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Abstract
We study Nash equilibria of all-pay auctions when players� cost

functions are potentially nonlinear. We show that with linear cost
functions the revenue maximizing equilibrium of the �rst price all-pay
auction is at least as pro�table as that of the second price all-pay
auction, and the winner-pay action lies in between. In an asymmetric
case this order is strict. With symmetric quadratic cost functions, the
order of the �rst price all-pay action and the second price all-pay action
is reversed, and both dominate than the winner-pay auctions. Revenue
di¤erences grow as the number of bidders becomes large.
Keywords: First price and second price all-pay auctions, revenue

comparisons.
JEL: D44, D72.

1 Introduction

In all-pay auctions, all bidders - not only the winner - pay their bids. An all-
pay auction captures in a reduced form many relevant features of a contest,
and is hence pertinent to a large class of scenarios, e.g. tournaments, rent-
seeking, technological competition and R&D-races, lobbying, advertising,
political campaining, education, job promotion, sports, or animal con�icts.
General properties on all-pay auctions are, hence, of interest. Of importance
are, e.g., who wins, what are the bids, or how much of the total value of the
prize is dissipated. One is especially interested in comparing auctions.

We focus on the �rst-price and the second-price all-pay auctions (FPAA
and SPAA, respectively) under complete information. In the former the win-
ner pays his bid whereas in the latter he pays the second highest bid.1 While

�I thank Semih Koray and a referee for useful comments. I am also grateful to Klaus
Kultti for helpful suggestions.
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Tel: +358-40-7206808, E-mail: hannu.vartiainen@helsinki.�

1A dynamic version of SPAA is known as the war of attrition.
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both all-pay mechanisms have been studied in the literature, not much is
known of their comparative properties.2 We take the position of the seller.
Seller�s revenue - or the expected bids - can be interpreted either literally,
or as the aggregate loss of resources. In the former case, higher revenues
are desirable but not necessarily in the latter case. Performance of auctions
are evaluated under di¤erent hypotheses of bidders�private costs of bidding.
Nonlinearity of cost functions means that there is a degree of asymmetry
between the revenues of the seller and costs of the bidders. Such nonlin-
earity could stem e.g. from �nancial constraints, from opportunity costs of
diverting resources away from productive activities, or, with some caveats,
from risk aversion. Increasing marginal cost is the natural assumption in
many scenarios.

What makes complete information scenario interesting is that the (inter-
esting) Nash equilibria of all-pay auctions are in mixed strategies: Bidding
high is pro�table if all others bid low while bidding low is pro�table if oth-
ers bid high. Because of the randomization the �nal allocation of the good
is not e¢ cient.3 Hence there is no a priori reason to expect the revenue
equivalence á la Myerson (1981) to hold. We show that interesting compar-
isons between auctions can be made. Moreover, we show that the results
are sensitive to the choice of cost functions.

There are n � 2 bidders, bidding for a single good: All bidders�reser-
vation valuations for the good is 1 but their cost functions may di¤er.4 We
derive a general closed form expression of the seller�s revenues in both all-pay
auctions, and characterize the equilibrium strategies.

Sharpest results are obtained in the two-bidders case. We show that
with linear cost functions (the completely mixed equilibrium of) SPAA is at
least as pro�table as FPAA, and that the (trembling hand perfect equilibria
of) the standard winner-pay auctions lie in between.5 In the asymmetric
marginal costs case this ranking is strict. Thus the revenue equivalence of
auctions breaks down.

However, with increasing marginal costs the revenue ordering may be
reversed. We show that if cost functions are quadratic, the two-player
FPAA revenue dominates SPAA, and both the all-pay auctions dominate
the winner-pay auctions. This is related to Che and Gale (1998a) who show
that a cap, i.e. an upper bound on feasible bids, increases revenues from
FPAA. A cap can be interpreted as an upper envelope of two cost functions,

2See Baye et al. (1993, 1996), and references therein. Seminal contributions include
Hillman and Riley (1989), Hendricks et al. (1988), and Moulin (1986).

3Krishna and Morgan (1997) analyze all-pay auction in the incomplete information
scenario á la Milgrom and Weber (1982) which permits them to focus on pure strategies.

4Moldovanu and Sela (2001) study a similar set up and focus on the question of how
to optimally bundle several goods in FPAA.

5The completely mixed equilibrium of SPAA is the unique subgame perfect equilibrium
in the war of attrition -version of SPAA (see Hendrics et al., 1988).
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the original and a one that is (an approximation of) in�nitely elastic at the
point of the cap. Hence a cap imposes a degree of convexity on the cost
functions.

In the n-player context, Baye et al. (1993, 1996) show that in the linear
cost functions case, FPAA entertains may equilibria whose revenue proper-
ties di¤er. We use their result concerning the optimal equilibrium to show
that revenue rankings of the auctions remain unchanged in the n > 2 situa-
tion.

However, we also show that the Baye et al. optimal equilibrium is sen-
sitive to the shape of the cost function: Speci�cally, under quadratic cost
functions; increasing the number of active bidders increases the seller�s rev-
enue (which does not hold under linear cost functions). When n approaches
in�nity, the size of the revenue is doubled. Also the revenue of SPAA under
quadratic cost functions increases when n becomes large. While the revenue
ranking of auctions remains the same as in the two-player case, the di¤erence
between the all-pay and winner-pay auctions increases.

The fact under convex cost functions the expected bids are higher in
both FPAA and SPAA than in winner-pay auctions means that the expected
aggregare value of bids is higher than the value of the good to the bidders.
This can be interpreted as over-dissipation of rents (Tullock, 1980). We
show that there is no upper bound on the amount of rents that may, under
some circumstances, be over-dissipated.

The paper is organized as follows: Section 2 introduces the set up. Sec-
tion 3 speci�es seller�s revenues as a function of bidders�strategies. In Sec-
tion 4, the two-player case is analyzed and in Section 5 the limit case, when n
approaches in�nity. Section 6 concludes. The appendix gives more detailed
characterizations of equilibria.

