionable.11

We now show that these concerns are unwarranted. A convenient algorithm for computing
the relevant elements of the ultimate uncovered set, i.e., the largest consistent path structure, is
provided. This algorithm, which terminates in finite time, thus generates a complete description
of the outcomes that can be implemented via a dynamic process of coalition formation.

11 See Dutta [16] for a related and inspiring discussion.
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In order to establish the results, we describe the information related to a path in the simplest
possible form. We say that ȳ = (y0, . . . , yL) ∈ X is a reduction of x̄ = (x0, . . . , xK) ∈ X if x0 =
y0, xK = yL, and {(yl, yl+1)

L−1
l=0 } ⊆ {(xk, xk+1)

K−1
k=0 }. Then ȳ is a full reduction of x̄ if it is a

reduction of x̄ and if the only reduction of ȳ is ȳ itself. That is, ȳ contains a minimum amount of
edges of x̄ that are needed to travel from x0 to xK . Note that the reduction relation is transitive.
Since the paths contain at most finitely many distinct elements, each x̄ has a full reduction.
However, a full reduction of x̄ need not be unique.

For any set B of paths, denote by fr(B) the collection of all full reductions of the elements in B,
i.e., the elements of X that are full reductions of B. Note that any path (x0, . . . , xK) that contains a
cycle such that xk = xl for some k < l, cannot be a full reduction since (x0, . . . , xk, xl+1, . . . , xK)

is a reduction of (x0, . . . , xK) but not vice versa. Thus, since any fully reduced path is acyclic and
since X contains finitely many elements, the set of fully reduced paths fr(X ) can be identified in
finite time.

The full reduction-operation preserves two important aspects of consistent paths structures:
the initial status quo and the feasibility. More formally,

B ⊆ Fx implies fr(B) ⊆ Fx. (7)

The following observation is now easily deduced from (7).

Lemma 4. If C is a consistent path structure meeting Definition 3, then so is fr(C).

Thus, when identifying consistent path structures – or outcomes that can be implemented via
them – it is in general sufficient to focus on consistent path structures that are composed of
fully reduced feasible paths fr(F ). In particular, the fully reduced form of the feasible ultimate
uncovered set fr(UUC) is a consistent path structure.

Now we describe a finite procedure that identifies the fully reduced ultimate uncovered set
fr(UUC). Identify fr(F ). Define recursively the uncovered set and its iterations on the set of
fully reduced paths: UC0

FR = fr(F ) and UC
j+1
FR = uc(UC

j
FR) for all j = 0, . . . . The fully re-

duced ultimate uncovered set is then defined by UUCFR = UC∞
FR. Since, by the argument made

in Lemma 6, only finitely many iterations are needed for UCt
FR to converge. UUCFR can be

identified in finite time.
Thus UUCFR can be identified in finite time. Our aim is to show that UUCFR is a CPS and

contains as subsets all fully reduced CPSs. This implies that the endpoints of the paths in UUCFR

are the outcomes that are implementable in any dynamic equilibrium process of coalition forma-
tion.

Our first task is to show that UUCFR coincides with fr(UUC) and is contained in UUC.

Lemma 5. fr(UUC) = UUCFR ⊆ UUC.

Proof. Claim 1. UCt
FR ⊆ UCt , for all t .

Proof. Let t be the first stage in which x̄ ∈ UCt
FR \ UCt for some x̄. Hence UCt−1

FR ⊆ UCt−1.
But then, by the definition of covering, since x̄ is covered in UCt−1, it must be covered in UCt−1

FR .
But this contradicts x̄ ∈ UCt

FR. �
Claim 2. fr(UCt) ⊆ UCt , for all t .
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Proof. Let t be the first stage in which there is x̄ ∈ fr(UCt ) \ UCt . Since x̄ ∈ fr(UCt ), x̄ must
be a full reduction of some ȳ ∈ UCt . But by the definition of full reduction, the assumption that
x̄ is covered in UCt−1 contradicts the assumption that ȳ is not covered in UCt−1. �
Claim 3. UCt

FR = fr(UCt) for all t .

Proof. Since the full reduction of a set of fully reduced paths is the set itself, it follows by Claim
1 that UCt

FR = fr(UCt
FR) ⊆ fr(UCt ), for all t . For the other direction, let t be the first stage in

which x̄ ∈ fr(UCt ) \ UCt
FR for some x̄. Hence, fr(UCt−1) ⊆ UCt−1

FR . But then, by the definition
of covering, since x̄ is covered in UCt−1

FR it must be covered in fr(UCt−1). By the definition of
full reduction, x̄ is also covered in UCt−1. Hence x̄ /∈ UCt . But then x̄ ∈ fr(UCt ) \ UCt , which
contradicts Claim 2. Thus fr(UCt ) ⊆ UCt

FR, for all t . �
Claim 4. fr(UUC) = UUCFR ⊆ UUC.

