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Abstract
In anonymous platforms like the Internet, committing to honor the outcome of an auction is difficult
since the seller can benefit by reauctioning the good. We argue that how information is processed
within the auction mechanism is crucially important in such circumstances. In our model, the seller
uses an intermediary to extract information from the buyers but is not tied to sell the good with
terms that the mechanism proposes. Instead, she may reauction the good again via some other
intermediary. There are no restrictions on how many times and through which mechanisms the good
can be reauctioned. The buyers may also choose their outside option at any stage of the game.
We argue that a sequentially rational seller can only implement a version of the English auction,
in particular the popular version where bidders employ proxy bids. This is a consequence of the
informational properties of the English action: it reveals just the right information for the seller to
be able to commit to the mechanism. (JEL: C72, D44, D78)

1. Introduction

That the rules of an auction mechanism are not altered—and that the bidders trust
this being the case—is a central prerequisite for the mechanism to work properly. For
the seller, who is usually in the position of designing the mechanism, this requires a
variety of commitments regarding communication, allocation, and payment processes.
Commitment is especially important for the seller since, as demonstrated by McAdams
and Schwarz (2007a, b), it is typically she who bears the costs associated with rule-
breaking; forward-looking buyers anticipate any ex-post redesign of the mechanism,
and adjust their play accordingly at the interim stage. This commitment problem can
be seen as the reason for the market for intermediaries. Their business is to help the
seller commit to the rules of the game.
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But in anonymous platforms like the Internet, intermediaries or third parties may
only have limited capacity to prevent parties from violating the rules of the game. For
example, the seller may cast shill bids or the buyers may shade their bids, there may be
ex-post bargaining over the good, etc. (see Boyd and Mayo 2000).1 The most obvious
way for the seller to change the rules is not to honor the mechanism once it has been
played and the outcome has been determined. Instead, she may reauction the good via
another mechanism.

The job of online auctions such as eBay, u-Bid, or Amazon is to determine
the winner and the price of the auction on the basis of bids, that is, to serve as an
infomediary—a device through which communication takes place.2 However, they
cannot enforce the trade.3 From the theoretical point of view this is a problem since
the seller does have an incentive to reauction the good via another mechanism after the
mechanism has been run, in order to extract further surplus from the winner. A curious
fact is that this appears to happen very rarely.4 We argue that the reason why the online
auctions can be credibly committed to is the way information is being processed within
them.5

We study auction mechanisms that can be implemented when the seller can change
the rules of the game by reauctioning the good once the auction mechanism has been
executed but before the physical transaction has taken place. No restrictions are put on
how many times the good can be reauctioned nor what the structure of a new auction
mechanism may be. Also the buyers can leave the game whenever they want. We show
that the way online auctions are designed can be seen as a rational response to the
commitment problem—it allows parties to commit credibly to the original mechanism.

The most common online auction mechanism is the ascending English auction or
its versions (by Lucking-Reiley, 2000a, they cover almost 90% of the online auctions).
The popularity of the English auction is striking since it is not, in general, among
the most profitable auction mechanisms (Myerson 1981).6 The variant that almost
all the auction sites (including the aforementioned ones) encourage the sellers to use
is the one where bidders post a confidential proxy or maximum bid and the winning
bidder (bidder with the highest proxy bid) pays the price of the second-highest bid
(plus a bidding increment). This implementation of the English auction reduces bidding
costs as the bidders do not have to stay online during the time the auction runs. From

1. For an extensive literature on shill bidding, see Chakraborty and Kosmopoulou (2004), McAdams and
Schwarz (2007b), or Izmalkov (2005), and references therein.
2. For surveys, see Lucking-Reiley (2000a) and Ockenfels, Reiley, and Abdolkarim (2007).
3. For example, eBay is explicit in not taking measures against a seller who refuses to honor the transaction
(see http://pages.ebay.com/help/buy/report-trading.html).
4. According to eBay, less than 1% of auctions are filed for fraudulent behavior (see also Adams 2005).
The vast majority of filed cases concern the failure to transfer the merchandise or the payment, or the
misrepresentation of the quality of the good. In fact, refusal to honor the terms of trade (or equivalent)
is not even represented in the Federal Trade Commission’s classification of online auction frauds (see
http://www.ftc.gov/bcp/edu/pubs/consumer/tech/tec07.shtm.
5. I am indebted to a referee who suggested this interpretation.
6. However, the English auction may be optimal in a restricted class of mechanisms, see for example
Milgrom and Weber (1982) or Lopomo (1998, 2001).



318 Journal of the European Economic Association

the viewpoint of the bidders, the proxy ascending auction is equivalent to the second
price (Vickrey) auction as they cast a single bid and the winner pays the second highest
bid. However, from the viewpoint of the seller the two mechanisms differ as the proxy
ascending auction does not reveal the value of the winning bid. The only publicly
revealed pieces of information are (i) the identity of the winner, and (ii) the value of
the second highest bid.7

We shall argue that for the seller to be able to commit to the mechanism, it is
crucial that the auction mechanism does not reveal too much information. Our main
result is that, in the absence of commitment, the only mechanism that can be credibly
implemented is the English auction, or one of its versions (e.g., the proxy bidding
mechanism).

An eloquent example of why too much information may render an auction
mechanism unworkable can be found in Lucking-Reiley (2000b). He describes how
the operation of the Vickrey auction by a stamp auctioneer becomes jeopardized as the
auctioneer is not able to commit to the rules of the game. Once the value of the highest
bid is known, the seller faces an irresistible temptation to raise the price by pretending
that another bid was received just under the maximum amount. Of course, knowing
this, the bidders are reluctant to reveal their true willingness to pay.8

Note that the English auction would not have been subject to the same concerns
since it would only have revealed the second highest bid to the stamp auctioneer. To
understand why the English auction can be committed to, a little more machinery is
needed.

To model the idea that the parties do not have commitment power, we assume
that there are no physical costs of changing the rules of the game, and that the rules
can be changed any number of times. To operationalize this idea, we decompose a
mechanism into two parts, an information processing device and an implementation
device. The information processing device can be interpreted as a trusted infomediary
like an online auction site. Its role is to transform reliably the buyers’ messages to
an output—a public signal. For example, in the first-price auction the profile of bids
serves as the public signal. No technological constraints are imposed on the form of the
information processing device. The task of the implementation device is to implement
a physical outcome contingent on the signal or “recommendation” generated by the
information-processing device. In the context of the first-price auction, the task of the
implementation device is to sell the good to the highest bidder with the price of his
bid.

The key assumption we make is that neither the bidders nor the seller can commit to
the implementation device. That is, ex post, after the information processing device has
done its job and the signal has been produced, the seller can turn to another (composite)
mechanism rather than implement the outcome suggested by the implementation
device. The bidders are always free to choose an outside option rather than accept
the outcome of the implementation device.

7. Many auction sites, including eBay, also make the other losing bids publicly verifiable.
8. See Rothkopf, Teisberg, and Kahn (1990) for a similar argument.
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Our aim is to characterize mechanisms that the seller does not want to redesign—
that is, mechanisms whose implementation device the seller wants to obey. To this
end, we capture the seller’s mechanism selection behavior by a rule σ that identifies,
for each probability distribution p over the buyers’ valuations, a mechanism σ [p] that
the seller chooses to implement under the belief p. The rule σ specifies the dynamics
of the play by specifying how the changing beliefs affect the seller’s behavior.

Incentive compatibility requires that the seller can commit to implement σ [p]
under belief p. Two conditions are imposed on σ that guarantee that a sequentially
rational seller can indeed do this. The first is that the rule has to be internally consistent:
selecting σ [p] should not be in conflict with obeying σ later when information
is generated within σ [p] and p is updated accordingly. The second condition is
that the rule must be optimal: under any belief p the seller should not be able to
profit by implementing some other incentive feasible mechanism than σ [p] in the
class of mechanisms that she can commit to, given that she obeys σ in the future
when p is affected.9 The latter property is dubbed as the one-deviation property.
A stationarity condition, which requires that the rule is not conditioned on payoff
irrelevant information, is also assumed.10

It should be emphasized that the methods developed in this work do not attempt
to challenge or provide an alternative for the standard equilibrium techniques. Rather,
the modeling here is meant to be consistent with them. The motivation for the reduced-
form modeling approach is expositional. Cleaning away the details of the extensive
form makes the model simple and transparent, and allows us to focus on the aspects
of strategic interaction that are central.