2 The Set Up

There is an indivisible object to be allocated to players N = f1; :::; ng,
the �bidders�. Bidder i�s payo¤ depends on the allocation of the prize
and his costly transfer, which are determined by all bidders�actions, their
"bids". Bidder i�s action space is R+ with a typical element bi: De�ne
allocation rule x = (x1; :::; xn) : Rn+ ! f0; 1gn such that

Pn
i=1 xi(b) = 1;

for all b = (b1; :::; bn) 2 Rn+: Given b; the prize is devoted to bidder i if
xi(b) = 1: Function t = (t1; :::; tn) : Rn+ ! Rn+ speci�es a transfer from each
bidder contingent on a joint action b. Pair (x; t) is an auction.

We focus on auctions that allocate the prize to the highest bidder. Let

M(b) :=

�
argmax

i
bi

�
:

Then
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xi(b) =
1

#M(b)
; if i 2M(b);

xi(b) = 0; if i =2M(b):

All-pay auctions di¤er in how transfers are determined. Denote by b(2) the
second order statistics of sample b1; :::bn.

FPAA First price all-pay auction:

tFPAAi (b) = bi; for all i 2 N:

SPAA Second price all-pay auction:6

tSPAAi (b) =

�
b(2); if i 2M(b);
bi; if i =2M(b):

The corresponding �rst and second-price winner-pay auctions are anal-
ogously de�ned with the di¤erence that

tWA
i (b) = 0; if i =2M(b):

Function ci : [0; 1] ! R+ describes the cost of transfer ti � 0 to bidder
i. We assume that ci(�) is strictly increasing, di¤erentiable, and unbounded,
and satis�es ci(0) = 0: We also assume that

c1(b) � ::: � cn(b); for all b � 0:

Given a payment vector t = (t1; :::; tn); bidder i�s payo¤, given his bid b; is

ui(b) = xi(b)� ci(ti):

Hence, bidder�s payo¤ from wealth is separable from the consumption of the
prize. Possible nonlinearity of ci(�) can be interpreted risk sensitivity. If ci is
convex (linear, concave) then i can be interpreted to be risk averse (neutral,
loving, resp.) with respect to his wealth.

Denote by �bi the break-even bid of bidder i; i.e.

1 = ci(�bi); for all i:

Denote by F1; :::; Fn a collection of independent cumulative distribution
functions on Rn+, interpreted as bidders�strategies: Let suppFi be the sup-
port of Fi:7 If suppFi = R+, then Fi is completely mixed. With bid bi and

6The second price all-pay auction is known also as the war of attrition.
7The smallest closed set Si such that �i(b)��i(b+ ") > 0; for all " > 0; for all b 2 Si:
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the other bidders�strategies F�i = (Fj)j 6=i; bidder i�s expected payo¤ is

Eui(bi; F�i) =
Z
Rn�1+

[xi(b)� ci(ti(b))] dF�i(b�i)

=
Q
j 6=iFj(bi)�

Z
Rn�1+

ci(ti(b))dF�i(b�i):

Strategy F = (F1; :::; Fn) constitutes a Nash equilibrium (NE) if

Eui(F ) � Eui(bi; F�i); for all bi � 0; for all i = 1; :::; n:

With bids b = (b1; :::; bn); seller�s revenue is

v(b) =
Pn
i=1ti(b):

Since strategies F = (Fi)ni=1 are independent, the seller�s expected revenues
from a mechanism characterized by the transfer rule t is

Ev(F ) =
Pn
i=1

Z
R+
ti(b)dFi(b):

Denote the expected payo¤ from FPAA, SPAA, or winner-pay auctions by
EvFPAA(F ), EvSPAA(F ); and EvWA(F ); respectively.8 If the strategy F is
known from the context, it may be dropped.

Note that under full information, the �rst and the second-price winner-
pay auctions are easy to solve. In the natural Nash equilibrium (trembling
hand in the �rst-price auction and undominated in the second-price) the
good is sold to the bidder with the highest willingness to pay, i.e. to the
bidder with the lowest marginal cost.9 The equilibrium price - and hence
the revenue of the seller - is equal to the break-even price of the bidder with
the second lowest marginal cost, EvWA = �b2:

3 Revenues

In this section we derive a reduced form expression of the seller�s revenues
under FPAA and SPAA. Denote by EvFPAA(F ) and EvSPAA(F ) the ex-
pected revenues of the seller under the two auctions when the two bidders
obey strategy F .

8Since the analysis of the two winner-pay auctions is trivial in the present complete
information framework, and the relevant equilibria of them generate the same revenue to
the seller, there is no need to reserve distiguished notation for both of them.

9Assuming that in the �rst price auction ties are broken in favour of the player with
the lowest marginal cost.
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Lemma 1 Given the FPAA strategies F = (Fi)
n
i=1, the expected revenue

from FPAA is

EvFPAA(F ) =
Pn
i=1

Z 1

0
(1� Fi(b)) db: (1)

Proof. The expected transfer from i is now obtained by integrating by
parts (note that bid b = 0 results in 0 payment):

EtFPAAi =

Z 1

0
bdFi(b) + 0 � Fi(0)

=

Z 1

0
(Fi(1)� Fi(b))db

=

Z 1

0
(1� Fi(b))db:

Since the bids are independent,

EvFPAA(F ) =
Pn
i=1Et

FPAA
i

=
Pn
i=1

Z 1

0
(1� Fi(b)) db:

An implication of Lemma 1 is that if strategy F �rst order stochastically
dominates F 0, i.e. Fi � F 0i for all i; then EvFPAA(F ) � EvFPAA(F 0):

Lemma 2 Given the SPAA strategies F = (Fi)
n
i=1, the expected revenue

from SPAA is

EvSPAA(F ) =
Pn
i=1

Z 1

0
(1�

Q
j 6=iFj(b)) (1� Fi(b)) db: (2)

Proof. Let, for any i;

Gi(b) =
Q
j 6=iFj(b); for all b:

The expected transfer of bidder i who bids a is

EtSPAAi (a) =

Z a

0
bdGi(b) + a(1�Gi(a)):