Proof. Combining Claims 1 and 3, we have fr(UCt ) = UCt
FR ⊆ UCt for all t . The fact that only

finitely many iterations are needed gives the result. �
From Lemmata 4 and 5 it now follows that also the largest consistent path structure can

be described directly in terms of fully reduced paths via the iterative procedure that identifies
UUCFR.

Theorem 4. UUCFR is a consistent path structure. Moreover, UUCFR contains as a subset any
fully reduced consistent path structure.

Proof. By Lemma 4, fr(UUC) is a CPS. By Lemma 5, fr(UUC) = UUCFR. Thus UUCFR is a
CPS.

By Theorem 2, UUC contains any CPS C as a subset. Thus, by Lemma 5, UUCFR contains
fr(C) as a subset. �

Furthermore, since the final element of a path is invariant with respect to the full reduction-
operation, i.e., μ[B] = μ[fr(B)] for any B ⊆ X , it follows that the outcomes that can be imple-
mented with UUC coincide with the outcomes that can be implemented with UUCFR.

Theorem 5. The set of outcomes that are implementable via any dynamic equilibrium process of
coalition formation is contained in μ[UUCFR].
Proof. By Corollary 3, Lemma 5, and since μ[UUCFR] = μ[UUC]. �

We have thus constructed a procedure that specifies, in finitely many steps, the outcomes
that can be implemented in any DEPCF. The collection of paths identified by the procedure
also contains the reduced forms of the paths of all DEPCFs and, moreover, it constitutes itself a
DEPCF.

6. Finitistic equilibria

We have assumed that the processes of coalition formation are history dependent and imple-
ment an outcome in finite time. These assumptions are problematic if (a) the process has to have
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infinite memory, (b) there is no upper bound on how long it will take to implement an outcome. In
this section we collect the results of the previous sections to argue that neither of these concerns
is warranted.

Recall that the dynamic process of coalition formation σ ∗ used in Lemma 1 uses a state
space Q that has the same cardinality as the consistent path structure C on which it is built.
By Lemma 4, a full reduction fr(C) of C is also a consistent path structure. In terms of real
consequences, however, fr(C) and C are equivalent, i.e., μ[fr(C)] = μ[C]. Since fully reduced
paths are necessarily acyclic, it follows that fr(C) contains finitely many elements. Since, by
Theorem 1, any consistent path structure can be identified with a DEPCF, we can conclude that,
in terms real of consequences (implemented outcomes) there is no loss of generality to assume
that the process is a finite state Markov chain.

Corollary 4. There is a dynamic equilibrium process of coalition formation (DEPCF) that is
a finite state Markov chain. Moreover, for any DEPCF there is another DEPCF, equivalent in
terms of implementable outcomes, that is a finite state Markov chain.

Moreover, since DEPCFs can be identified with consistent path structures, any property of
paths in a consistent path structure translates directly to an observation concerning equilibria.
Since fr(C) contains finitely many paths that are, at most, finitely long, the final element of any
path in fr(C) can be reached in finitely many steps. Hence Theorem 1 implies the following
corollary.

Corollary 5. There is a dynamic equilibrium process of coalition formation (DEPCF) that imple-
ments an outcome in uniformly bounded time after any history. Moreover, for any DEPCF there
is another DEPCF, equivalent in terms of implementable outcomes, that implements an outcome
in uniformly bounded time after any history.

7. Relation to other models

In this section, we relate our solution to some existing equilibrium notions of coalition forma-
tion.

7.1. Blocking in real time

In this section we relate our one-shot coalitional game to the model of real time blocking of
KR (Konishi and Ray [27]) (see also Ray [35]).12 Now X is interpreted as a set of states and ui

is a utility function of player i ∈ N over X. Analogously to the model above, FS(x) ⊆ X is the
set of states achievable by a one-step coalitional move in state x by a coalition S. It assumed that
x ∈ ⋂

S FS(x) to guarantee that staying in x – once reached – is possible.
Let H be the set of all histories of states (x0, . . . , xt ) such that x0 = x∗. A deterministic

process of coalition formation PCF is now a function p : H → X, capturing transitions from one
state to another. Letting p0(h) = p(h) and pt(h) = p(h,p0(h), . . . , pt−1(h)), for all t = 1, . . . ,
denote by p̄(h) = (p0(h),p1(h), . . .) the chain of states that will materialize along the PCF p,

12 Hyndman and Ray [24] and Gomez and Jehiel [20] are other papers with real time coalitional negotiation. However,
there the negotiation is noncooperative, based on a protocol.