Our main result is that the payoff and information structure of any feasible
mechanism—that is, a mechanism chosen by a mechanism selection rule that meets
consistency, the one-deviation property, and stationarity—is a version of the English
auction (indexed by a tie-breaking rule). Conversely, the rule that always chooses a
version of the English auction is consistent, stationary, and meets the one-deviation
property. Thus the English auction or its versions are essentially the only mechanisms
that the seller can credibly implement without commitment.11

Our argument is closely related to the famous Coase conjecture which says
that in the one-buyer scenario the seller without commitment power is forced to
sell the good with the price equal to the least possible valuation of the buyer (see
Gul, Sonnenschei, and Wilson 1986; Fudenberg, Levine, and Tirole 1985; Ausubel,
Cramton, and Deneckere 2002). The English auction is robust against commitment

9. Incentive feasibility here requires that the mechanism is incentive compatible and also guarantees
the bidders their outside option payoff under nontruthful messages. This property, which is called veto-
incentive compatibility, is a necessary and sufficient condition for the bidders to play the game honestly if
they can walk away at any stage of the game.
10. Stationarity, which is important for the uniqueness result, can be defined in many ways. The key
aspect of any definition is that the seller’s behavior should not be dependent on unnecessary details. This
could be motivated by a a desire to avoid computational burden: if the seller has been programmed to
implement a mechanism under current belief, and an extra piece of information does not allow her to
implement any more profitable mechanism, then her choice remains unchanged.
11. “Essentially” here means that the auction may also reveal some immaterial information.
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problems for an analogous reason. The English auction reveals (i) the buyer with the
highest valuation (the winner), and (ii) the valuations of all but the winner. Since the
winner is known to have the highest valuation once the output has materialized, the
seller cannot commit to sell the good to anyone but the winner with the price equal
to the lower bound of his possible valuations—that is, the second-highest valuation.
Hence, as the seller cannot commit to change the English auction, she can commit
to implementing it. But this implies that the seller cannot commit to any action that
could be improved ex post by running the English auction after the outcome has been
determined. We show that this constraint is actually very severe: only the English
auction itself satisfies it.12

An important limitation of our model is that, since the signals of the information
processing device are public, private communication between the bidders and the
seller is ruled out—that is, the case where the information processing device generates
different signals to the seller and the bidders (Skreta 2010 is, to our knowledge,
the only paper in the literature that allows private communication). There are three
justifications for this assumption. Firstly, online auctions in the real world explicitly
ban all private communication between the seller and individual buyers. Secondly,
the assumption allows us to avoid the vexed problem of mechanism design under an
informed principal. Thirdly, as private communication is likely to make commitment
more difficult to achieve (more detailed information than necessary of the buyers’
willingness to pay increases the profitability of the redesign), the seller would rather
employ an intermediary that prevents private signals since the costs from such activity
tend to be borne by the seller, as demonstrated by McAdams and Schwarz (2007a, b).
They show, in particular, that when the seller employing the first-price auction cannot
commit not to take further offers, trade may eventually take place after a long delay
and with substantial delay cost. Importantly, when the delay cost is low, the resulting
mechanism closely resembles the English auction. This is consistent with our model
which predicts that only the English auction can be committed to.

Relatedly, it is important that the seller can commit to the information processing
device or, equivalently, that the infomediary can commit not to leak information to the
seller. As McAdams and Schwarz (2007a, b) argue, this commitment ability can be
motivated by the idea that, since the intermediary does not own the object, he should
have weak marginal incentives to get a higher price. Moreover, since intermediaries
are typically long-run players in the market, reputational concerns are more likely to
provide them with strong enough incentives not to break the commitment.

Commitment to the information processing device is not a problem when the
mechanism can be interpreted as a cheap talk game which does not require private
information processing. For example, the English auction can be implemented via
cheap talk. See Krishna (2007), and the references therein, for conditions where this
is possible.

12. For studies on the no-gap case in the durable good monopoly scenario, see Ausubel and Deneckere
1989a, b.
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This work adds to the literature on mechanism design without commitment by
developing a conceptual framework in which commitment to mechanisms can be
analyzed in a reduced form, without making detailed assumptions concerning the
extensive form game. This simplifies the analysis greatly, and allows us to circumvent
the need to restrict the way the mechanism can be designed or redesigned (apart from
allowing private communication between the seller and the bidders).13

McAfee and Vincent (1997) study a more structured setup in which the seller
can set a positive reserve price but cannot commit to not re-auctioning the good if the
current bids do not exceed the reserve price. Assuming a fixed auction mechanism, they
demonstrate that as the lag before potential reauction becomes short, the sequentially
optimal (given reauctioning) reserve price produces the same expected revenue as an
auction with a reserve price equal to the seller’s valuation of the good.

Bester and Strausz (2001) and Skreta (2006) study commitment in the single-agent
case where the designer can use a general communication device to extract information
from the agent. However, the number of rounds is bounded (two in the case of Bester
and Strausz 2001), which allows the problem to be solved backwards. The result found
by Bester and Strausz (2001) is that in the one-buyer case the best mechanism is still
direct (however, Bester and Strausz, 2000, show that with more than one agent this no
longer holds). But, as opposed to the revelation principle, contracts are no longer fully
revealing since, in equilibrium, the agent randomizes. Skreta (2006) shows that in a
multistage bargaining game it is still optimal for the seller to post prices in each period
rather than extract information via some complicated mechanism.

Skreta (2010) develops techniques for analyzing multiagent mechanism design
problems without commitment. In her framework, the seller can reauction the good if
it has not been previously sold. Unlike in McAfee and Vincent (1997), the seller may
now employ any mechanism to do this. There are two key aspects which make Skreta
(2010) and this paper quite different. First, Skreta (2010) focuses on cases in which the
number of redesign rounds is bounded (one in most of the paper). Due to discounting,
the basic tradeoff is between selling fast and reaching the final period, in which the
seller can commit to the optimal mechanism. In our framework, where there is no
cost of redesigning the mechanism, Skreta’s (2010) problem would be vacuous as the
seller would choose a null mechanism in all but the last period and then implement the
optimal one. The second and more important difference is that Skreta (2010) allows
private communication, which is a major complication. The main result of the paper is
that despite the possibility of private communication, an optimal mechanism is simple
and only uses public communication.

The problem of redesign is also akin to the literature on resale in auctions. Much
of the focus in this literature has been on identifying the optimal auction with resale.14

However, this literature is fundamentally different from the current approach in that
once a good is sold, the buyer who obtains the good—and becomes the new seller—is

13. Calzolari and Pavan (2006b) study the alternative case: optimal information revelation along the
contracting process when the principal’s commitment is perfect.
14. See Zheng 2002; Calzolari and Pavan 2006a; Garratt and Troger 2006; Hafalir and Krishna 2008.



322 Journal of the European Economic Association

privately informed about his willingness to sell the good. This, in general, jeopardizes
efficiency in the after market (due to Myerson and Satterthwaite 1983). Thus the
problem no longer has the recursive structure that drives the analysis of this paper;
that the design problem and redesign problem are conceptually similar and that they
should be solved by using the same principles.

Further connections to the literature are discussed in the final section.
The paper is organized as follows. Section 2 specifies the setup and the game.

Section 3 defines the solution. The results are stated in Section 4. Sections 5 and 6
conclude with discussion on the solution concept.

2. Setup

There is a seller of a single indivisible good and a set N = {1, . . . , n} of buyers.
Seller’s publicly known valuation of the good is 0. Buyer i’s privately known valuation
θi is drawn from a discrete set �i ⊆ R+. Write � = ×i∈N �i with a typical element
θ = (θi )i∈N , and �−i = × j �=i�i with a typical element θ−i = (θ j ) j �=i .15 Denote by
�(�) the set of probability distributions p over �, and by pi the i th marginal
distribution of p.16

The set of allocations of the good is

A = {(a1, . . . , an) ∈ {0, 1}n : a1 + · · · + an ≤ 1},

where ai = 1 if the good is allocated to i and ai = 0 otherwise. Write a = (a1, . . . , an).
A money transfer from buyer i to the seller is denoted by mi ∈ R+ and m =
(m1, . . . , mn) is a profile of transfers. The set of all outcomes x = (a, m) is then
X = A × R

n
+.