Integrating the �rst term by parts,

EtSPAAi (a) = aGi(a)�
Z a

0
Gi(b)db+ a(1�Gi(a))

=

Z a

0
(1�Gi(b))db:
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The expected transfer of bidder i is then

EtSPAAi =

Z 1

0
EtSPAAi (a)dFi(a)

=

Z 1

0

Z a

0
(1�Gi(b))dbdFi(a):

This yields, by integrating by parts,

EtSPAAi =

Z 1

0
(1�Gi(b))dbFi(1)�

Z 1

0
(1�Gi(b))Fi(b)db

=

Z 1

0
(1�Gi(b))(1� Fi(b))db:

Since the bids are independent,

EvSPAA =
Pn
i=1Et

SPAA
i

=
Pn
i=1

Z 1

0
(1�Gi(b)) (1� Fi(b)) db:

4 Two Bidders

This section shows that the revenue ranking of FPAA, SPAA, and winner-
pay auctions depends on the shape of the cost functions. We assume two
bidders. First we characterize the Nash equilibrium strategies under the two
all-pay auctions. If the opponent uses strategy Fj in FPAA (in SPAA); then
the probability of i; i 6= j; winning with bid b in FPAA (in SPAA) is Fj(b):

Proposition 1 Let n = 2.

1. In the Nash equilibrium of FPAA,

F1(b) = c2(b) + 1� c1(�b2); for all b 2 [0;�b2];
F2(b) = c1(b); for all b 2 [0;�b2]:

2. In the completely mixed Nash equilibrium of SPAA,

F1(b) = 1� e�c2(b); for all b � 0;
F2(b) = 1� e�c1(b); for all b � 0:

Analogous characterizations of the equilibria of FPAA can be found in
Baye at al. (1993, 1996), in Hillman and Riley (1989), Che and Gale (1998a),
or Kaplan and Wettstein (2006), and of the equilibria of SPAA in Hendricks
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et al. (1988), or in Moulin (1988). Below we sketch the proofs. For more
comprehensive characterizations of the equilibria the reader is referred to
Propositions 8 and 9 in the appendix.

FPAA: Equilibrium is in mixed strategies. Bidder 1 has payo¤ at least
1 � c1(�b2) since any bid above �b2 makes him win with certainty. Bidders
cannot have mass points at the same point since in�nitesimal deviation
ubwards would be pro�table. Thus the the lowest bid generates a zero pro�t.
Thus bidder 2 has zero pro�t. If the highest bid of 1 is below �b2; then 2 could
guarantee postive pro�t. Thus 1�s pro�t cannot exceed 1� c1(�b2). If i has a
gap B the support of his strategy, then j needs to have the same gap since
otherwise j would bene�t from deviation downwards. Both cannot have the
same gap since then both would have an incentive to deviate at the upper
boundary of the gap. Since 1�s highest bid is �b2 and 2�s lowest bid is 0; both
strategies have support [0;�b2]: Thus bidders choose strategies (F1; F2) such
that, for all b 2 [0;�b2] it holds that

F2(b)� c1(b) = 1� c1(�b2);
F1(b)� c2(b) = 0:

SPAA: Since the strategy (F1; F2) is completely mixed, it must be atom-
less. Otherwise there is i who chooses b with positive probability. But then
there is small enough " > 0 such that j 6= i strictly prefers b+ " rather than
b; contradicting the assumption that j�s strategy is completely mixed. Since
bidding 0 must be best response for both i; it must be that both players
expected payo¤ is 0: Thus;Z b

0
(1� ci(b0))dFj(b0)� ci(b)(1� Fj(b)) = 0; for all b � 0; for i = 1; 2:

Since this holds as an identity,

F 0j(b)� c0i(b)(1� Fj(b)) = 0:

Thus,

ci(b) =

Z b

0

F 0j(b
0)

1� Fj(b0)
db0 = � ln(1� Fj(b));

or, for i 6= j; for all b � 0;

Fj(b) = 1� e�ci(b):

Hendricks at al. (1988) point out that SPAA always hosts an asymmetric
pure strategy equilibrium where bidder 1 bids b � �b2 and all other bidders
bid 0: However, they show that such Nash equilibrium is never subgame
perfect in the dynamic version of the game, known as the war of attrition,

8



where bidders continue to raise their bids until only one bidder is left. The
war of attrition -interpretation is natural in many economic settings, and
hence we concentrate on the completely mixed Nash equilibria of SPAA.

It is now straightforward to combine Lemmata 1 and 2 with the equilib-
rium strategies in Proposition 1.10

Proposition 2 If n = 2; then the expected revenues of the seller in the
Nash equilibrium of FPAA and in the completely mixed Nash equilibrium of
SPAA are, respectively,

EvFPAA =
�
1 + c1(�b2)

�
�b2 �

Z �b2

0
(c1(b) + c2(b)) db;

EvSPAA = 2
Z 1

0
e�c1(b)�c2(b)db:

Thus the seller�s payo¤ under SPAA depends only of the average cost
function whereas FPAA needs information of both the cost functions (in
particular �b2 and c1(�b2)).

Terminological and notational convention: From this on we refer the
Nash equilibrium of FPAA, the completely mixed Nash equilibrium of SPAA,
and the trembling hand perfect or the undominated Nash equilibrium of
either of the winner-pay auctions simply as the Nash equilibrium of the
game at hand. The Nash equilibrium revenue of he seller in either case is
denoted, respectively, by EvFPAA, EvSPAA; or EvWA.

A Note on Caps It is illustrative to study geometrically the conse-
quences of a cap on bids. Che and Gale (1998a, 2006) found out that a
cap has surprising e¤ect on the all-pay auction. To interpret a cap in our
set up, approximate it with a non-rigid cap that makes it very costly (in
a continuous way) to bid above certain level, say m.11 The cost function
implied by such non-rigid cap is the upper envelope of the the cost function
and the cap (a near-vertical line segment at m).12

The revenue from FPAA is the sum of the areas between ci(�b2) and the
ci(�)�functions from 0 to �b2 (recall that c2(�b2) = 1). The striped area in Fig.
1 is the revenue from 1, and the shaded area the revenue from 2. Player 1�s
payo¤ is c2(�b2) (= 1) minus c1(�b2).