688 H. Vartiainen / Journal of Economic Theory 146 (2011) 672–698
starting from history h. All playable chains are denoted by p̄(H) = {p̄(h): h ∈ H }. A PCF p is
absorbing if for any history h there is an integer Th < ∞ such that there is x ∈ X such that

pt(h) = x, for all t > T . (8)

The absorbing state of the PCF p starting from history h, denoted by α[p̄(h)], is then well defined
for all h.

We evaluate the players’ intertemporal payoffs by the limit-of-the-means criterion:

Vi(h) = lim
T →∞

∑T
t=0 ui(p

t (h))

T
.

Such payoff exists whenever PCF p is absorbing:

Vi(h) = ui

(
α[p̄(h)]), for all h ∈ H.

Profitable moves and efficiency concepts are defined analogously to the one-shot game dis-
cussed before. That is, given an absorbing PCF p and a history (h, x), coalition S has a weakly
preferred move y ∈ FS(x) from x if Vi(h, x, y) � ui(x) for all i ∈ S. Further, a move y ∈ FS(x)

is efficient for coalition S if there is no z ∈ FS(x) such that Vi(h, x, z) > Vi(h, x, y) for all i ∈ S.
Given these notions, we may now define a modified version of the equilibrium criterion of KR.

A dynamic, deterministic, absorbing PCF p forms an equilibrium if the following two conditions
hold, for any (h, x) ∈ H :

1. If p(h,x) ∈ X\{x}, then p(h,x) is an efficient and weakly preferred move from x for
S(x,p(h, x)).

2. If p(h,x) = x, then x is an efficient move from x for all S.

It is clear that this version of dynamic equilibrium process of coalition formation is equivalent
with the one defined for terminating processes. That is, the set of states that are absorbing after
some history in some equilibrium of the KR model of real time blocking coincides with the set
of outcomes that are implementable after some history in a corresponding equilibrium of the
one-shot game.

However, as hinted above, our solution differs from KR in two ways (apart from allowing
the process to be history dependent). First, part 2 of the condition in KR is slightly stronger as it
requires that if the status quo state x is not efficient for some coalition, then the equilibrium move
must be an efficient and strictly preferred move from x for some coalition (we only demand weak
preference, by part 1 of the condition).13 This additional desideratum would affect the sufficiency
but not the necessity of the characterization in Theorem 1. Second, in the original formulation
of KR, intertemporal preferences are captured by the discounting criterion. Formally, given a
discount factor δ ∈ (0,1), player i’s value function V δ

i is derived as the solution to the recursive
expression (see Ray [35])

V δ
i (h, x) = (1 − δ)ui(x) + δV δ

i

(
h,x,p(h, x)

)
. (9)

KR define coalitional preferences and efficiency criteria and, a fortiori, the solution vis-à-vis
these value functions.14

13 The motivation for this weakening is our focus on properties of the solution that stem from the one-deviation principle.
14 In KR, a history dependent version of weak preference reads V δ

i
(h, x, y) � V δ

i
(h, x) for all i and for all S. However,

given the definition of V δ , this is equivalent to V δ(h, x, y) � ui(x) for all i and for all S.

i i
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We should add that there are games in which the way intertemporal payoffs are evaluated does
make a qualitative difference (even in the limit).15

7.2. Largest consistent set

Rosenthal [38] and Chwe [11] define the general framework of coalition formation used in
this work. Chwe’s [11] aim is to rule out outcomes whose stability could never be an issue. His
solution, the largest consistent set (LCS), always exists and is one of the most frequently used
solutions in applications. KR show that the set of absorbing states of absorbing deterministic
equilibrium processes that have the Markovian property is a subset of LCS. We now demonstrate
that relaxing the Markovian restriction does not affect the result: the set of outcomes that are
implementable via DEPCF is a subset (sometimes strict) of LCS.

To Chwe’s [11] solution, an outcome y ∈ X indirectly dominates x if there is a feasible path
(x0, . . . , xK) ∈ F such that x0 = x, y = xK (recall our the definition (2) of a feasible path). 16

Set C ⊆ X is a consistent set if C consists of all x for which the following holds: if z ∈ FS(x),
then there is y ∈ C such that either y = z or y indirectly dominates z and y �S x. Chwe showed
that a consistent set exists and the largest (in the sense of set inclusion) consistent set, LCS, is
unique.

