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1. Introduction
1 Our assumptions about preferences are weaker than, for instance, in Kirshna and
We study an n-player alternating offers bargaining game where
the players try to agree on a division of a pie. Time proceeds in discrete
periods to infinity, player 1 starts the game, and the proposer in any
period is the player who first rejected the offer of the previous period.
We are interested in what happens when the number of players
increases. Our way of increasing the population parallels the core
convergence literature as we replicate the situation so that while
the number of players is increased the size of the pie increases
proportionally: each replica of players brings in a new pie to the pool
of shareable pies. This could reflect matters e.g. when similar nations
group together as a federation.

Having a large set of players is attractive since in the limit almost all
players act as responders; only one player enjoys the first proposer
advantage and hence, as the number of replicas becomes large, the
solution becomes almost distortion-free.We show that in the limit the
unique stationary subgame perfect equilibrium has a simple char-
acterization in terms of a single replica's preferences. Finally, the
resulting single replica outcome has an attractive Walrasian inter-
pretation: the unique equilibrium in amarket where the first proposer
right is sold to a single replica of bargainers induces the same outcome.
We also thank Hannu Salonen
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The primitive of our model are the time preferences á la Fishburn
and Rubinstein (1982). This approach does not make assumptions
concerning the concavity of utility functions.1 Under similar assump-
tions, Kultti and Vartiainen (2007) show that the stationary
equilibrium outcome converges to the Nash-bargaining solution
when the length of the time period goes to zero. Since no additional
assumptions are made on the utility representations, this is an
extension of Binmore, Rubinstein andWolinsky (1986). We now show
that the limit outcome under replication (but fixed time interval)
converges to a well defined solution also, but different from the Nash
solution.2

2. The model

A pie of size XN0 is to be divided among the set N={1, 2, …n} of
players. The set of divisions of the pie is

Sn Xð Þ ¼ xaℝn : ∑n
i¼1xi � X; xi � 0; for all i

� �
:

Let us write x=(x1,…,xn) and x-i=(x1,…, xi-1, xi+1,…, xn).
Serrano (1996). As their (unique) equilibrium is stationary, our results can be
interpreted as an extension of theirs.

2 One could also study what happens when the size of the cake is kept fixed and the
number of players is increased. Then there is convergence to the Nash-bargaining
solution because the utility frontier becomes practically linear. The same reasoning
applies when the size of the cake is increased while keeping the number of players
fixed.
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The players' preferences over divisions and timing constitute
the primitive of the model. The pie can be divided at any point of
time T={0, 1, 2,…}. Let division 0=(0,…,0) serve as the reference
point, and let (complete, transitive) preferences over S×T satisfy, for
all x, y a S, for all i a N and for all s, t a T, the following properties
(Fishburn and Rubinstein, 1982; Osborne and Rubinstein, 1990, Ch. 4):

A1. (x, t) ⪰i (0, 0)
A2. (x, t) ⪰i (y, t) if and only if xi≥yi.
A3. If sN t, then (x, t) ⪰i (x, s), with strict preference if xiN0.
A4. If (xk, tk) ⪰i (yk, sk) for all k=1, …, with limits (xk, tk) →(x, t) and

(yk, sk) →(y, s) then (x, t) ⪰i (y, s).
A5. (x, t) ⪰i (y, t+1) if and only if (x, 0) ⪰i (y, 1), for any t a T.

A1–A5 hold throughout the paper. By A2, the Pareto-optimal
divisions at any date are given by

Pn Xð Þ ¼ xa Sn Xð Þ : ∑n
i¼1xi ¼ X

� �
:

For each i there is a function vi: [0, X] →[0, X], defining the present
consumption value of xi in date 1:

y;0ð Þfi x;1ð Þ if vi xið Þ ¼ yi; for all x; ya Sn Xð Þ: ð1Þ

Fishburn and Rubinstein (1982) show that given A1–A5, vi(·) is
continuous and increasing on [0, X].

We assume that the loss of delay increases in the share of the pie.

A6. xi−vi(xi) is strictly increasing and differentiable.

That is,

dv−1i xið Þ
dxi

¼ 1
vV
i xið ÞN1; for all xi � 0: ð2Þ

This property will be used when we prove the existence of a
stationary equilibrium.

3. The game

Given N and X, we focus on a unanimity bargaining game ΓN(X)
defined as follows: At any stage t a {0, 1, 2, …},

• Player i(t) a N makes an offer x a Sn (X). Players j≠ i (t) accept or
reject the offer in the ascending order of their index.3

• If all j≠ i (t) accept, then x is implemented. If j is the first who rejects,
then j becomes i(t+1).