[FIGURE 1]
10Note that since �1(�2) = �1(�2) = 1 in FPAA, the upper bound the integrals in (1)

is in fact �2:
11Thus with non-rigid cap the cost functions are still increasing. For discussion of the

rigidity of caps, see Kaplan and Wettstein (2006).
12For example, a cost function implied by a non-rigin cap m could be c(b) for all b � m;

and c(b) + (b�m)="; for all b > m; for small " > 0:
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There are two e¤ects at play when a cap is imposed, displayed geomet-
rically in Fig. 2. (i) A cap removes the bids from the interval (m;�b2] which
decreases revenues from both bidders (narrows the striped and shaded ar-
eas). (ii) A cap extracts all surplus from 1 by shifting his maximal bid from
c1(�b2) to 1; and thus increases revenue from 1 (heightens the striped area).
Since any cap below �b2 has these e¤ects, there is an area below �b2 where
the latter e¤ect dominates, and where the seller�s revenue is increased. By
inspection, almost all surplus of bidder 1 can be extracted with a non-rigid
cap close to �b2.13

[FIGURE 2]

The revenue from SPAA is the area below the function 2e�c1(b)�c2(b).
This is re�ected by the shaded area in Fig 3.

[FIGURE 3]

Imposing a cap m means that the costs at m become very large and
hence the shaded area is cut close to zero at m (see Fig. 4, where " > 0 is
a small number): Thus also the revenues are cut.

[FIGURE 4]

13This is, however, not the equilibrium constructed by Che and Gale (1998). Since in
their model, a cap is rigid, both bidders choose m with postive probability, and 1 earns
positive pro�t:
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Thus we conclude that caps may increase the revenues from FPAA but
not from SPAA. It is interesting to compare this ranking to Che and Gale
(1998b). They show that in the context of standard winner-pay auctions,
caps are more favorable to the �rst-price auction than to the second-price
auction. The intuition is that in the second-price auction the bidders bid
more aggressively and are hence more constrained by a cap.

The analogue of this argument to our setting is that a cap above �b2 does
not a¤ect FPAA but any cap a¤ects negatively to the revenue from SPAA
since in the absence of a cap the second-price structure induces the bidders
to bid aggressively above their own valuation. In addition, a cap in FPAA
may actually level the play �eld (in the asymmetric case), inducing more
aggressive bidding and ultimately higher revenues.

4.1 Linear Cost Functions

In this subsection, we assume linear cost functions, i.e. ci(b) = �ib for all
b � 0; for some �i > 0; for i = 1; 2. Then �b2 = 1=�2 and c1(�b2) = �1=�2:
We argue that in an asymmetric case �1 < �2 the revenue equivalence of
di¤erent auction forms no longer holds.

Proposition 3 Let n = 2: Under linear cost functions EvSPAA � EvFPAA,
with strict inequality when the bidders are asymmetric:

Proof. Recall that �b2 = 1=�2: By Proposition 1, the expected payo¤
from the unique NE of FPAA is

EvFPAA = �b2
�
1 + c1(�b2)

�
�
Z �b2

0
(c1(b) + c2(b))db

=
1

�2

�
1 +

�1
�2

�
�
Z 1

�2

0
(�1 + �2)bdb

=
�2 + �1
(�2)2

� �1 + �2
2(�2)2

=
�1 + �2
2(�2)2

: (3)

By Propositions 9 and 2, there is a completely mixed NE of SPAA, whose
expected revenue is

EvSPAA = 2
Z 1

0
e�(�1+�2)bdb

=
2

�1 + �2
: (4)

Denote the average marginal cost by �A = (�1 + �2)=2: Then �2 � �A � �1:
Now

EvSPAA =
1

�A
� 1

�2
= �b2 � �b2

�A

�2
= EvFPAA; (5)
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with strict inequalities when �2 > �1:

Thus, with linear cost function SPAA is at least as pro�table to the
seller as FPAA, and strictly more pro�table if the marginal costs are not
equal. The reason for this is that FPAA necessarily permits bidder 1 to gain
surplus of value (�2� �1)=�2 whereas SPAA extracts all the surplus from all
bidders.

From (3) and (4) it is easy to deduce that an increase in �1 contributes
positively to the revenue of FPAA but negatively to that of SPAA. Thus a
decrease in �1 increases the revenue gap of the two auctions. When �1 = 0;
the expected revenue from SPAA is 2=�2; and from FPAA 1=(2�2); implying
a maximum revenue gap 3=(2�2):

Conversely, in the symmetric case, �1 = �2 = �A = 1=�b2: Since the
seller extracts all the surplus it follows that (see (5)) the revenues from both
all-pay auctions are equal to �b2: Since the revenue to the seller from the
winner-pay auctions is also �b2, the general ranking of FPAA, SPAA, and the
winner-pay auctions can be stated as follows:

Corollary 1 Let n = 2: Under linear cost functions,

EvSPAA � EvWA � EvFPAA;

with strict inequalities when the bidders are asymmetric:

FPAA generates a lower revenue than the winner-pay auctions because
of randomization. When the marginal costs di¤er, randomization entails
ine¢ ciencies. Hence the extractable payo¤s are lower.

4.2 Quadratic Cost Function

We now demonstrate that the ranking of auctions in the previous section is
sensitive to the choice of the cost functions. We argue that under convex
cost functions the ranking is reversed. To allow closed form comparisons,
we assume quadratic cost functions, i.e. c1(b) = c2(b) = b2. Then c1(�b2) =
�b2 = 1:

By Corollary 2, the expected revenues of the seller from FPAA and SPAA
are, respectively

EvFPAA = 2
�
1�

Z 1

0
b2db

�
=
4

3
� 1:33; (6)

EvSPAA = 2
Z 1

0
e�2b

2
db =

r
�

2
� 1:25: (7)

Proposition 4 Let n = 2: Under quadratic, symmetric cost functions,

EvFPAA > EvSPAA:
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Thus the revenue ordering of SPAA and FPAA is changed when com-
pared to the linear case. However, it can be shown that with asymmet-
ric quadratic cost functions the ordering of Proposition 4 may be reversed.
This suggests that convexity increases the appeal of FPAA relative to SPAA
whereas asymmetry of marginal costs does the converse.