We show that, in terms of implementable outcomes, DEPCF is a refinement of LCS. We do
this by first showing that the ultimate uncovered set implements a consistent set of outcomes.

Proposition 1. μ[UUC] is a subset of the largest consistent set.

Proof. It suffices to show that μ[UUC] is a consistent set. Suppose, on the contrary, that this is
not the case. Then there is an x ∈ μ[UUC], an S, and a z ∈ FS(x) such that μ[ȳ] �S x, for all
ȳ ∈ Fz ∩ UUC. But since there is x̄ ∈ UUC such that μ[x̄] = x, this contradicts the assumption
that UUC = uc(UUC). That is, that x̄ is not covered in UUC. �

Importantly, μ[UUC] need not coincide with LCS. We now show via an example that μ[UUC]
can be a strict subset of LCS. Consider the game depicted in Fig. 2.

Here N = {1,2,3}, X = {a, b, c, d}. Numerical payoffs (in the order of player indices) from
choices a, b, c, and d are, respectively, (0,0,1), (0,1,0), (1,0,0), and (2,2,2). LCS of this
problem is {a, b, d}. However, the largest consistent path structure UUC consists the of paths
{(a, b, c, d), (b, c, d), (c, d), (d)}, and hence μ[UUC] = {d}.

7.3. Stable standard of behavior and a full coalitional equilibrium

Mariotti [29] and Xue [41] are motivated by considerations that are closely related to this
paper (see also Mariotti and Xue [30]). In this section, we discuss their solutions, full coali-
tional equilibrium and stable standard of behavior, respectively, from the viewpoint of dynamic
equilibrium processes of coalition formation.

Xue [41] arguing that the largest consistent set is too permissive, imposes a consistency cri-
terion on paths rather than on outcomes. His starting point is the observation that – since in

15 An example is available upon request.
16 As Konishi and Ray [27] and Ray [35], we appeal to the weaker version of Chwe’s [11] notion of indirect dominance.
The original one requires strict preference.
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Fig. 2.

a dynamic environment play can move in equilibrium from one status quo to another before
an outcome is implemented – what is crucial is the stability of paths rather than that of the out-
comes. Xue [41] uses Greenberg’s [19] foundational Theory of Social Situations to identify paths
that are robust against deviations. This theory is based on the von Neumann–Morgenstern stable
set approach. This solution concept bears similarity to the consistent path structure, the reduced
form characterization of our solution. The difference between Xue’s [41] solution and ours is
that the former permits deviations also by inactive coalitions. This property has consequences on
the existence of the solution.

To interpret our results in the framework of Xue [41], let us lay down the key ingredients of his
model.17 Assume that the alternative x ∈ X is the current status quo. Consider a path x̄ and some
of its node xk . Assume that a coalition S can replace xk by some alternative y �= xk+1. In doing
so, S is aware of that the set of feasible paths from y is Fy . In contemplating such a deviation
from y, however, members of S base their decision on the comparisons of paths that might be
followed by rational and farsighted individuals at y. Let SB(y) ⊂ Fy denote this standard of
behavior.

The following definition, which is adopted from Xue [41], describes, in our notation, the
conservative approach to the stable standards of behavior.

Definition 5. A standard of behavior SB is conservatively stable if it is

Internally stable: for all x ∈ X, if x̄ ∈ SB(x), then there is no y, coalition S, and k such that
y ∈ FS(xk) \ {xk+1}, and μ[ȳ] �S μ[x̄], for all ȳ ∈ SB(y),

Externally stable: for all x ∈ X, if x̄ ∈ Fx \ SB(x), then there is y, coalition S, and k such that
y ∈ FS(xk) \ {xk+1}, and μ[ȳ] �S μ[x̄], for all ȳ ∈ SB(y).

To see the relationship between our solution concept and the conservatively stable standard of
behavior of Xue [41], let us spell out the key features of the feasible ultimate uncovered set in
the language of internal and external stability.

17 Referring to Greenberg’s [19] Theory of Social Situations.
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Fig. 3.

Remark 1. The ultimate uncovered set UUC satisfies

Internal stability: if x̄ ∈ UUC, then there is no y and k such that y ∈ FS(xk) \ {xk+1} and
μ[ȳ] �S μ[x̄], for S = S(xk+1, xk), and for all ȳ ∈ Fy ∩ UUC.