• i(0)=1.

We focus on the stationary subgame perfect equilibria, simply
equilibria or SPE in the sequel, of the game, where:

1. Each i a N makes the same proposal x(i) whenever he proposes.
2. Each i's acceptance decision in period t depends only on xi that is

offered to him in that period.

We now characterize equilibria (see Krishna and Serrano, 1996).

Proposition 1. x is a stationary equilibrium outcome of ΓN (X) if and
only if x= (x1+d, x2, …, xn), for the x such that

P
x
i
¼ vi P

x
i
þ d

� �
; for all iaN; ð3Þ

∑
n

i¼1
xi ¼ X−d ð4Þ

Proof. Only if: In a stationary SPE the game ends in finite time.
Assume that it never ends. Then each player receives zero. This means
3 The order in which players' response to a proposal does not affect the results.
that in all subgames each player must get zero. Otherwise there would
be a subgame where some offer y=(y1, …, yn) is accepted. Because of
stationarity this offer is accepted in every subgame. In particular,
player 1 can deviate in the first period and offer y=(y1,…,yn). This is a
profitable deviation and constitutes a contradiction with the assump-
tion that there is a stationary SPE where the game never ends.

Assume next that there is a stationary SPE where an offer x(i) by
some player ia {1, 2,…,n}, is not accepted immediately. Denote by z(i)
the equilibrium outcome in a subgame that starts with an offer x(i) of
player i. But now player i could offer z(i) instead of x(i); everyone else
would accept the offer as in the stationary equilibrium acceptance
depends only on the offer.

Thus, in any equilibrium, i(t)'s offer x(i(t))=(xj(i(t)))jaN is accepted
at stage t a {0, 1, 2, …}. In stationary equilibrium the time index t can
be relaxed from x(i(t)). An offer x by i is accepted by all j≠ i if

xj ið Þ � vj xj jð Þ� �
; for all j≠i: ð5Þ

Player i's equilibrium offer x(i) maximizes his payoff with respect
to constraint (5) and the resource constraint. By A3, all constraints in
(5) and the resource constraint must bind. That is,

xj ið Þ ¼ vj xj jð Þ� �
; for all j≠i; ð6Þ

and

∑
n

i¼1
xi jð Þ ¼ X; for all j: ð7Þ

Since player i's acceptance decision is not dependent on the name
of the proposer, there is xiN0 such that xi( j)=xi for all j≠ i. By Eq. (6),
xj(i)bxj(j) for all j. Hence there is dN0 such that

∑n
i¼1 x�i

¼ X−d: ð8Þ

By Eqs. (6) and (8), x and d do meet Eqs. (3) and (4). Since 1 is the
first proposer, the resulting outcome is x(1)=(x1+d, x2,…, xn).

If: Let x and d meet Eqs. (3) and (4). Construct the following
stationary strategy: Player i always offers x-i and does not accept less
than xi. Player i's offer y is accepted by all j≠ i only if

yj � vj X−∑k≠j x�k

� �
¼ vj x�j

þ d
� �

; for all j≠i: ð9Þ

Since vj is increasing, and since

P
xj ¼ vj P

x
j
þ d

� �
; for all j≠i;

i's payoff maximizing offer to each j is x j. 5

Thus, to find a stationary equilibrium it is sufficient to find x and d
that meet Eqs. (3) and (4).

By Eq. (2), vi−1(xi)−xi is a continuous and monotonically increasing
function. Thus, the function ei(·) such that

ei xið Þ :¼ v−1i xið Þ−xi; for any xi � 0; ð10Þ
is continuous and monotonically increasing.

Define eī a (0, ∞] by

sup
xi�0

ei xið Þ :¼ ei:

Since ei(·) is continuous and monotonically increasing, also its
inverse

xi eð Þ :¼ e−1i eð Þ; for all ea 0; ei½ �;

is continuous and monotonically increasing in its domain [0, e ̄i].
Condition (10) can now be stated in the form

xi eð Þ ¼ vi xi eð Þ þ eð Þ; for all ea 0; ei½ �: ð11Þ
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Proposition 2. There is a unique stationary equilibrium of ΓN(X).