Now we define a mechanism. A mechanism does two things: processes information
and implements an outcome. We separate these tasks. Denote by �(X ) the set of
probability distributions over X . A mechanism ϕ is a composite function

ϕ = g ◦ h : � → �(X ),

consisting of an information processingdevice h and an implementation device g such
that

h : � → �(S) and g : S → X,

where �(S) is the set of probability distributions over S, an open subset of an Euclidean
space. That is, the information processing device h generates, after receiving the
buyers’ messages, a public signal s ∈ S. The signal s is the only information anyone—
including the seller—obtains from h. The outcome function g then implements an

15. That is, pi (θi ) = ∑
θ−i

p(θi , θ−i ).

16. Hence countable and without accumulation points. This assumption is for technical simplicity.
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outcome x ∈ X conditional on the realized signal s. That the implementation device
is deterministic reflects the idea that the seller cannot make partial commitment, for
example in the probabilistic sense, to implement an outcome before it is actually
implemented.

Letting H = {h : � → �(S)} and G = {g : S → X} denote the sets of
information processing devices and implementation devices, respectively, the set of all
composite mechanisms is

ϕ = {g ◦ h : � → �(X )}

such that g ∈ G and h ∈ H .
The support of distribution p is denoted by supp(p). Also write h(θ) = {s :

h(s : θ) > 0} and h(supp(p)) = {s : h(s : θ) > 0 and θ ∈supp(p)}. Given p, a signal
s ∈ h(supp(p)) of the information processing device h induces a posterior

p(θ : s, h) = p(θ)h(s : θ)

/ ∑
θ∈�

p(θ)h(s : θ).

To economize on notation, write p(· : s, h) = p(s, h). Since the signals are
public, p(s, h) ∈ �(�) for all s ∈ h(supp(p)). By the definition of the support,
supp(p(s, h)) ⊆ supp(p) for all h and for all s.

The mechanism g ◦ h is constant under p if h(supp(p)) is singleton. A constant
mechanism implementing outcome x is denoted by

1x ∈ ϕ.

A constant mechanism does not affect the beliefs and implements the same outcome
with probability one. The two mechanisms (g ◦ h) and(g′ ◦ h′) are outcome equivalent
under p if they induce the same outcome function: (g ◦ h)(θ) = (g′ ◦ h′)(θ), for all
θ ∈supp(p). Finally, if the information provided by the mechanism g ◦ h is not finer
than what is necessary to implement the outcome. That is, if g(s) = g(s ′) implies
s = s ′ for all s, s ′ ∈ h(supp(p)), then we may write p(s, h) = p(g(s), g ◦ h).

Buyer θi ’s and the seller’s payoffs from the allocation x = (a, m) are, respectively,

ui (a, m, θi ) = θi ai − mi ,

v(a, m) =
∑
i∈N

mi .

Abusing the notation slightly, we may denote the payoffs of buyer θi and the seller
from the allocation x = (a, m) by ui (x, θi ) and v(x), respectively.

3. Solution

The seller’s problem is that she cannot commit to the implementation device g once the
signal s has been produced by the information processing device h. Rather, she may
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be tempted to design a new mechanism under her post-signal belief. In this section,
we identify conditions that the mechanism needs to satisfy for the seller to credibly
commit to it.

What makes the problem challenging is that we cannot employ backwards
induction or a related structure since there is no final stage from which to start the
recursion. That is, for any past history of redesigned mechanisms, there still exists a
chance to redesign the current mechanism. That is why the solution has to be based on
a “fixed point” argument.

In other words, whether the seller can commit to a mechanism depends on what
mechanisms are available to her ex post, given the post-signal beliefs. But since ex post
she can only select from mechanisms that she can commit to—the same question she
faced at the ex-ante stage—the mechanisms that the seller can commit to need to be
identified for all beliefs simultaneously. At the same time, consistency across ex-ante
and ex-post beliefs and the seller’s incentives must be honored.

We solve the mechanisms that can be committed to in two nested parts. First
we specify conditions under which, by the revelation principle, the buyers could
commit to a direct mechanism. Then we identify conditions under which the seller can
commit to a direct mechanism given that the buyers can. This requires defining which
mechanism the seller would implement under different (posterior) beliefs, if they were
to materialize at the ex-post stage of a mechanism. Otherwise one cannot guarantee
that the seller can commit to the mechanism in the first place.

Buyers’ Incentives. We assume that the buyers can exit any point of the game. Thus
any implementable mechanism g ◦ h must be ex-post individually rational (EXP-IR):17

ui (g(s), θi ) ≥ 0,

for all s ∈ h(θ), for all θ ∈ supp(p), for all i ∈ N . Given p, buyer θi ’s interim payoff
from a mechanism g ◦ h is∑

θ−i

∑
s

p(θ)ui (g(s), θi )h(s : θ).

By the revelation principle (Myerson 1979), an implementable mechanism must be
incentive compatible. A mechanism g ◦ h is incentive compatible(IC) if∑

θ−i

∑
s

p(θ)ui (g(s), θi )[h(s : θ) − h(s : θ−i , θ
′
i )] ≥ 0

for all θi , θ
′
i ∈ �i and all i ∈ N . However, incentive compatibility and ex-post

individual rationality are not independent conditions: the right of veto might be
exercised at the off-equilibrium histories. The following simple extension of incentive

17. Interimindividual rationality requires that participation be weakly profitable before the output has
been realized. Ex-post constraint has been analyzed by, for example, Forges (1993, 1998) and Gresik (1991,
1996).
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compatibility resolves the problem by allowing i to veto the outcome even after his
untruthful announcements.18

DEFINITION 1 (VETO-IC). Given p, a mechanism g ◦ h ∈ ϕ is veto-incentive
compatible if∑

θ−i

∑
s

p(θ)[ui (g(s), θi )h(s : θ) − max{ui (g(s), θi ), 0}h(s : θ−i , θ
′
i )] ≥ 0, (1)

for all θi , θ
′
i ∈ �i , for all i ∈ N .

Veto-incentive compatibility requires that truthful reporting forms a Bayes–Nash
equilibrium even if vetoing is possible after an untruthful announcement. Any
implementable mechanism must thus be veto-incentive compatible. For any p, denote
the set of veto-incentive compatible mechanisms by

VIC[p] ⊂ ϕ.

It is easy to see that any veto-incentive compatible mechanism is incentive compatible
and ex-post individually rational (but not vice versa).19

Truthful announcements form a Bayes–Nash equilibrium in a veto-incentive
compatible mechanism ϕ = g ◦ h if the seller can commit to following g after h
has performed its information processing task—that is, has produced its signal s. Thus
a mechanism maximizing the seller’s payoff subject to veto-incentive compatibility
could be interpreted as the seller’s full commitment benchmark. Since veto-incentive
compatibility concerns only the payoffs, any signal structure—even one that fully
reveals the buyers’ types—is consistent with veto-incentive compatibility. However,
while signals do not affect anyone’s payoff directly, they may do so indirectly, via the
seller’s behavior at the ex-post stage.

Seller’s Incentives. The seller’s expected payoff from the mechanism ϕ = g ◦ h is

V (ϕ, p) =
∑

θ

∑
s

p(θ)v(g(s))h (g(s) : θ) .

She wants to maximize her expected payoff subject to the constraint of not redesigning
the mechanism after observing the signal s from the information processing device h.
That is, of replacing the outcome g(s) with another mechanism in ϕ that generates her
a higher expected payoff than g(s). Our task is to identify the conditions under which
she will not do that.

Let the seller’s (pure) mechanism design strategy be captured by a choice rule σ

that specifies, for each prior belief p, the seller’s choice of the mechanism under these
beliefs. Since it is without loss of generality to focus on mechanisms that the buyers
can commit to, the choice rule is assumed to satisfy

18. Veto-incentive compatibility is due to Forges (1998), and is closely related to IC* of Matthews and
Postlewaite (1989).
19. Choose θi = θ ′

i in (1). We only need EXP-IR and IC in the remainder of the paper.
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σ : �(�) → ϕ (2)

such that σ [p] ∈ V I C[p], for all p. Then σ [p] represents the mechanism that the
seller implements under p. Rule σ in turn represents the dynamic mechanism selection
strategy of the seller.