To understand the source of Proposition 4, it is useful to compare this
result to the linear symmetric case c(b) = b. As discussed in the last subsec-
tion, the expected revenue from both auctions in such case is 1: Under FPAA
a bidder randomizes only in the interval [0; 1]; i.e. if and only if b2 � b: How-
ever, under SPAA a bidder randomizes also in (1;1). Thus FPAA allows a
bidder to fully economize the lower costs whereas SPAA forces him to also
bid in the high-cost area. Since the expected revenue from a winner-pay
auction is �b2 = 1; a ranking of FPAA, SPAA, and the winner-pay auctions
is followed:

Corollary 2 Let n = 2: Under quadratic, symmetric cost functions,

EvFPAA > EvSPAA > EvWA:

Closed form solutions of EvSPAA for cost functions that are exponen-
tial beyond the quadratic case are not available. However, numeric simu-
lations suggest that the revenue ordering remains unchanged under more
high powered cost functions. The ordering is also consistent with Che and
Gale (1998b), who report that all-pay auctions revenue dominate standard
winner-pay auctions under �nancial constraints.

This result demonstrates that when cost functions are convex the sum of
the expected bids in both all-pay auctions may be higher than the expected
revenue. This phenomenon of over-dissipation of rents, famously anticipated
by Tullock (1980), is absent in the context of FPAA in the much studied
case of linear cost functions.14

5 Large Populations

5.1 Linear Cost Functions

Now we generalize the results of the linear two-player case to n � 2 case:
Hillman and Riley (1989) and Baye et al. (1996) show that in any Nash
equilibrium of FPAA under linear cost functions and n � 2 bidders, bidder
1 extracts payo¤ (�2 � �1)=�2 and all other bidders get zero.15 Baye et
al. (1996) show that there may be many equilibria with di¤erent revenue
properties. However, the revenue maximizing equilibrium is familiar already
from the n = 2 case.
14See e.g. Baye et al. (1994).
15Baye et al. (1996) assume identical (linear) cost functions but allow di¤erent valua-

tions.
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Proposition 5 (Baye, Kovenock, and de Vries, 1996) Let n � 2: Sup-
pose ci(b) = �ib for all b > 0 for all i: In the most pro�table NE of FPAA,
only 1 and 2 are active, and strategies are F1(b) = �2b; F2(b) = �1b+1��1=�2;
and Fi(b) = 1 for all i = 2; :::; n:

Thus in the most pro�table equilibrium of FPAA, bidders 1 and 2 mix
on [0;�b2]; as they do in the n = 2 case; and all the others bid 0. However,
as the next section shows, this result does not hold outside the linear case.

In the context of SPAA and linear cost functions, it is easy to see that
the equilibrium in Proposition 1, where only 1 and 2 are active, is valid
under any n � 2. This is proven in the appendix in Proposition 9. Here we
sketch the proof. Recall that all bidders k = 3; :::; n face a higher marginal
cost. Thus if bidding against 1�s strategy generates 2 a zero pro�t, as it does
in the equilibrium constructed in Proposition 1, then no k�s bid against the
same 1�s strategy can generate k a strictly positive payo¤. Hence inactivity
(bidding 0) is an optimal strategy for k.

We conclude that (i) since the n = 2 equilibrium strategies where only 1
and 2 are active forms an equilibrium in SPAA under any n � 3, (ii) since
the n = 2 equilibrium strategies where only 1 and 2 are active is the revenue
maximizing equilibrium in FPAA under any n � 3, and (iii) since in the
n = 2 case the SPAA generates a higher revenue than FPAA (Proposition
3), the SPAA generates a higher revenue than FPAA under any n � 2:

Since adding players does not a¤ect the performance of the winner-pay
auctions, it follows that the revenue ordering of auctions remains unchanged
under all n � 2.

Corollary 3 Let n � 2: Under linear cost functions,

EvSPAA � EvWA � EvFPAA;

with strict inequalities when bidders 1 and 2 are asymmetric.

5.2 Symmetric Bidders

FPAA Assume c1(�) = ::: = cn(�) = c(b) and normalize �b2 = 1: We
construct the symmetric Nash equilibrium by replacing Fj with

Q
j 6=iFj(b)

and assuming F1(b) = ::: = Fn(b) in the FPAA part of the proof of Propo-
sition 1. We have

Fi(b) = c(b)
1

n�1 ; for all i; for all b 2 [0;�b]: (8)

Denote the expected revenue of the seller of FPAA under n symmetric bid-
ders by EvFPAAn : Incorporating (8) into (1),

EvFPAAn = n

�
1�

Z 1

0
c(b)

1
n�1db

�
: (9)
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From (9) it not clear how an increase in n a¤ects the revenue. We now
identify a condition under which the revenue is bounded.

Proposition 6 Under symmetric bidders,

EvFPAAn ! �
Z 1

0
ln [c(b)] db; as n!1: (10)

Proof. By the l�Hospital�s rule,

lim
n!1

n
�
1� c(b)

1
n�1
�
= � ln[c(b)]; for all b � 0:

By taking the pointwise limit,

lim
n!1

EvFPAAn =

Z 1

0
lim
n!1

n
�
1� c(b)

1
n�1
�
db

= �
Z 1

0
ln [c(b)] db:

An immediate observation from (10) is that there are cost functions un-
der which the revenue increases without a bound (try c(b) = e(b

2�1)=b). That
is, it is possible that the amount rents that are over-dissipated becomes arbi-
trary large as n increases. In the particular case of quadratic cost function;
the limit revenue has a simple form:

�
Z 1

0
ln
�
b2
�
db = 2: (11)

SPAA Replacing Fj with
Q
j 6=iFj(b) and assuming F1(b) = ::: = Fn(b)

in the proof of SPAA part of Proposition 1 it follows that the symmetric
completely mixed SPAA Nash equilibrium satis�es

Fi(b) = (1� e�c(b))
1

n�1 ; for all i; for all b � 0:

Plugging this into (2), the expected revenue of SPAA when n bidders use
the symmetric completely mixed NE strategy is

EvSPAAn = n

Z 1

0

�
1� F (b)n�1

�
(1� F (b)) db

= n

Z 1

0

�
1�

�
1� e�c(b)

�n�1
n�1
��

1�
�
1� e�c(b)

� 1
n�1
�
db

= n

Z 1

0
e�c(b)

�
1� (1� e�c(b))

1
n�1
�
db:

Unfortunately, with only very few parametrizations does this expression have
a closed form solution. Little more can be said of the limiting case.
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Proposition 7 Under symmetric bidders,

EvSPAAn (F )! �
Z 1

0
e�c(b) ln

h
1� e�c(b)

i
db; as n!1:

Proof. By the l�Hospital�s rule,

lim
n!1

n
�
1� (1� e�c(b))

1
n�1
�
= � ln[1� e�c(b)]; for allb > 0:

By taking the pointwise limit,

lim
n!1

EvSPAAn =

Z 1

0
e�c(b) lim

n!1
n
�
1� (1� e�c(b))

1
n�1
�
db

= �
Z 1

0
e�c(b) ln[1� e�c(b)]db:

We can now evaluate the limit revenue under quadratic cost function.
We have, by expanding the logarithm,

�
Z 1

0
e�b

2
ln[1� e�b2 ]db = �

Z 1

0
e�b

2

 
�e�b2 � �e

�2b2

2
� �e

�3b2

3
� :::

!
db

=

Z 1

0
e�2b

2
db+

1

2

Z 1

0
e�3b

2
db+

1

3

Z 1

0
e�4b

2
db+ :::

=
1

2

r
�

2
+

1

2 � 2

r
�

3
+

1

2 � 3

r
�

4
+ :::

=

p
�

2

P1
k=1

1

k
p
k + 1

� 1:94: (12)

By (11), the revenue related to SPAA approaches that of FPAA when n
becomes high. Since the winner-pay auctions generate payo¤ 1 under all n �
2; we conclude from (11) and (12) that the limit ordering of auctions under
quadratic cost functions is the same as under two bidders. However, the
revenue di¤erence between the all-pay auctions and the winner-pay auctions
has increased.

Corollary 4 Under quadratic cost functions,

lim
n!1

EvFPAAn > lim
n!1

EvSPAAn > lim
n!1

EvWA
n :
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6 Closing remarks

This paper has investigated equilibria in complete information all-pay auc-
tions when the cost functions of the bidders may be non-linear. A closed
form expression of the seller�s revenues from the �rst-price and second-price
all-pay auctions are derived, and comparisons are made from the viewpoint
the expected revenue of the seller, i.e. the expected bids. Our analysis sug-
gests that convexity of cost functions increases the revenues related to the
�rst-price all-auction relative to those of the second-price all-pay auction
whereas asymmetries between the bidders�cost functions does the converse.
Moreover, convexity of cost functions increases the expected bids of both
the all-pay auctions above those of the corresponding winner-pay auctions.

Increase in bidders increases the expected bids in all-pay auctions in the
convex cost functions case and hence increase the revenue di¤erence between
all-pay and winner-pay auctions. However, the internal revenue ordering of
the all-pay auctions does not seem to be sensitive to the number of bidders.

A Appendix

For the next result, assume

ci(t) = �iy(t); for all t 2 R+; and for all i = 1; :::; n; (13)

where �1; :::; �n are positive scalars with �1 � �2 � ::: � �n; and y(�) is
nondecreasing, di¤erentiable, and unbounded, and satis�es y(0) = 0: Let

~c1(b) = c1(b) +
�2 � �1
�2

;

~ci(b) = ci(b); for i = 2; ::: .

If �1 = �2; then (~c1(�); :::; ~cn(�)) = (c1(�); :::; cn(�)): Let m be the largest
integer such that �m � �2:

Proposition 8 Assume (13). Strategy (Fi)ni=1 constitutes a NE of FPAA if
and only if there is a permutation of agents f2; :::;mg and numbers 0 = �1 =
�2 � �3 � ::: � �m � �m+1 = ::: = �n � �2 such that; for all k = 2; :::;m;
for all b 2 (�k; �k+1];

F1(b) =
~c2(b)

~c1(b)

 
~c1(b)Qn

j=k+1 �j(0)

! 1
k�1

(14)

Fi(b) =

 
~c1(b)Qn

j=k+1 �j(0)

! 1
k�1

; for all i = 2; :::; k; (15)

Fi(b) = �i(0); for all i = k + 1; :::; n;
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where the size of i�s atom �i(0) at 0; for i = 2; :::; n, is de�ned recursively
by

�n(0) = ~c1(�n)
1

n�1 , (16)

�i(0) =

 
~c1(�i)Qn

j=i+1 �j(0)

! 1
i�1

; for i = 2; :::; n� 1:

Proof of Proposition 8. Necessity : Let (Fi)ni=1 constitute a NE, and
let (u�i )

n
i=1 be the corresponding payo¤: Denote c

�
i (b) = ci(b) + u

�
i ; for all b

and i. First, bidding more than �2 is dominated action for all i = 2; :::; n.
Since 1 can guarantee payo¤ 1 � �1y(�2) = (�2 � �1)��12 by bidding �2 + "
for any " > 0; we have u�1 � (�2 � �1)��12 : Denote the support16 of Fi by
Si � [0; �2]:

Claim 0: There are no gaps in [j2NSj :
Proof: If there was b 2 (0;maxSj) for some j, but b 62 [j2NSj ; then

there is i that would strictly bene�t from choosing b instead of b0 = inffb00 2
Si : b

00 > b; i 2 Ng; as the lower bid would not a¤ect his winning probability
but would decrease his payments.

Claim 1: Let K = fj : b 2 Sjg: Then K contains at least two elements:
Proof: By Claim 0, K is nonempty. If K = fig, then; since a lower bid

does not a¤ect his winning probability but does decrease his payments, i
would strictly bene�t from downgrading his bid by some " > 0 (note that
Si is a closed set).