Proof. By A1 and A3, xi(0)=0. Since, for all i, xi−1 (·) is a monotonically
increasing function on ℝþ having its supremum at ē, it follows that
lime→ēi xi(e)=∞. Thus, since ∑i =1

n xi(e)+e is a continuous function of e
on [0, ēi] ranging from 0 to ∞, there is, by the Intermediate Value
Theorem, a unique dN0 such that

∑
n

i¼1
xi dð Þ ¼ X−d:

By Eq. (11)0, the pair (x(d), d) meets Eqs. (3) and (4). 5

For later purposes, we now identify a property of the players
preferences. Let X=1.

Lemma 1. There is unique y⁎ and d⁎N0 such that

yTi ¼ vi yTi þ dT
� �

; for all i ¼ 1; ::;n; ð12Þ

∑
n

i¼1
y�i ¼ 1: ð13Þ

Proof. Let ei(·) be defined as in Eq. (10). Since ei(·)=xi-1(·) is a
monotonically increasing function from ℝþ to[0, ēi] with ei(0)=0,
there is a unique d⁎ a (0, ēi] such that ∑i=1

n xi(d⁎)=1. By (11), xi(d⁎)=vi
(xi(d⁎)+d⁎) is uniquely defined, for all i. Let x(d⁎)=y⁎. 5

By Lemma 1 and Lemma 1, the following corollary is immediate.

Corollary 1. (y1⁎ +d⁎, y2⁎ ,…, yn⁎ ) as defined in Eqs. (12) and (13) forms
the unique equilibrium outcome of ΓN(1+d⁎).

4. The limit result

We now increase the size of the problem by replicating a one-pie,
n-player problem k times. That is, in a k-replicated problem we allow
each replica of n players to bring a pie of size 1 to the pool of shareable
pies, and the resulting set of k · n players bargain over the resulting pie
of size k according to the procedure specified in the previous section.

Formally, let N={1,…, n} be a set of original agents, and relabel
them by {11,12,…, 1n}. Let the k times replicated – or k-replicated – set
of agents be {11,…,1n, 21,…,2n,…k1,…,kn}. That is, the k-replicated
problem contains k agents of type i a N, each with the preferences
of i. Attaching the player li the index h(li)=n · (l−1)+ i, we may
order players 11, …, kn according to their h-indices {h(11),…, h(kn)}=
{1,…n · k}. Using this indexation of the players, we specify a game
Γ{1,…,n ·k}(k), for any k=1, 2, …. Then Propositions 1 and 2 are valid
for any k-replicated problem.4

By Proposition 1, the equilibrium of the k-replicated problem is
characterized by x(k)a Sk · n (k) and d(k)N0 meeting Eqs. (3) and (4).
By symmetry, the following result is immediate:

Lemma 2. xli(k)=x(l+1)i(k), for all iaN, for all la {1,…,k}, for all k=1, 2,….

Because of Lemma2, it is sufficient to focus onx1·(k)=(x11(k),…,x1n(k)).
We may rewrite Eq. (4), for all k a {1, 2,…},

d kð Þ ¼ k 1−∑n
i¼1 x�1i

kð Þ
� �

� 0: ð14Þ

Let {x(k)}k=1∞ be a sequence of points meeting Eqs. (3) and (4) for
the respective k-replicated problems, for all k.

Lemma 3. Sequence {x1·(k)}k=1∞ is bounded.

Proof. If {x1·(k)}k=1∞ is not bounded, there is a subsequence {x1·(kt)}t=1∞ and
j such that x1j(kt)→∞. But given x1i≥0 for all i, this would violate the
budget constraint (14). 5

By Lemma 3, {x1·(kt)}k =1∞ has a convergent subsequence.
4 Any indexation of the players would do.
Lemma 4. Let {x1·(kt)}t =1∞ be a convergent subsequence of {x1·(kt)}k=1
∞ such

that x1·(kt)→y. Then ∑i =1
n yi=1.

Proof. By (2), and the continuity of vi,

yi ¼ limt Px1iðktÞ
¼ limt viðPx1iðktÞ þ dðktÞÞ
¼ viðlimt Px1iðktÞ þ limt dðktÞÞ
¼ vi yi þ limt d ktð Þð Þ:

By Eq. (10), d(kt)→ei(yi). By Eq. (14),

∑
n

i¼1
x�1i

ktð Þ ¼ 1−
d ktð Þ
kt

:

Given that d(kt)→ei(yi), we have ∑i=1
n x1i(k)→1. 5

Nowwe give a characterization of the unique convergence point of
x(k) on the Pareto frontier. More generally, the efficient n-vector y⁎
specifies how the gains of each generation are distributed among the
members of the generationwhen the economy grows large. This is our
main result.