We now identify properties that the choice rule σ should satisfy. We argue that the
sequential rationality of the seller, and the buyers’ knowledge of this, requires that σ

reflect internal consistencyand optimization. For these conditions, we need to develop
some concepts. We say that a mechanism g ◦ h ∈ ϕ is (weakly) ex-post dominated by
a mechanism ϕ ∈ ϕ if there is a signal s ∈ h(supp(p)) such that

V (ϕ, p(s, h)) ≥ v(g(s)) and ϕ �= 1g(s)

under p(s, h). That is, the seller weakly prefers ϕ over the recommended outcome
g(s), given the ex-post beliefs due to signal s. In such a case, the original mechanism
g ◦ h may be subject to redesign. It is easy to see that for a typical p there is no
veto-incentive compatible mechanism that is not ex-post dominated.20 Thus the seller
is typically (weakly) tempted to redesign the mechanism.

Now we define the set of mechanisms that the seller can commit to today given
that σ is followed in the future. Under prior p, denote by Cσ [p] the set of mechanisms
that are not subject to redesign under the hypothesis that σ is followed ex post:

Cσ [p] = {
g ◦ h ∈ VIC[p] :

g ◦ h is not ex-post dominated by σ [p(s, h)], for any s ∈ h(supp(p))
}
.

(3)

Hence, by the revelation principle, and under the hypothesis that the seller can commit
to the choice rule σ :

� A mechanism ϕ is truthfully playable if ϕ ∈ Cσ [p], since then it will not be
redesigned ex post.

� A mechanism ϕ is not truthfully playable if ϕ �∈ Cσ [p], since then it will be
redesigned ex post.

Choice set Cσ [p] is defined with respect to the assumed rule σ . We now formally
specify conditions that sequential rationality imposes on the choice rule σ itself. The
first condition requires consistency in the sense that employing σ ex ante should not
contradict σ being employed ex post.

DEFINITION 2 (Consistency). Choice rule σ is consistent if σ [p] ∈ Cσ [p], for all p.

The second condition implies optimality. Given σ and p, the seller should choose
a mechanism that maximizes her payoff in the set Cσ [p].

20. If 0 ∈supp(pi ) for all i, then a veto-incentive compatible mechanism is not ex-post dominated only
if extracts all surplus from the buyers. But full surplus extraction á la Crémer and McLean (1984) is not
possible under veto-incentive compatibility.
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DEFINITION 3 (One-Deviation Property). Choice rule σ satisfies the one-deviation
property if V (σ [p], p) ≥ V (ϕ, p), for all ϕ ∈ Cσ [p],for all p.

Under the hypothesis that σ can be committed to in the future, the seller does not
want to change σ under any current prior p. Without the one-deviation property, σ

could not be convincingly committed to.
Note how consistency, the one-deviation property, and ex-post dominance play

different roles in the solution. The one-deviation property together with consistency
reflects optimization: σ [p] maximizes the seller’s payoff in Cσ [p]. Ex-post dominance
in turn guarantees that this act of optimization is consistent with farsightedness. That
is, since σ is obeyed in the future, not being ex-post dominated with respect to σ [·]
guarantees that a mechanism can be committed to. Indeed the only role of ex-post
dominance is to test whether the seller can commit to a particular mechanism under
the hypothesis that σ is followed in the future. In particular, the one-deviation property
is not implied by ex-post dominance.

Now we state two straightforward but important implications of consistency and
the one-deviation property. First, the seller always implements the outcome of a
mechanism that she can commit to.

LEMMA 1. Let σ be consistent and satisfy the one-deviation property. Then g ◦ h ∈
Cσ [p] implies that σ [p(s, h)] = 1g(s), for all s ∈ h(supp(p)).

Proof . Take any s ∈ h(supp(p)). By consistency, g ◦ h is not ex-post dominated
by σ [p(s, h)] under p. By the definition of ex-post dominance, 1g(s) is not ex-post
dominated by σ [p(s, h)]. Hence either v(g(s)) > V (σ [p(s, h)], p(s, h)) or v(g(s)) =
V (σ [p(s, h)], p(s, h)) and σ [p(s, h)] = 1g(s). By the one-deviation property, V (σ [p
(s, h)], p(s, h)) ≥ v(g(s)). Hence it must be the case that σ [p(s, h)] = 1g(s). �

In particular, the choice rule σ is idempotent in the following sense: if σ [p] =
g ◦ h, then σ [p(s, h)] = 1g(s), for all s ∈ h(supp(p)). That is, running σ twice rather
than once will not affect the outcome.

Second, if the seller can commit to implementing an outcome, then that outcome
must maximize her payoff in the class of individually rational outcomes.

LEMMA 2. Let σ satisfy the one-deviation property. Then σ [p] = 1x implies that
v(x) ≥ v(y), for all 1y ∈ V I C[p].

We now check that our solution is consistent with the standard bargaining theory.

The Coase Conjecture. The Coase conjecture, which pertains to our n = 1 case,
argues that when the seller is unable to commit not to sell the good, the buyer is able
to extract all the surplus. That is, the outcome of the one-sided bargaining game is to
sell the good with price θ(p), the minimal possible valuation θ in the support of p.
The Coase conjecture has been extensively studied in the noncooperative bargaining
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literature, and verified in the so-called “gap” case θ (p) > 0 by for example Fudenberg,
Levine, and Tirole (1985) and Gul, Sonnenschein, and Wilson (1986).

The next remark shows that the result can be derived also in our setup, without
going into the details of the bargaining process. Thus consistency and the one-deviation
property do capture the key aspects of sequential rationality.

REMARK 1 (Gap case). Let n = 1. Let σ be a consistent choice function meeting the
one-deviation restriction. Then σ [p] = 1(1,θ (p)), for all p such that θ (p) > 0.

That is, any σ [p] sells the good to the buyer with the price equal to his
minimal possible valuation. To see this, note that by Lemma 1, σ [p(s, h)] = 1g(s),

for all s ∈ h(supp(p)). By Lemma 2, g(s) maximizes v in the class of constant,
individually rational mechanisms under p(s, h). Since θ (p(s, h)) > 0 we have g(s) =
(1, θ(p(s, h))). But by imitating θ = θ(p) > 0, any θ ′ ∈ supp(p) can guarantee to
be able to buy the good at price θ(p). Hence by incentive compatibility, g(h(θ)) =
(1, θ(p)), for all θ ∈ supp(p).

However, it is also well known that in the “no gap” case, θ (p) = 0, other more
complex equilibria can be constructed (see e.g. Ausubel and Deneckere 1989a). To
avoid them, the literature often focuses on simple “stationary” equilibria (see e.g.
Ausubel, Cramton, and Deneckere 2002).

The problem with multiplicity of (complex) solutions also applies in our case
when θ(p) = 0. It can be shown that for any λ ∈ � there is a choice rule σλ that is
consistent and meets the one-deviation property, and sells to types θ ≥ λ and never to
types θ < λ of the buyer given the prior p. However, all constructed σλ are complex,
and require the seller to condition σλ on seemingly superficial information. To remove
these complexities, our final restriction imposes a degree of simplicity on choice rules.
It demands that the implemented outcome is not conditioned on information that does
not provide more profitable transaction opportunities.

DEFINITION 4 (Stationarity). A choice rule σ is stationary if σ [p] = 1x , σ [p′] = 1x ′,

v(x) ≥ v(x ′), and supp(p′) ⊆ supp(p) imply x = x ′.

That is, signals that do not allow the seller to implement a more profitable
choice do not affect the seller’s choice.21 For example, the choice rule σλ above fails
stationarity (see Appendix B for the precise exposition). The next section characterizes
the inducible stationary choice rules in the general n ≥ 1 case.

4. Results

4.1. Overview

Before formally establishing the results, we give a heuristic account of them. Our
main result is that the English auction (or its version) is the only mechanism that

21. For an analogous restriction, see Ausubel and Deneckere 2002.



Vartiainen Auction Design without Commitment 329

the seller can credibly commit to. The core of our argument is simple. The outcome
of the English auction reveals exactly the information that is needed for the seller to
credibly implement this outcome. The reason for this is that the outcome of the English
auction separates the possible valuations of the winner from those of the other buyers,
and hence the seller cannot commit to not selling to the winner with the proposed
price—his least possible valuation given the ex-post information. We show that only
the English auction has this property.

More specifically, we first demonstrate that the choice rule where the seller always
uses the English auction—or the version which uses all the information contained in
the nonwinners’ valuations to compute the lower bound of the winner’s valuation—is
consistent. This follows from the fact that running the English auction twice rather than
once does not affect the outcome. To prove that the English auction choice rule also
satisfies the one-deviation property, we show that if a mechanism cannot be profitably
changed by employing the English auction ex post, then the mechanism must, in fact,
be outcome equivalent with the English auction itself. This “fixed point” result is
obtained via induction on the value spaces of the buyers, and implies that the English
auction choice rule cannot be changed profitably with a one-time deviation.