External stability: if x̄ ∈ F \ UUC, then there is y and k such that y ∈ FS(xk) \ {xk+1} and
μ[ȳ] �S μ[x̄], for S = S(xk+1, xk), and for all ȳ ∈ Fy ∩ UUC.

Internal stability follows from the definition of a consistent path structure. External stability, in
turn, is a consequence of the construction of UUC; every path outside UUC is covered in UUC.
It is easy to see that the key difference between the solution concepts is that the notion of stable
standard of behavior requires stability against arbitrary coalitional deviations, whereas the ulti-
mate uncovered set only requires stability with respect to the active coalition. Since the restriction
affects both internal and external stability, and in different directions, there is no straightforward
relationship between the concepts.

From these definitions it is clear that the notions of conservative stable standard of behavior
and the ultimate uncovered set coincide in games where only one coalition may change the status
quo at a time. Roughly, this corresponds to the scenarios in which the coalitional game can be
presented in the form of a simple recursive game (vis-à-vis interpreting coalitional preferences
as a single individual’s preferences).

The more stringent requirement for acceptable deviations prevents pathological blocking re-
lationships and guarantees the existence of an ultimate uncovered set. Conversely, the leeway
provided by arbitrary coalitional deviations in the context of stable standard of behavior is the
reason for the occasional emptiness of the solution, as is the case in the example depicted in
Fig. 3 above (due to Xue [41]), where payoffs from a, b and c are, respectively, (0,0), (2,1), and
(1,2). The unique conservative standard of behavior is empty. However, the ultimate uncovered
set contains both the arcs: Fa ∩ UUC = {(a, b), (a, c)} and hence μ[UUC] = {b, c}.

To the best of our knowledge, Mariotti [29] is the only paper in the literature that explicitly
models history dependent coalitional strategies. Although his set up is different from this paper,
there are notable similarities in how strategic behavior is modeled. In fact, we argue that all
conditions imposed on his full coalitional equilibrium-solution are also satisfied by our solution.
Hence, our existence result can also be applied to Mariotti’s set up.

Let us sketch Mariotti’s [29] model, where players seek to form an agreement of how to play
a strategic form game. The game is defined by sets Ai of actions for each player i. Preferences
are defined over the set of all profiles of possible actions AN = ×i∈NAi . The play proceeds by
coalitions S proposing a profile of actions in AS = ×i∈SAi . If coalition S serves a the proposer,
then the choices of the complementary coalition −S are inherited from the current status quo
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profile. Hence, the set of the feasible outcomes of coalition S, given the status quo profile x ∈
X := AN , is obtained by

FS(x) = {
(yS, x−S): yS ∈ AS

} ⊆ X.

Now we can apply Definition 1 to specify conditions under which an agreement is reached.
The key features of Mariotti’s [29] novel approach bear similarity to ours: The strategies

are assumed history dependent and the focus is, at the outset, on strategies that implement an
outcome in finite time. Also a version of the one-deviation property is used as the equilibrium
criterion. While Mariotti’s solution, full coalitional equilibrium, is richer in the sense that it al-
lows the coalitions to disagree on how the play will evolve in the future, it is apparent the solution
also permits the agents to agree on how the play proceeds. This is our basic assumption: the strat-
egy specifies a unique future play path that is known by all players. Therefore we conclude that,
in the case of strategic form games, a DEPCF is a particular case of a full coalitional equilibrium
of Mariotti [29]. By Corollary 2, it then follows that also a full coalitional equilibrium exists.18

However, there may well be many full coalitional equilibria about which our characterization
cannot say much.

8. Efficiency

A recurrent theme in coalitional analysis is efficiency. A classic argument that goes under the
name of the Coase theorem says that an outcome that results from unrestricted bargaining will
always be efficient: otherwise it would be blocked by another outcome that all players prefer.
This intuition is not sufficient in the current framework.

Rosenthal’s centipede game is an example of a game in which the dynamic equilibrium pro-
cess of coalition formation does not implement an efficient outcome (in finite games of perfect
information, the equilibrium coincides with the backwards induction-solution). But the centipede
game is not a good example since the Coase theorem appeals to the coalitions’ inability to com-
mit to a bad outcome. This implicitly assumes that coalitional moves do not have irrecoverable
consequences, and that the game cannot be finite. This desideratum is met for example by games
that are irreducible in a sense that from any node there is a path to any other node.