Claim 2: Suppose there is nonempty K 0 � N such that all Fk; k 2 K 0;
contain an atom �k(b) > 0 at b: Then there is i 62 K 0such that Fi(b) = 0:

Proof: Under the supposition, there is i such that bidding b+"; for any
" > 0; increases his winning probability at least the amountQ

j2NnK0Fj(b)
P
M�K0

1

#M

Q
j2M�j(b); (17)

whereas the increase in the cost is ci(b+ ")� ci(b): By the continuity of ci;
the latter number goes to zero. Thus so does (17). This implies there is
i 62 K 0such that Fi(b) = 0.

Claim 3: inf [j2NSj = 0:
Proof: If inf [j2NSj > 0; then, by Claim 2; bidder i such that inf Si =

inf [j2NSj would strictly bene�t from choosing b = 0 rather than b 2 Si; as
this change would not a¤ect his winning probability.

Claim 4: inf Si = 0 for all i = 1; :::; n:
Proof: Suppose there is i such that inf Si > 0: Then, since there are no

gaps in [j2NSj and inf [j2NSj = 0; there is bidder j and bid b such that
b 2 Sj and b < inf Si: But this implies that i would strictly bene�t from
bidding 0; as this change would not a¤ect his winning probability.
16The smallest closed set S such that �i(b)� �i(b+ ") > 0; for all " > 0; for all b 2 S:
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Claim 5: u�j = 0 for all j 2 f2; :::; ng:
Proof: By Claims 2 and 4, there is i such that Fi(0) = 0: By Claim 4

we have u�j = 0, for all j 6= i. Since u�1 � (�2 � �1)��12 > 0; it must be that
i = 1:

Claim 6: If b 2 \j2KSj \ (0; �2], then K � f1; :::;mg.
Proof: Suppose not. Then by Claim 5, for all b 2 \j2KSj ,Q

j2KnfigFj(b)� ci(b) = 0; for all i 2 f2; :::;mg; andQ
j2KnfkgFj(b)� ck(b) = 0; for some k 2 fm+ 1; :::; ng:

Take �b = supSk: Then, since Fk(�b) = 1 � Fi(�b) and ck > ci for all i = 2; :::m;
we have Q

j2KnfigFj(
�b)� ci(b) >

Q
j2KnfigFj(

�b)� ck(�b)
�
Q
j2KnfkgFj(

�b)� ck(�b)
= 0:

This violates Claim 5.

Claim 7: De�ne correspondence K : [0; 1]! N such that

K(b) =
n
i 2 N :

Q
j2NnfigFj(b)� c

�
i (b) = 0

o
; for all b:

Then K(�) is upper hemi-continuous on (0; �2].
Proof: Take a converging sequence b� ! b and k such that k 2 K(b�)

for all �:17 We claim k 2 K(b): NowQ
j2NnfkgFj(b

�)� ck(b�) = u�i

Since Fj contains no atoms on (0; �2], it is continuous in this range. More-
over, since ck is continuous, the left hand side converges to u�i : Thus the
equality holds for b, too, and hence k 2 K(b):

Claim 8: If i 2 K(b) \ f2; :::;mg; b 2 (0; �2]; then i 2 K(b0), b0 2 (b; �2].
Proof: Suppose there is an interval (b0; b00) such that i 2 K(b0)\K(b00)\

f2; :::;mg but i 62 K(b) for b 2 (b0; b00): Then Fi(b) = Fi(b0) = Fi(b00) for all
b 2 (b0; b00): Note that, for any b;Q

j2NFj(b)� c
�
i (b)Fi(b) = 0; for all i 2 K(b): (18)

Consequently

Fj(b) =

 
c�i (b)

c�j (b)

!
Fi(b); for all i; j 2 K(b): (19)

17Or equivalently a converging k� ! k such that k� 2 K(b�) for all �:
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In particular,

Fj(b) = Fi(b); for all i; j 2 K(b) \ f2; :::;mg: (20)

Take sequence b� converging to b0 from upwards such that k 2 K(b�) \
f2; :::;mg and b� < b00 for all �: Then, since K is uhc by Claim 8, k 2 K(b0):
By (20), Fk(b�) � Fi(b�) = Fi(b0) for all �: Since i 62 K(b�);Q

j2NnfigFj(b
�)� ci(b�) < 0 =

Q
j2NnfkgFj(b

�)� ck(b�);

or Fk(b�) < Fi(b�); a contradiction.

Now, since Si contains no gaps on (0; �2], it can only have a gap of form
(0; �i]. Thus K(b) � K(b0) for all b0 � b: Since K contains at least two
elements in (0; �2]; there is i 2 f2; :::;mg such that i 2 limb!0K(b): By (18)
and (19),

Q
j2NnfigFj(b) = Fi(b)

jK(b)j�1Q
j2K(b)nfig

c�i (b)

c�j (b)

Q
j2f1;:::;mgnK(b)Fj(b)

= c�i (b); for all i 2 K:

Dividing and rearranging

Fi(a) =

�
c�i (b)

Q
j2K(b)nfig

c�j (b)

c�i (b)

Q
j2f1;:::;mgnK(b)

1

Fj(b)

� 1
jK(b)j�1

; for all i 2 K(b):

(21)
In particular, for i 6= 1, we have

c�i (b)
Q
j2K(b)nfig

c�j (b)

c�i (b)

Q
j2f1;:::;mgnK(b)

1

Fj(b)
=

c�1(b)Q
j2f1;:::;mgnK(b) Fj(b)

; :

(22)

Claim 9: If 1 2 K(b0) \K(b00); then 1 2 K(b) for all b 2 (b0; b00); for all
b0; b00 2 [0; �2].