To prove that the English auction choice rule is the only feasible one, we first
argue that any seller’s choice rule that is stationary and consistent cannot reject (all the
versions of) the English auction. This is true since any realization of an English auction
reveals the winner and his least possible valuation given the other buyers’ valuations.
Thus any mechanism that ex-post dominates the English auction must threaten the
winner to sell the good to the buyer with the second highest valuation, to force the
winner to pay a higher price. However, this threat is not credible since when the winner
declines the offer, the seller cannot commit to not sell—as suggested by the Coase
conjecture—to the winner with his least possible valuation. Finally, since some English
auction is always feasible, it follows that the mechanism chosen by the seller must
be robust against being upset by the English auction ex post. This strong restriction
implies, by the fixed point argument made in the previous paragraph, that any choice
rule must be outcome equivalent with the English auction choice rule.

Two modeling aspects complicate the analysis. First, we do not put any restrictions,
for example in terms of independence, on the distributions of the buyers’ valuations.
Doing otherwise would require us to impose unnatural constraints on the employed
mechanisms since the posterior distributions should also satisfy the restrictions. To
cope with general distributions, the English auction has to be modified to take into
account all the information hidden in the nonwinners’ valuations which makes the
formal definition of the mechanism somewhat more involved than usually. Second,
since we cannot assume away the positive probability of an event where at least two
buyers have same highest valuation or the highest valuation equals the seller’s valuation,
the English auction has to be appended with a tie-breaking rule. By consistency, the
same tie-breaking rule has to be applied uniformly to the whole English auction choice
rule. Different tie-breaking rules then give rise to different English auction choice
rules.
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4.2. The Analysis

The English Auction ϕE . A tie-breaking rule w : � → N ∪ {0} always selects one
of the players with the highest valuation

w(θ) ∈ arg max
j∈N∪{0}

θ j , (4)

for all θ ∈ �. Note that w(θ) = 0 means that the seller keeps the good when θi = 0
for all i ∈ N . The buyer w(θ) is called “the winner” under the type profile θ , and the
set w−1(i) ⊆ � consists of the type profiles under which w chooses i as the winner.
Our mechanism is indexed by the tie-breaking rule.

Given a prior distribution p and a tie-breaking rule w, we now construct a
deterministic mechanism ϕE (·) = gE

(
hE (·)), the English auction.22 Define a set of

public signals SE by

SE = {(w(θ), θ−w(θ)) : θ ∈ �},
and a deterministic information processing device hE : � → SE such that

hE (θ) = (w(θ), θ−w(θ)),

for all θ ∈ �. In words, under type profile θ the information processing device of the
English auction produces the signal hE (θ) = (w(θ), θ−w(θ)), which makes public the
identity of the winner w(θ) and all the nonwinners’ types θ−w(θ).

The implementation device gE is defined on SE . The English auction allocates the
good to the winner with the price equal to the least possible valuation of the winner
above the second highest valuation. Formally, the winner’s money transfer rule is as
follows: for any i ∈ N ,

m E (i, θ−i , p) = min{θ ′
i : (θ ′

i , θ−i ) ∈ w−1(i) ∩ supp(p)}, (5)

if θ ∈ w−1(i). That is, m E (i, θ−i , p) is the least possible valuation of i given
the information that (i) i is the winner, (ii) the other buyers’ types are θ−i . The
implementation device gE : SE → X is now defined, for each buyer j ∈ N , for all
(i, θ−i ) ∈ SE , by

gE
j (i, θ−i ) =

{
(1, m E (i, θ−i , p)), if j = i,

(0, 0), if j �= i .
(6)

That is, ϕE (θ) = gE (hE (θ)) allocates the good to the winner i = w(θ) who pays a
price equal to his least possible valuation (i) given the other buyers’ types, (ii) the fact
that i is the winner, and (iii) p.23 The corresponding payoffs are, for all i ∈ N ,

ui (ϕ
E (θ), θi ) =

{
θi − m E (i, θ−i , p), if θ ∈ w−1(i) ∩ supp(p),

0, if θ �∈ w−1(i) ∩ supp(p).
.

22. We relax w from the description of the English auction ϕE for notational simplicity.
23. Note that ϕE (p) reveals only the winner’s identity and the other players’ valuations. Hence it cannot
be interpreted as the Vickrey (second-price) auction which asks all buyers to reveal their valuations.
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By construction, ϕE is efficient and the price paid by the winner is less than or
equal to his valuation, and at least as high as the other buyers’ valuations.24 Moreover,
since the winner i becomes publicly known along with the signal s = (i, θ−i ), the
posterior belief p((i, θ−i ), hE ) satisfies

supp(p((i, θ−i ), hE )) ⊆ w−1(i). (7)

Since the implementation device is a bijection, we may denote the posterior p(s, hE )
simply by p(x, ϕE ).

Mechanism ϕE has the familiar pivotal structure: a buyer’s payment—and hence
his payoff—is independent of his announcement as long as he wins (or loses). The
impact of lying on his payoff cannot be positive since it either induces the buyer to
win when he would like to lose, or to lose when he would like to win, given the other
buyers’ valuations. Since truthtelling is a dominant strategy,

ϕE ∈ VIC[p].

Feasible Choice Rules. To highlight the fact that in the above definition the English
auction is conditioned on the prior p, let us denote it by ϕE [p]. Keeping fixed the tie-
breaking rule for which the English auction is defined, the function ϕE : �(�) → ϕ

can now be taken as the English auction choice rule. Different tie-breaking rules then
yield different English auction choice rules. Construct a correspondence CϕE ⊂ V I C
such that

CϕE
[p] = {ϕ ∈ VIC[p] : ϕ is not ex-post dominated by ϕE [p′], for any p′ ∈ �(�)}.
Our aim is to prove that the English auction choice rule is essentially the only

rule that can be committed to (up to a tie-breaking rule). The argument is made in two
parts, the first demonstrating sufficiency and the second necessity. The result is stated
in Theorem 1.

We first prove the sufficiency—that the English auction choice rule is consistent
and satisfies the one-deviation property. This is done via two lemmas. First, note that the
English auction choice rule, being defined with respect to a fixed tie-breaking rule, is
idempotent: ϕE [p(x, ϕE [p])] = 1x , for all x ∈ ϕE [p](supp(p)), for all p. That is, after
running the English auction, a new English auction does not change the outcome. This
implies that the English auction ϕE [p] is not ex-post dominated by ϕE [p(x, ϕE [p])].
Hence it follows that ϕE [p] ∈ CϕE

[p] for all p. More compactly: the English auction
choice rule is consistent.

LEMMA 3. ϕE [·] is consistent.

We now argue that the English auction choice rule satisfies the one-deviation
property. To do this, we establish a very strong result: any mechanism in CϕE

[p] is

24. When the valuations are correlated, there may be a gap between this and the second-highest valuation.
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outcome equivalent—and hence payoff equivalent—with the English auction ϕE [p].
This guarantees that there is no profitable single-stage deviation to the seller’s
mechanism design strategy. The result is also used in the proof of the uniqueness
of the feasible seller’s strategy.

LEMMA 4. ϕ ∈ CϕE
[p] only if ϕ is outcome equivalent to ϕE [p], for all p.

Proof . Relegated to Appendix A. �

That is, given p, the only veto-incentive compatible mechanisms that are not ex-
post dominated by any ϕE [p′] are the mechanism ϕE [p] itself and its versions that
may additionally reveal some nonrelevant information concerning the winner’s type.
Thus ϕE has a “fixed point” property. The proof relies on induction on the buyers’ type
sets.

We now demonstrate that there is no other rule than the English auction choice rule
that meets the desiderata. The argument is made in two stages. First we demonstrate
that any stationary rule σ that is consistent and meets the one-deviation property
induces Cσ that contains ϕE , specified for some tie-breaking rule w. The second part
uses this finding to show that Cσ is contained in CϕE

. Together with Lemma 4, this
proves that ϕE is outcome equivalent to any feasible mechanism.

Heuristically, if ϕ ex-post dominates ϕE [p], then ϕ must change ϕE [p]’s
allocation. Since any outcome x of ϕE [p] reveals the winner and his least possible
valuation given the other buyers’ valuations, ϕ must threaten the winner to sell the
good to the buyer with the second-highest valuation to force the winner to pay a higher
price. However, this threat is not credible since when the winner declines the offer,
the seller sells—by stationarity and Lemma 2—to the winner with his least possible
valuation.