Proposition 3. x1·(k) converges to y⁎ as specified in Eqs. (12) and (13)
when k tends to infinity.

Proof. Since, by Lemma 3, sequence {x1·(k)}k =1∞ is bounded, it suffices
to show that every convergent subsequence of it converges to y⁎. Let
subsequence {x1·(kt)}t=1∞ converge to y. By Lemma 4, ∑i=1

n yi=1. There is
a dN0 such that yi=vi(yi+d) for all i=1,…,n. By Lemma 1, y=y⁎ and
d=d⁎. 5

Thus, by Lemma 2, all sequences {xl·(k)}, for l=0,1,…, converge to
y⁎=(y1⁎,…,yn⁎) which is characterized by the data of the original n
players as in Eqs. (12) and (13).

Fig. 1 depicts how the limit outcome of a single replica is specified
in the n=2 case. For any dN0, identify the function v1(1+d−x2)=x1 on
x2 a [0,1], and the function v2(1+d−x1)=x2 on x1 a [0,1]. The unique
intersection (y1, y2) of the two functions satisfies

v1 ð1þ d−y2ð Þ ¼ y1;
v2 1þ d−y1ð Þ ¼ y2:

Then d⁎ chosen such that the intersection (y1⁎, y2⁎) satisfies y1⁎+
y2⁎=1. Given such d⁎,

v1 1þ dT−yT2
� � ¼ v1 yT1 þ dT

� � ¼ yT1;
v2 1þ dT−yT1
� � ¼ v2 yT2 þ dT

� � ¼ yT2:

Thus (y1⁎, y2⁎) and d⁎ satisfy the conditions inn Eqs. (3) and (4) of a
two player game with X=1+d⁎.
Fig. 1.
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5. Market for the first-proposer right

To conclude, we give a “Walrasian” interpretation to the char-
acterized limit outcome y⁎. Being the first proposer in the bargaining
game is valuable. Consider a market where an arbitrator sells the right
to be the first proposer in a bargaining game to one of the n bargainers
and, once one player i, has paid price p for the right, adds p to the pool
of resources over which bargaining takes places. That is, given the
original size 1 of the pie, the player i becomes the first proposer in the
bargaining game Γn(1+p).

We study Walrasian markets for the first proposer right. We
concentrate on perfectly competitive equilibria. Inspired by Makowski
and Ostroy (2001), we see perfect competition as a situation where
each agent gets exactly what he brings to the economy.5 By Makowski
and Ostroy (2001), this holds if the agents are price takers and the
demand is perfectly elastic: given price p there are buyers that are
indifferent between buying or not buying. That is, in our set up the
price p is such that for at least two buyers the payoff from buying the
right with price p is equal to the payoff of letting the other buyer buy
the right at price p.

We claim that d⁎ is the unique such price and y⁎ is the resulting
allocation of the pie.

Proposition 4. e(y⁎) is the unique perfectly competitive Walrasian price
under which the players are indifferent, and y⁎ is the resulting allocation
of the pie, for d⁎ and y⁎ as specified in Lemma 1.

Proof. Let zj(1+p) be what a non-proposer j gets in the game Γn(1+p).
Then the proposer i's share is 1+p−∑j≠ i zj(1+p). Since only one player,
say i again, eventually becomes the first proposer, there is a j≠ iwho is
indifferent between buying or not. Thus j's payoff from buying the
proposing right under p equals the buying cost p and the alternative
cost zi(1+p), i.e.,

1þ p− ∑
k≠j

zk 1þ pð Þ ¼ pþ zj 1þ pð Þ:
5 This is called full appropriation.
Then 1=∑i=1
n zi (1+p). By Eqs. (3) and (4) (with X=1+p),

zi 1þ pð Þ ¼ vi zi 1þ pð Þ þ pð Þ; for all i ¼ 1; :::; n:

By Lemma 1, zi(1+p)=yi⁎ for all i, and p=d⁎. 5

By Proposition 3, the unique outcome y⁎ of the Walrasian market
for the first-proposing right can be thought as the expected outcome
of bargaining when the number of bargainers grows large and the
probability of a particular player having the right be the first proposer
becomes negligible. Having a large set of players is attractive since the
resulting bargaining outcome reflects strong average fairness: all but
one generation distribute their resources without a first mover
distortion. Thus the simple market game with small number of
players can be used to simulate the distortion-free many-player
bargaining outcome.
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