Proof: Suppose there is a b0 < b00 such that 1 2 K(b0)\K(b00) but i 62 K(b)
for b 2 (b0; b00): Take sequence b� 2 (b0; b00) converging to b0: Since 1 62 K(b�);
his payo¤ is, by (21),

Q
j2Nnf1gFj(b

�)� c�1(b�) =
c2(b

�)

F1(b�)
� c�1(b�) =

c2(b
�)

F1(b0)
� c�1(b�):

Recall that, by Claim 5, c�j (b) = cj(b) for all j 2 f2; :::;mg and that c�1(b) =
�1y(b)+u

�
1: Since 1 2 K(b0) and cj(�)�s are continuous, this number converges

to zero. Thus
c2(b

0)

c�1(b
0)
= F1(b

0): (23)

20



Similarly, take sequence in (b0; b00) converging to b00: Then, by continuity,

c2(b
00)

c�1(b
00)
= F1(b

00): (24)

Since F1(b0) = F1(b00); we have

1

�1 +
u�1
y(b0)

=
1

�1 +
u�1
y(b00)

:

But this can hold only if y(b0) = y(b00): Since y is increasing, this implies
b0 = b00; a contradiction.

Claim 10: supS1 = �2 and u�1 = (�2 � �1)��12 .
Proof. Let supS1 = �b: Since F1 is a cdf, we have F1(�b) = 1: Since u�1 �

(�2 � �1)��12 ; necessarily �b � �2: Suppose �b < �2: By (23) c2(�b) = c�1(�b) or

�2y(�b) = �1y(�b) + u
�
1:

Therefore

y(�b) =
u�1

�2 � �1
� 1

�2
:

Since y is an increasing function, this implies �b � �2; a contradiction. Since
�b = �2; we have u�1 = (�2 � �1)��12 :

By Claims 5 and 10 we now have c�i = ~ci for all i = 1; :::; n: Rank bidders
f2; :::;mg according their inf Si�s. Rename the lowest ranked bidder 2; the
second lowest ranked by 3; and so on. Choose �1 = inf S1; and �j = inf Sj
for all j = 1; 2; :::;m: Then, by Claim 1, �1 = �2 = 0 � �3 � ::: � �m: Thus,
by (21) we have constructed strategies (Fi) of the desired form.

The remaining task is to construct the atoms at b = 0: Let k be the
number of active bidders, i.e. �k < �2. Then �k = maxf�j : �j < 1; j =
1; :::;mg: Then Fj(0) = �j(0) = 1 for all j = k+1; :::;m: Since c�j (b) = c2(b)
for all j = 2; :::; k and

Q
j2k+1;:::;m Fj(b) = 1; we have, by (21),

�k(0) =

�
~ci(b)

Qk�1
j21

~cj(b)

ci(b)

� 1
k�1

= ~c1(�k)
1

k�1 :

Then

�k�1(0) =

�
~c1(�k)

�k(0)

� 1
k�2

;

and, inductively,

�k0(0) =

 
~c1(�k0)Qk

j=k0+1 �j(0)

! 1
k0�1

:

This proves the necessity.
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Su¢ ciency: Suppose that (Fi)ni=1 satis�es (21) for some K: It su¢ ces
to show there is no pro�table deviation by k 2 N nK. Suppose there is a
pro�table bid b > 0 for k: Bidding over �2 is clearly dominated. ThenQ

j2KnfigFj(b)� ~c2(b) = 0:

Since k�s deviation is pro�tableQ
j2KFj(b)� ~ck(b) > 0:

By assumption ~ci(b) � ~ck(b): But this impliesQ
j2KFj(b) > ~ck(b) �

Q
j2KnfigFj(b);

or Fi(b) > 1; a contradiction.

The next proposition allows general increasing and continuous cost func-
tions.

Proposition 9 Assume (13). There is a completely mixed NE of SPAA
where set B of bidders completely mix only if

Fi(b) =

 �
1� e�ci(b)

�Q
j2B�fig

 
1� e�cj(b)

1� e�ci(b)

!! 1
jBj�1

; (25)

for all b > 0; for all i 2 B:

Moreover, for any B = f1; :::; kg; k � n; such equilibrium can be formed.

Proof of Proposition 9. Necessary condition: Let the constructed
strategies of players in B form an equilibrium in completely mixed strategies.
For any b > 0; let the probability of i winning be

Gi(b) =
Q
j 6=iFj(b):

Since the strategy is completely mixed and atomless (see the proof Propo-
sition 1), all bids generate i a zero payo¤Z a

0
(1� ci(b))dGi(b)� ci(a)(1�Gi(a)) = 0; for all a > 0; for all i 2 B:

(26)
Taking the derivative,

G0i(a)� c0i(a)(1�Gi(a)) = 0; for all a > 0; for all i 2 B: (27)

Thus,

ci(a) =

Z a

0

G0i(b)

1�Gi(b)
db = � ln[1�Gi(a)];
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or
Gi(a) = 1� e�ci(a): (28)

Thus,

Fj(a) =

 
1� e�ci(a)

1� e�cj(a)

!
Fi(a):

Inserting this into (28) gives

Fi(a) =

 
(1� e�ci(a))

Q
j2B�fig

1� e�cj(a)

1� e�ci(a)

! 1
jBj�1

; for all i 2 B

establishing (25).
Su¢ cient condition: Taking the above steps in reversed order, if F meets

(25), then no player inB = f1; :::; kg wants to deviate. We need to check that
no player i > k bene�ts from bidding above 0. By assumption, ci(b) � ck(b)
for all b: Moreover, the probability of i being the winner when bidding b is
Gk(b) � Fk(b) � Gk(b). Letting gk be the density of Gk; and fk the density
of Fk we have, for all a > 0,

0 =

Z a

0
(1� ck(b))dGk(b)� ck(a)(1�Gk(a))

�
Z a

0
(1� ci(b))dGk(b)� ci(a)(1�Gk(a))

= Gk(a)

�
1 + ci(a)�

Z a

0
ci(b))

gk(b)

Gk(b)
db� ci(a)

�
� [Gk(a) � Fi(�)]

�
1 + ci(a)�

Z a

0
ci(b))

�
gk(b)

Gk(b)
+
fk(b)

Fk(b)

�
db� ci(a)

�
=

Z a

0
(1� ci(b))d[Gk(b) � Fi(b)]� ci(a)(1�Gk(a) � Fi(b));

where the �rst inequality follows from ci(�) � ck(�) and the second from
Gk(�) � Fk(�) � Gk(�) and fk(�)=Fk(�) � 0:
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