LEMMA 5. Let a choice rule σ be stationary, consistent, and satisfy the one-deviation
property. Then there is a tie-breaking rule wsuch that ϕE [p] ∈ Cσ [p], for all p.

Proof . Construct w as follows: For any θ ∈ �, denote by 1θ the degenerate prior such
that supp(1θ ) = {θ}. Then there is an outcome xθ such that σ [1θ ] = 1xθ

. Let w(θ) = i
if xθ allocates the good to i . By Lemma 2, such w(θ) satisfies (4). Use this w to
construct ϕE .

Suppose, in contrast to the claim, that there is p such that ϕE [p] �∈ Cσ [p]. Then
ϕE [p] is ex-post dominated by σ [p(x, ϕE [p])] for some x ∈ ϕE [p](supp(p)). Denote
σ [p(x, ϕE [p])] = g ◦ h.

Let x allocate the good to player i . By stationarity, because g ◦ h ex-post dominates
1x , g ◦ h cannot be a constant mechanism. By IC there are θ ′ ∈supp(p(x, ϕE [p])),
s ∈ h(θ ′), and j �= i such that θ ′

i = θ ′
j , and such that g(s) allocates the good to j . By

Lemma 1, 1g(s) = σ [p(x, ϕE [p])(s, h)]. Since

1x ∈ VIC[p(x, ϕE [p])] ⊆ VIC[p(x, ϕE [p])(s, h))],

it follows by Lemma 2 that v(g(s)) ≥ v(x).
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By equation (6), supp(p(x, ϕE [p])) ⊆ Yi and, by the definition of support,

supp(p(x, ϕE [p])(s, h)) ⊆ supp(p(x, ϕE [p])).

Thus, by the construction of w, EXP-IR, and Lemma 1, σ [1θ ′] = 1x . However, since
g(s) ∈ h(θ ′), also supp(1θ ′) ⊆ supp(p(x, ϕE [p])(s, h)). This implies, by stationarity,
that g(s) = x, violating the assertion that x allocates the good to i and g(s) to
j �= i . �

We now use the previous lemma to prove that if a stationary σ is consistent and
meets the one-deviation property relative to C, then there is a tie-breaking rule w such
that no element of C[p] is ex-post dominated by ϕE [q] for any q.

LEMMA 6. Let a choice rule σ be stationary, consistent, and satisfy the one-deviation
property. Then Cσ [p] ⊆ CϕE

[p], for all p, for some tie-breaking rule w.

Proof . Let g ◦ h ∈ Cσ [p] and s ∈ h(supp(p)). Denote x = g(s) and q = p(s, h). By
Lemma 1, σ [q] = 1x . Identify w as in Lemma 5. It suffices for us to show that 1x is not
ex-post dominated by ϕE [q]. Suppose, on the contrary, that it is. By Lemma 5, ϕE [q] ∈
Cσ [q]. By the definition of one-deviation property, V (σ [q], q) ≥ V (ϕE [q], q). Thus
v(x) ≥ V (ϕE [q], q).

Take any y ∈ ϕE [q](supp(q)). Then supp(q(y, ϕE [q])) ⊆supp(q) and, hence,

x ∈ {x ′ : 1x ′ ∈ VIC[q]} ⊆ {x ′ : 1x ′ ∈ VIC[q(y, ϕE [p])]}.
Since, by Lemma 1, σ [q(y, ϕE [q])] = 1y and 1x ∈ VIC[q(y, ϕE [q])], it follows
by Lemma 2 that v(x) ≤ v(y). Since y was arbitrary, and v(x) ≥ v(ϕE [q], q),
the inequality must hold as equality. But then, since supp(q(y, ϕE [q])) ⊆supp(p),
stationarity implies that x = y. Thus ϕE [q] = 1x , which contradicts the hypothesis
that ϕE [q] ex-post dominates 1x . �

By Lemma 6, a stationary and consistent σ that meets the one-deviation property
is not ex-post dominated by an English auction. Hence σ [p] cannot allocate the good
to anyone but the buyer with the highest valuation—that is, σ [p] must be efficient.
An implication of the lemma is that the commitment inability of the seller leads to an
efficient allocation, as suggested by the Coase theorem.

Since σ [p] is efficient, and the lowest type of a buyer earns zero payoff, the revenue
equivalence theorem implies that ϕE [p] is the (generically) unique implementable
mechanism if the buyers’ valuations are independent. However, we can say more:
by Lemma 4, if the seller is unable to commit, the uniqueness of the implementable
mechanisms is a general phenomenon and holds for any prior distribution.

As an illustrative example, let N = {1, 2} and � =supp(p) = {5, 10}2. Let, say,
w(10, 10) = w(10, 5) = w(5, 5) = 1 and w(5, 10) = 2. Take ϕ ∈ Cσ [p]. Since 1x is
not ex-post dominated by ϕE [p(x, ϕ)]for any x ∈ ϕ(supp(p)), ϕ(θ) allocates the good
to buyer 1 under all θ ∈ {(5, 5), (10, 5), (10, 10)}. Transfers from 1 under θ = (5, 5)
and θ = (10, 10) are 5 and 10, respectively. By incentive compatibility, transfer from
1 under ϕ(10, 5) is 5. Since only ϕ(5, 10) allocates the good to 2, type θ2 = 10 is then
revealed. Hence, his transfer must be 10, which means that ϕ = ϕE [p] under p.
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Now we are ready to state our main result. Since ϕE [·] is well defined (by equations
(4), (5), and (6)), the first part of the theorem also proves the existence of a solution.

THEOREM 1. 1. Choice rule ϕE is stationary, consistent and satisfies the one-deviation
property, for any tie-breaking rule w.

2. If a choice rule σ is stationary, consistent, and satisfies the one-deviation
property, then there is a tie-breaking rule w such that σ [p] is outcome equivalent to
ϕE [p], for all p.

Proof . 1. Stationary of ϕE follows from the existence of a tie-breaking rule w for
which ϕE is constructed. Lemma 3 establishes consistency. The one-deviation property
follows from Lemma 4: any ϕ ∈ CϕE

[p] agrees with ϕE [p] on X and, hence, induces
the same payoff as ϕE [p].

2. Let stationary rule σ be consistent and satisfy the one-deviation property. By
Lemma 5, there is w and Cσ such that ϕE ∈ Cσ . By Lemma 6, Cσ ⊆ CϕE

. By
construction, σ ∈ Cσ . Thus, by Lemma 4, σ [p] is outcome equivalent to ϕE [p], for
all p. �

That is, the seller can commit to the English auction provided that she does so
consistently, under all distributions of the buyers’ valuations. Moreover, the payoff
structure of every feasible auction coincides with that of the English auction (defined
for some tie-breaking rule w). The only difference of a committable mechanism and the
English auction may concern additional, payoff irrelevant information on the player’s
valuations. 25

We should stress that the first result requires that the tie-breaking rule is well
defined, and the second that the stationarity condition is satisfied by the choice rule.
While the former assumption is innocent, and a consequence of appropriate modeling,
the second one is more substantial. The key justification for stationarity is simplicity.
A construction along the lines of Ausubel and Deneckere (1989) would presumably
allow the seller to commit to a choice rule that is more complex than the English
auction choice rule.

The Generalized Coase Conjecture. With the stationarity assumption the Coase
conjecture can now also be verified in the “no gap” case. By the second part of
Theorem 1, if σ is stationary, consistent, and meets the one-deviation property, then
σ [p] = ϕE [p] which allocates the good to any buyer θ > 0 with price min w−1(1)∩
supp(p).26

To conclude, our argument can be seen as a generalization of the Coase conjecture
which, in the current set up can be formulated as follows: ϕE [p] is the unique feasible

25. It is interesting that while full surplus extraction is feasible under full commitment under almost
all p (Crémer and McLean 1988; McAfee and Reny 1991), only the English auction is feasible without
commitment.
26. If supp(p) > 0, then this number is equal to supp(p). If supp(p) = 0, then it is 0 if the tie-breaking
rule allocates the good to the buyer at θ = 0, and min{θ > 0 : θ ∈ supp(p)} if it allocates the good to the
seller at θ = 0.
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mechanism in the n = 1 case when the seller cannot commit to not sell to the buyer
who values the good more than she does. Our more general version of the claim says
that in the ϕE [p] is the unique feasible mechanism in the n ≥ 1 case when the seller
cannot commit to not selling to the buyer who values the good more than the buyer with
the second-highest valuation.More succinctly, without external commitment devices,
the seller can only commit to the English auction.