It turns out that irreducibility is not sufficient for efficiency. Consider the following anarchistic
economy, a variation of Prisoners Dilemma that was discussed in the introduction. There are two
players 1 and 2. Assume that initial utility allocation is unequal, say 4 to player 1, and 1 to
player 2. The worse off player, in this case 2, can pillage utility units from the other player,
in this case from player 1. Pillaging is costly and as a result 2 receives only one half of what
he pillages. After pillaging, the players can increase, by common effort, both of their payoffs
by one unit. This results in payoffs 1 and 4 for players 1 and 2, respectively.19 Then the roles
of the players are reversed in a sense that now the worse off player is 1 and he may pillage
player 2’s utility units. The game is depicted in Fig. 4 where the directed edges show potential
coalitional moves (numbers inside the nodes show the payoffs). The graph constitutes a circuit.
Nodes (3,0) and (0,3) are Pareto dominated by the next nodes in the circuit. Nevertheless the
largest consistent set, and hence μ[UUC] by Proposition 1, consists only of the low payoff nodes
(3,0) and (0,3). Thus every DEPCF only results in Pareto dominated outcomes.

18 There are minor differences in the defining inequalities of the two solutions concepts. However, such differences do
not affect the qualitative nature of the results.
19 Pillaging by 2 is not possible when payoffs are (3,0) since pillaging itself requires some resources.
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Fig. 4.

One can argue that the inefficiency here is due to artificially restricted blocking relationships.
A stronger requirement than irreducibility is completeness: for any y and x there is S such that
y ∈ FS(x). But again, there are irreducible and complete games where μ[UUC] contains only
Pareto-dominated outcomes. An example is depicted in Appendix B.

A third, yet stronger condition on the graph would be that FS(x) = X for all S, so that at
each node all coalitions can move the play to any node. In such case there would be no a priori
restrictions on what a coalition can achieve. It is easy to show that this restriction would not
preclude any Pareto-optimal outcome from being in μ[UUC]. However, Pareto-optimality is still
not guaranteed. Modify, for example, the game depicted in Fig. 4 by allowing each coalition
{1}, {2}, and {1,2} induce any outcome from any outcome. Then μ[UUC] would contain all the
outcomes but there would also be a consistent path structure C such that μ[C] = {(3,0), (0,3)}.
Hence the corresponding equilibrium process could only implement Pareto dominated outcomes.
Therefore, we have to conclude that there is nothing inconsistent in the idea of an inefficient
outcome being implemented, even if the bargaining opportunities are unrestricted.20

9. Discussion

We have shown that a dynamic version of the absorbing, deterministic equilibrium process
of coalition formation of Konishi and Ray (2003) always exists. The crucial assumption is that
the process may now depend on the history of the play. Another important assumption is that
only one coalition may be active in blocking the underlying status quo. This assumption may be
criticized.

Consider an example due to Xue [41], depicted in Fig. 5.
Now N = {1,2}, X = {a, b, c, d}, and numerical payoffs (in the order of players’ indices)

from a, b, c, and d are, respectively, (6,0), (7,4), (5,10), (10,5). LCS contains the same set of
outcomes {a, c, d} that is implemented in the unique DEPCF. However, as Xue [41] argues, this
set is too large since d should not ever be chosen: when a is the status quo, the “predicted”
outcomes are {a, d}, the latter when the coalition {1,2} induces d . But once the coalition {1,2}
is about to form, player 2 would renege on the contract and choose option c instead. Hence, d

should not be considered a good prediction.

20 Konishi and Ray [27] establish conditions on EPCF under which Pareto-optimality is guaranteed. Diamantoudi and
Xue [14] demonstrate that the top coalition-property of Banerjee et al. [3] guarantees Pareto-optimality of the conserva-
tively stable standard of behavior in the class of hedonic games. It can be showed, by the argument made in the previous
section, that this holds also for dynamic equilibrium processes of coalition formation in this class of games.
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This is a valid argument in many circumstances. A way to cope with the criticism is to require
robustness against nested coalitional deviations.21 Part 1 of Definition 1 would then read

1′. σ(h, x) ∈ X implies σ(h, x) is an efficient and weakly preferred move from x for all coali-
tions S ⊆ S(x, y).

To recover our key results with nested deviations, we would only need to define a new path
dominance operator, �∗, this time with respect to all subsets of the active coalition:

A path ȳ ∈ F ∗-dominates a path x̄ ∈ X at the kth step, denoted by ȳ �∗
k x̄, if μ[ȳ] �S μ[x̄],

for all ȳ ∈ Fy , for some y ∈ FS(xk), for some S ⊆ S(xk, xk+1).