5. Discussion of the Solution Concept

It is important to understand in what sense our key desiderata—the one-deviation
property and consistency—reflect sequential rationality. Suppose that the seller does
make a single deviation to her mechanism design strategy σ . Then under p she chooses
another incentive feasible mechanism, say ϕ, rather than σ [p], and returns to follow σ

once ϕ has been processed and beliefs have been affected accordingly. We argue that
the deviation cannot possibly be profitable for the seller. On the one hand, if following
σ is consistent with the implementation of ϕ, then, by the one-deviation property and
consistency of σ , ϕ could not have been a profitable deviation to σ [p] in the first
place. On the other hand, if following σ is not consistent with the implementation of
ϕ, then ϕ will be redesigned ex post according to σ and, since the deviation was of
one-shot nature, the new mechanism is implemented as planned. But by the standard
revelation argument, the combination of ϕ and its redesign can now be interpreted as a
single incentive feasible mechanism that cannot be, by the one-deviation property and
consistency of σ , a profitable deviation to σ [p]. This argument obviously generalizes to
all finitely long deviations to the mechanism design strategy. Hence the one-deviation
property and consistency of σ reflect sequential rationality of the players in the sense
that no finite sequence of deviations to σ can be profitable for the seller.

If also infinitely long deviations are permitted, then an assumption has to be
made concerning the payoffs from infinite streams of redesigns. There are natural
assumptions that guarantee that the results of this paper still hold. Construct an explicit
extensive form game in which the seller, at each round, designs an incentive feasible
mechanism and then chooses whether to implement the outcome of the mechanism
played by the bidders, or whether to design another incentive feasible mechanism to
extract further information from the bidders. Also each infinite terminal history is now
associated a payoff. We conjecture that if the payoffs are zero when the outcome is
never implemented and the future is undiscounted, then the one-deviation property and
consistency characterize the perfect Bayesian equilibria of the game as in this paper. If,
however, the future is discounted or there are other redesign costs, then the equilibria
of the game need not correspond to our equilibria (see Skreta 2010). Whether the
equilibria do coincide in the limit, when the redesign costs tend to zero, remains an
open question.

One may wonder whether the ex-post domination criterion in the definition of the
one-deviation property, which is defined by a weak payoff dominance, is needlessly
strong. A natural weaker candidate would be to demand strict payoff dominance.
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Strict domination is, however, in conflict with our basic assumption that the seller’s
mechanism selection rule is dependent only on the prior p. To see this, consider the
n = 2 case and supp(p) = {0} × {0, 1}. With the tie-breaking rule w that allocates
the good under θ = (0, 0) to buyer 2, mechanism ϕE [p] would always sell to buyer
2 with price 0. With strict domination criterion, a procedure that sells to 1 under
θ = (0, 0) with price 0 and to 2 under θ = (0, 1) with price 1 would be not be strictly
ex-post dominated. And selling to 1 under θ = (0, 0) with price 0 would be in conflict
with ϕE [q] where prior q is degenerate on θ = (0, 0). Combining strict dominance
with sequential rationality would therefore require history dependent choices, and the
mechanism selection rule σ would no longer be definable as a function of p.

6. Conclusion

Mechanism design requires commitment since at the ex-post stage, when the
mechanism has produced the information needed for implementing the output, the
seller may want to change the rules of the game and design a new mechanism.
Mechanisms are particularly vulnerable to commitment problems in anonymous
platforms like the Internet.

We have studied auction mechanisms that the seller can credibly implement
without external commitment devices. To this end, we have developed a new reduced-
form modeling approach. We recognize that a mechanism does two things: processes
information and implements an outcome. We separate these tasks, and relate the latter
as the source of the seller’s commitment problem. If the seller cannot commit to
implementing the outcome once the mechanism has been run, she has an incentive to
extract further surplus from the buyers by initiating a new mechanism under the ex-post
beliefs. Of course, the new mechanism is subject to the same commitment problem,
and so on. The objective of the paper is to identify the conditions under which the seller
will be able to commit to the mechanism given the consequences of doing or not doing
so. This requires that the seller’s mechanism design strategy has to be defined for all
distributions. The two conditions we impose on the seller’s mechanism design strategy,
which reflect her sequential rationality, are internal consistency and optimization. We
show that the only mechanism that satisfies these restrictions as well as a stationarity
condition is the traditional English auction (or its version).

At the heart of the analysis is the argument that a sequentially rational seller can
always commit to the English auction. This idea can be seen as a generalization of the
Coase conjecture (e.g. Fudenberg, Levine, and Tirole 1985; Gul, Sonnenschein, and
Wilson 1986). In the one-buyer case, the claim states that the seller can only commit
to sell the good to the buyer with a price equal to his least possible valuation. In
the multiple-buyers case, the seller can always commit to the English auction since,
when the mechanism reveals the buyer with the highest valuation and his least possible
valuation (= the second highest valuation), the seller cannot commit to raising the
price above this lower bound. Importantly, because the seller can credibly commit to
the English auction, she cannot commit to mechanisms that are ex-post dominated by
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the English auction. Our main result is that this constraint is very severe: only the
English auction itself satisfies it.27

Our model provides support for the English auction in the general class of auction
mechanisms. Many studies have demonstrated the usefulness of the English auction
in a restricted class of mechanisms. In a classic treatise, Milgrom and Weber (1982)
show that the English auction is optimal among the four standard auction forms when
the valuations are affiliated, a natural assumption in many auction scenarios.28 In the
same model, Lopomo (1998, 2001) demonstrates that the English auction features
robustness in a sense that it is optimal among simple sequential auctions and in a class
of posteriorly implementable auctions (a concept due to Green and Laffont 1987).

Posterior implementability requires that the buyers’ behavior is regret-free in the
sense that they would not want to change their behavior even if they knew the outcome
of the mechanism. This property is at the heart of the robustness of the English
auction and the Vickrey auction.29 It also partly drives our results. Due to posterior
implementability, running the English or the Vickrey auction twice in a row rather
than just once will not affect the outcome. But this is only a necessary condition of a
feasible auction. On the sufficient side, one needs to guarantee that the seller cannot
commit to any more profitable auction at the ex-post stage, given the information that
is generated by the mechanism. For example, the Vickrey auction, which is posteriorly
implementable, is not implementable when the seller cannot commit since it reveals
too much information.

Finally, our model provides some insights into the literature on optimal auctions
under efficiency (e.g. Ausubel and Cramton 1999; Krishna and Perry, 1998). The
efficiency restriction is usually motivated vaguely by appealing to “Coasian dynamics”,
which leads to the efficient allocation of resources through the seller’s inability to
commit, or resale markets.30 This paper is explicit on how efficiency emerges as a
consequence of sequentially rational redesigns of auction mechanisms.

Appendix A: Proof of Lemma 4

First assume that ϕ = g ◦ h is deterministic, i.e., ϕ(θ) = g(h(θ)) is singleton for all
θ . We show that g(h(θ)) = ϕE [p](θ), for all θ ∈ �. Denote, for notational simplicity,
Yi = {θ ∈ � : w(θ) = i} for all i .

Since ϕ = g ◦ h is not ex-post dominated by ϕE [p(s, h)], g(h(θ)) has to allocate
the good to the same buyer as ϕE [p(s, h)](θ) does, for all s ∈ h(θ), for all θ ∈supp(p).
Since ϕE satisfies Lemma 1, ϕ(θ) = g(h(θ)) allocates the good to the same buyer as

27. Milgrom (1987) argues that the core implements the efficient allocation under complete information.
28. Including the English, Vickrey, Dutch, and first-price auctions.
29. The English auction also satisfies a stronger condition of ex-post implementability: that one does not
want to change one’s own behavior even if one knows the behavior of the other players. See for example
Bergeman and Morris (2005, 2008).
30. Zheng (2002) is an exception. He characterizes outcome functions that can be implemented with
explicit resale markets. See also Haile (2000) for a formal modeling of retrading.
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ϕE [p](θ) does, for all θ ∈supp(p). Thus the partition {Yi } specifies the winner under
ϕ. Since, by EXP-IR, a nonwinner cannot be imposed a strictly positive monetary
transfer, the allocation of g(h(θ)) may differ from ϕE [p](θ) only in terms of the
winner’s monetary transfer. Denote the winner’s monetary transfer under g(h(θ)) by
mi (θ). Thus, our task reduces to showing that mi (θ) = m E (i, θ−i , p), for all θ ∈ Yi ,

for all i .
Fix i . Since �i is discrete and bounded below, we can order its elements by

θ0
i < · · · < θ k

i < · · · . We prove by induction that mi (θ k
i , θ−i ) = m E (i, θ−i , p), for all

θ−i such that (θ k
i , θ−i ) ∈ Yi , for all k = 0, 1, . . . . Assume that the induction hypothesis

holds until the step k − 1, namely

mi
(
θ l

i , θ−i
) = m E (i, θ−i , p), (A.1)

for all (θ l
i , θ−i ) ∈ Yi∩ supp(p), for all l = 0, . . . , k − 1. We show that (A.1) holds also

for step k.
Take any s ∈ h(supp(p)). Since ϕ does not leave surplus to the winner that could

be extracted by ϕE (p((x, s), ϕ)),

mi
(
θ k

i , θ−i
) ≥ m E (i, θ−i , p(s, h)),

for all (θ k
i , θ−i ) ∈ supp(p(s, h)). Since supp(p(s, h)) ⊆ supp(p),

m E (i, θ−i , p(s, h)) ≥ m E (i, θ−i , p), (A.2)

for all (θ k
i , θ−i ) ∈ supp(p(s, h)). Noting that (A.2) holds for all s ∈ h(supp(p)), it

follows from the above two conditions that

mi
(
θ k

i , θ−i
) ≥ m E (i, θ−i , p), (A.3)

for all (θ k
i , θ−i ) ∈ supp(p). It remains to be shown that the weak inequality in (A.3)

holds as equality.
By (4),

m E (i, θ−i , p) = θ k
i (A.4)

for all (θ k
i , θ−i ) ∈ Yi∩ supp(p) such that (θ k−1

i , θ−i ) �∈ Yi . This has two implications.
First, ∑

(θ k
i ,θ−i ,)∈Yi

[θ k − m E (i, θ−i , p)]p
(
θ k

i , θ−i
)

=
∑

(θ k−1
i ,θ−i )∈Yi

[θ k − m E (i, θ−i , p)]p
(
θ k

i , θ−i
)
.

(A.5)

Second, by (A.3),

mi
(
θ−i , θ

k
i

) ≥ θ k
i
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for all mi (p, θ−i ) = θ k
i for all (θ k

i , θ−i ) ∈ Yi∩supp(p) such that (θ k−1
i , θ−i ) �∈ Yi . By

VETO-IC and this property,∑
(θ k

i ,θ−i )∈Yi

[
θ k

i − mi
(
θ k

i , θ−i
)]

p
(
θ k

i , θ−i
)

≥
∑

(θ k
i ,θ−i )∈Yi

max
{
θ k

i − mi
(
θ k−1

i , θ−i
)
, 0

}
p
(
θ k

i , θ−i
)

=
∑

(θ k−1
i ,θ−i )∈Yi

max
{
θ k

i − mi
(
θ k−1

i , θ−i
)
, 0

}
p
(
θ k

i , θ−i
)
.

(A.6)

By the induction hypothesis (A.1),

θ k
i − mi

(
θ k−1

i , θ−i
) = θ k

i − m E (i, θ−i , p), (A.7)

for all
(
θ k−1

i , θ−i
) ∈ Yi∩ supp(p). By (A.7) and (A.4),∑

(θ k−1
i ,θ−i )∈Yi ∩supp(p)

max
{
θ k

i − mi
(
θ k−1

i , θ−i
)
, 0

}
p
(
θ k

i , θ−i
)

=
∑

(θ k−1
i ,θ−i )∈Yi ∩supp(p)

[
θ k

i − m E (i, θ−i , p)
]

p
(
θ k

i , θ−i
)

=
∑

(θ k−1
i ,θ−i )∈Yi

[
θ k

i − m E (i, θ−i , p)
]

p
(
θ k

i , θ−i
)
.

Thus, ∑
(θ k−1

i ,θ−i )∈Yi

max
{
θ k

i − mi
(
θ k−1

i , θ−i
)
, 0

}
p
(
θ k

i , θ−i
)

≥
∑

(θ k−1
i ,θ−i )∈Yi

[
θ k

i − m E (p, θ−i )
]

p
(
θ k

i , θ−i
)
.

This together with (A.6) implies that∑
(θ k

i ,θ−i )∈Yi

[
θ k

i − mi
(
θ k

i , θ−i
)]

p
(
θ k

i , θ−i
) ≥

∑
(θ k−1

i ,θ−i )∈Yi

[
θ k

i − m E (i, θ−i , p)
]

p
(
θ k

i , θ−i
)
.

Thus, by (A.5),∑
(θ k

i ,θ−i )∈Yi

[
θ k

i − mi
(
θ k

i , θ−i
)]

p
(
θ k

i , θ−i
) ≥

∑
(θ k

i ,θ−i )∈Yi

[
θ k

i − m E (i, θ−i , p)
]

p
(
θ k

i , θ−i
)
,

and hence ∑
(θ k

i ,θ−i )∈Yi

mi
(
θ k

i , θ−i
)

p
(
θ k

i , θ−i
) ≤

∑
(θ k

i ,θ−i )∈Yi

m E (i, θ−i , p)p
(
θ k

i , θ−i
)
. (A.8)

Finally, (A.8) implies that (A.3) holds as equality, as desired.
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Finally we check the case of random h. Note that even if g ◦ h is random, it has to
allocate the good to the same buyer as ϕE [p] does. Thus randomness of g ◦ h may only
concern the monetary transfer m. The proof, which is by induction, proceeds along
the above lines. It is easy to verify that (A.3) holds also for any randomly generated
monetary transfer m under (θ k

i , θ−i ). Moreover, (A.8) needs to hold for the expected
transfer m̄

∑
under (θ k

i , θ−i ). Again, this just means that (A.3) holds as equality for
each m, thus m E (i, θ−i , p) is implemented with probability one under all (θ k

i , θ−i ) ∈
supp(p). This completes the proof.

Appendix B: Nonstationarity of σλ

Let n = 1 and assume the “no gap” case 0 ∈ � �= {0}. We construct a seller’s choice
function σλ that allows the seller to commit to any price λ ∈ �. Define a take-it-or-
leave-it offer

ϕλ(θ) =
{

(1, λ), if θ ≥ λ,

(0, 0), if θ < λ.
.

That is, “sell with price λ to any type θ at least λ and not sell to type below λ”. Define
choice rule σλ such that

σλ[p] =
{

ϕλ, if {0, λ} ⊂ supp(p),

1(1,θ (p)), otherwise.

That is, if both 0 and λ belong to the support of p, then use ϕλ. Otherwise sell with the
price equal to the least possible valuation in supp(p).

We claim that σλ satisfies the one-deviation property:

(i) If {0, λ} ⊂ supp(p),then {(1, λ), (0, 0)} = σλ[p]. Now,
• 0 < λ = θ(p((1, λ), σ λ[p])) and thus σλ[p((1, λ), σ λ[p])] = 1(1,λ), and
• 0 = θ(p((0, 0), σ λ[p])) and thus σλ[p((0, 0), σ λ[p])] = 1(0,0).

(ii) If {0, λ} �⊂ supp(p), then σλ(p) = 1(1,θ (p)) and σλ(p) = 1(0,0), respectively.

Since constant mechanisms do not affect beliefs, σλ satisfies the one-deviation
property. Thus, the seller can commit to any price λ ∈ supp(p).

We now argue that σλ does not meet stationarity. To see this, let {0, λ} ⊂
supp(p). Denote by 10 the degenerate distribution such that supp(10) = {0} ��
λ. Then supp(10) ⊂ supp(p). By construction, σλ[p] = ϕλ and σλ[10] = 1(1,0).
Therefore, σλ[p](0) = (0, 0) and σλ[10](0) = (1, 0). However, v((1, 0)) = v((0, 0)) =
0, violating stationarity.

This result is analogous to Ausubel and Deneckere (1989), who show that any
price can be supported in equilibrium in the one-sided offers bargaining game when
the discount factor δ tends to 1. Strategies needed for these equilibria are complicated—
that is, nonstationary.
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