By replacing “�” with “�∗” in the definition of a consistent path structure and the property
“S = S(xk, xk+1)” with “for any S ⊆ S(xk, xk+1)” in the proofs, the existence of a solution
would be obtained along the same avenues as in the current version. The new solution would,
again, implement a set of outcomes that is a subset of LCS.

But even if one wants to incorporate the idea of nested deviations into the framework, it is not
clear why one should do it through the solution concept. An alternative, and perhaps cleaner, way
to model this is to assume that the game form Γ itself reflects nested deviations. This would be
more in line with the standard position in game theory that all relevant behavioral opportunities
should be specified through the game form (and not by the solution concept).22 In the coalitional
set up, this principle implies that the solution concept should only describe the optimal behavior
of a single behavioral unit, a coalition.

More formally, to amend nested deviations into the game form, think of forming a derived
game Γ ′ from the original one Γ that has two kinds of nodes, physical X (as in the game Γ )

and transitional Z (in the present framework, transitional nodes could be modeled as “bad” out-

21 Some nestedness assumption is often used to guarantee the existence. The classic papers in the field, Hart and
Kurz [21], Bernheim et al. [6], and Ray and Vohra [36], are cases in point.
22 See e.g. Osborne and Rubinstein [32].
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comes). The derived game Γ ′ would now have the property that if y ∈ FS(x), then there are
a transitional nodes z0, . . . , z|S|+1 such that z0 = x and z|S|+1 = y, for some indexing j of the
subsets of S, and such that Sj ⊂ S would be the only potentially active coalition under zj with
F ′

Sj (zj ) = FS′(x)∪{zj+1}, for all j = 0, . . . , |S|. Then the derived game would offer each subset
of the original game’s active coalition a chance to redirect the play in the direction it prefers, if it
does not like the choice made by the originally active coalition. By the nestedness of Sj and S,
such a derived game could clearly be constructed. In a dynamic equilibrium process of coalition
formation, this would guarantee that no subset of the original active coalition would not want to
deviate further.

Appendix A

In this appendix, we prove Lemma 3: that the ultimate uncovered set UUC is a well-defined
concept, and that UUCx is nonempty, for all x. The former claim is automatically satisfied if
only finitely many iterations are needed to reach the ultimate uncovered set.

Lemma 6. There is T < ∞ such that UCT is the ultimate uncovered set UUC.

Proof. Call a family of paths

{
(x0, . . . , xK) ∈ X :

{
(xk, xk+1)

}K−1
k=0 = B and xK = y

}
a dominance class, parametrized by B ⊆ X ×X and y ∈ X. Since X is a finite set, the cardinality
of distinct dominance classes is finite, and they partition X .

A dominance class contains all the relevant information concerning dominance: If two paths x̄

and x̄′ belong to the same dominance class, then x̄ is covered in UCt if and only if x̄′ is covered
in UCt , for any t . Since all paths in the same dominance class become covered at the same
covering round t , and since there are finitely many dominance classes, the number of covering
rounds to reach UUC must be finite. �

Given Lemma 6, to prove that UUCx is nonempty it suffices that UCt
x is nonempty for all t .

Lemma 7. UCt
x is nonempty, for all x ∈ X and for all t = 0,1, . . . .

Proof. Take any S ⊆ N , x ∈ X, and t ∈ {0,1, . . .}. Denote

CS(x, t) = {
y ∈ FS(x): (x) is covered in UCt via y

}
.

Further, let DS(x, t) contain any y ∈ CS(x, t) having the property that for any ȳ ∈ UCt
y and for

any z ∈ CS(x, t) there is z̄ ∈ UCt
z that is not preferred to ȳ for all members of S:

DS(x, t) = {
y ∈ CS(x, t): ȳ ∈ UCt

y and z ∈ CS(x, t) imply there is z̄ ∈ UCt
z

s.t. μ[z̄] �S μ[ȳ]}. (10)

By the transitivity of �S , DS(x, t) = ∅ if and only if CS(x, t) = ∅.

Claim 0. Let y ∈ DS(x, t). Then (x, ȳ) is not covered at k = 0 in UCt , for any ȳ ∈ UCt .
y
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Proof. If (x, ȳ) ∈ UCt
y is covered at k = 0 in UCt , then there is z ∈ FS(x,y)(x) such that

μ[z̄] �S(x,y) μ[ȳ], for all z̄ ∈ UCt
z. (11)

Since y ∈ DS(x,y)(x, t) ⊆ CS(x,y)(x, t) we have μ[ȳ] �S(x,y) x. This means that (x) is covered
in UCt via z. But together with (11) this contradicts (10). �

Denote

G(x, t) =
⋃
S

DS(x, t).

Claim 1. G(x, t) = ∅ if and only if (x) ∈ UCt+1, for any x ∈ X and for any t = 0,1, . . . .

Proof. By the definition of covering, if (xJ ) is covered in UCτ for any τ � t , then it is covered
in UCt . �

Call a path (x0, . . . , xJ ) a G-path under t if xj+1 ∈ G(xj , t) for all j = 0, . . . ,K − 1. If,
moreover, G(xJ , t) = ∅, then (x0, . . . , xJ ) is a terminal G-path under t .

Claim 2. For any t = 0,1, . . . , if (x0, . . . , xJ ) is a terminal G-path under t , then (x0, . . . , xJ ) ∈
UCt+1.

Proof. Let (x0, . . . , xJ ) be a terminal G-path under t . By Claim 0, G(xJ , t) = ∅ implies that
(xJ ) ∈ UCt+1. Since xj+1 ∈ G(xj , t), for all j = 0, . . . , J − 1, it follows by using Claim 1 and
iterating backwards on j = 1, . . . , J that (x0, . . . , xJ ) ∈ UCt+1. �
Claim 3. For any t = 0,1, . . . and for any x ∈ X, there is a terminal G-path (y0, . . . , yJ ) under t

such that y0 = x.

Proof. By Claim 2, the claim implies that (y0, . . . , yJ ) ∈ UCt+1. Let, on the contrary of the
claim, there be t that is the first stage in which the claim does not hold. For any x, denote
G0(x, t) = {x}, and define recursively

Gn(x, t) = {
z: z ∈ G(y, t) and y ∈ Gn−1(x, t)

}
, for any n = 1, . . . .

Since the claim does not hold in stage t , there is a particular x such that G(z, t) �= ∅, for all
z ∈ Gn(x, t), for all n. Viewing G as the support of a Markov process with state space X, denote
by V ⊆ X the ergodic set of this process, i.e., V is the unique minimal subset of X in the sense
of set inclusion such that V = ⋃

v∈V G(v, t) and Gn(x, t) ⊆ V for all n � nV for some nV . We
now show a contradiction by proving that V cannot exist.

Subclaim 4. We first argue that (v) /∈ UCt for all v ∈ V . Suppose on the contrary that (v) ∈ UCt

and v ∈ V . By the definition of V , there is a G-path (v0, . . . , vL) under t such that v = v0 = vL.
By using Claim 1 and iterating backwards on � = 1, . . . ,L − 1, it follows that (v1, . . . , vL) ∈
UCt . But then, since v0 = vJ , (v0) is not covered in UCt via v1, a contradiction.

Subclaim 5. Now we argue that the opposite of Subclaim 3.1 cannot be true either. Suppose
that (v) /∈ UCt for all v ∈ V . Take any element of V , say y0. Since (y0) /∈ UCt , we have
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Fig. 6.

G(y0, t − 1) �= ∅. By the maintained assumption, there is a terminal G-path (y0, . . . , yJ ) under
t − 1 such that, by Claim 2, (y0, . . . , yJ ) ∈ UCt . By Claim 1, y1 ∈ G(y0, t − 1) and z̄ ∈ UCt

y1
⊆

UCt−1
y1

imply (y0, z̄) ∈ UCt
y0

. By the definition of V , there is a G-path (v0, . . . , vL) such that
y0 = v0 = vL. Thus by using Claim 1 and iterating backwards on � = 0, . . . ,L−1, it follows that
(v0, . . . , vL−1, z̄) ∈ UCt+1

y0
⊆ UCt

y0
for all z̄ ∈ UCt

y1
. This implies, since v1 ∈ G(y0, t), that also

y1 ∈ G(y0, t). By the definition of V , then, y1 ∈ V . Iterating this way on j = 2, . . . , J − 1 it fol-
lows that yJ ∈ V . But by (y0, . . . , yJ ) ∈ UCt it also follows that (yJ ) ∈ UCt , and a contradiction
is proved. �

Claims 2 and 3 now establish the proof. �
Appendix B

Consider the three players/six alternatives game, depicted in Fig. 6. The directed graph de-
scribes the possible coalitional blockings between the nodes. The graph is complete but, for
simplicity, we only depict blockings to one direction, i.e., (3,1,2) →{2} (1,2,0) means that
also (1,2,0) →{1,3} (3,1,2), etc.. Again, μ[UUC] consists of the shaded nodes as any Pareto-
optimal, non-shaded node is covered via a shaded node.
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