Microeconomic Theory

Lecture 3



Consumer with preferences

e From lecture 1: If 7Z is rational, i.e. complete and rational, then c*(-, 22)
satisfies WA.

o Let x(p,w) = c*(B(p,w), ), i.e. the outcome z(p, w) maximizes pref-
erences =7 in B(p,w).

e Since B(p,w) = B(Ap, Aw), for all A > 0,.x(p,w) is homogenous of
degree 0.

e For Walras' Law, we need new assumptions.



Axiom 1 Preferences 7~ are monotonic if, for all x,y € X,

x; > vy;, forall v imply x > y.

They are strongly monotonic if, for all x,y € X,

x>y andx £y imply x> y.

e A weaker axiom with similar spirit:

Axiom 2 Preferences = are locally nonsatiated if for all x € X and for all
0 > 0, there exists y € X such that

|ly —z|| < dand y > .

e Local nonsatiation is implied by monotonicity but not vice versa.



e Local nonsatiation of =~ implies Walras' Law, thus monotonicity implies it.



e Assume from now on nonsatiated preferences =~ and unique x(p, w). Then

33(-, )
| is homogenous of degree O.

Il meets Walras’' law.

e Hence, by lect. 2, x(p, w) also satisfies the compensated law of demand,
and the Slutsky matrix is negative semidefinite.



e To guarantee continuoity and uniqueness of (-, -) we make other structural

assumptions:

Axiom 3 Preferences =, are convex if for all x,y, € X and for all t € [0, 1],

x 7y implies (tx + (1 — t)y) = y.
They are strictly convex if for all x,y, € X and for all t € (0,1),

x 7y implies (tx + (1 — t)y) > v.

e (Conevexity implies continuity of x, strict convexity its uniqueness.

e Recall the definition of quasi-concave functions:



Definition 4 Let f be defined on the convex set X C R™. It is a quasiconcave

function if and only if

f(try + (1 = t)x2) > min[f(z1), f(z2)]
for every 1,9 € X,and 0 <t < 1.

Theorem 5 Let X C R"™ be a convex set. Function f : X — R is quasicon-
cave if its upper contour sets U(f,a) = {x : x € X, f(x) > a} are convex
sets for a € R.



e Recall the upper and lower contour sets U (z, ) = {y € X : y 22 «} and
L(z,Z)={yeX:zZy}.

Axiom 6 Preferences =~ are continuous if, for all x € X, the sets U (x, )
and L (x, ) are closed.

Proposition 7 Let rational preferences =~ be continuous. Then there is a con-

tinuous utility function w which represents those preferences. Moreover, if 7~ is
convex, then w is quasiconcave and convex valued.

e Notice from here the connection between quasiconcavity of a representation

and the convexity of the underlying preferences. Note also that a concave
function is quasiconcave but not vice versa.



e Note also that single valuedness of x(p,w) would follow from strict con-

vexity of 7.

e Thus there is a continuous u such that = (p, w) is the unique solution to

the utility maximization problem

or, equivalently,

MaXxX u \T
max ()

st.prx<w.

e Isit wlo.g. toassume x(p,w) exists?



Proposition 8 (Weierstrass) Let f : X — R be a continuous function and X
a compact set. Then f attains its maximum (minimum) on X .

e Recall: X C R"™ is compact if and only if it is closed and bounded.

e It is easy to see through counterexamples that continuity, boundedness and

closedness are all required for the result.

e We have assumed p > 0, so that B (p,w) is a compact convex set, and

u Is continuous, hence a utility maximizer does exist.



e How to characterize z(p, w)?

e Construct a Lagrangean
Lx,A:pw)=u(x)—A(p-z—w),

where A € R is the Lagrange multiplier.

e Letx (p, w) := =™ maximize the Lagrangean (assuming an interior solution
x* > 0). The first order conditions are

Ou (z*)
8a:l

—Ap; = Oforalll=1,...L,

*
p-xr = w.



Thus

Ou (z*) /Ox; _ pp
Ou (z*) /Oxy,  py

The ratio p;/py, is the marginal rate of substitution between goods [ and
k at z*.

On the ther hand

Lagrange multiplier A gives the marginal (shadow) value of relaxing the
constraint, i.e. the marginal value of wealth w. To see this, recall that by



the first order condition,
Dz L(x*, X : p,w) = Dyu(z*) — Ap = 0.

Recalling that «* = x (p, w), we obtain

%E(a:(p,w),A:p,w) = a%[u(a:(p,w))—)\(p-w(p,’w)—w)]
_ axgj; “)(Dyu ( (p, w)) — Ap) + A
— A

The second equality follows by the chain rule and the last one from the
FOC of the Lagrangean. The important observation that only the direct
effect of a parameter change matters (on the value function) is known as
the envelope theorem.



e Define the indirect utility function by condition

v(p,w) = u(z(p,w)).

e What are the properties of v (p, w) implied by the utility maximization
problem?

e Conversely, if v (-,-) is known, can we recover the utility function w(-),
i.e. the preferences =7



e Let u represent non-satiated and continuous preferences ~. Then v (-, ")
Is:

I homogenous of degree 0,
il strictly increasing in w, strictly decreasing in p; for all [,
Il continuous,

iv quasiconvex if 7~ is convex.

e Note that quasiconvexity is equal to —v(p,w) being quasiconcave, or
{(p,w) : v(p,w) < v'} being a convex set for all v/ > 0.

e If 7~ is monotonic, then v need not be strictly increasing in w.



Proposition 9 I/f v (p, w) satisfies i-iv, then there exists a non-satiated, con-
tinuous, and quasiconcave u (x) such that v (p,w) = u (x (p,w)) .

e We can solve such a u (x) from the problem

mig v (p, w)
PeRY

stp-xr=w.



Proposition 10 (Roy’s Identity) Let u represent nonsatiated, strictly convex,
and continuous preferences =~. Given an indirect utility function v (p,w) , the
Walrasian demand x (p, w) can be recovered from

_Ov(p,w) /Op
ov (p,w) /Ow

1 (p, w) =

e [0 see this, note that

ov(p,w) 0O (0 w). X\ D
apl - aplﬁ( (p7 )7)\'p7 )
= ai[u(a:(p,w))—A(p’x(paw)_w)]
g
_ axg” “)\( Dy ( (p, w)) — Ap) — Ay (p, w)
g

— —)\I'l (p7 ’UJ) :



where the third equality follows by the chain rule and the last one from
the FOC of the Lagrangean. As above,

ov (p,w)
ow -

A.




Duality

e The problem with the utility function and the indirect utility functions is
that they are not observable, only x, p and w are. the important property
called duality of the optimal choice transforms the problem into language
of the observables, and hence allows us to make emprically testable pre-
duictions.

e Given utility function u(-), denote by h (p, @) the choice that solves the
expedinture minimizing problem given utility of at least u and prices p:

min p-x
xERi

s.t. u(x) > 4.



e Notice that even though the feasible set is not bounded, the problem has
a solution when p € R—LHr'



e h(p,u) is called the Hicksian or compensated demand function.

e Denote the value function under the minimizer by e (p, @); the expenditure

function.

e The following observation is key to the development that follows.

s, ® . . L
Proposition 11 Fix a price vector p € RY .

L. If x* =z (p,w), then * = h(p,u (z*)) = h(p, v (p,w)).



2. If z* = h(p,u), thenz* =z (p,p-z*) = x (p,e(p,a)).

e Summarizing:

z (p,w) = h(p,v(p,w)) and h(p,u) =z (p,e(p,a)).

e Obviously then also:

w = e(p,v(p,w)) and u = v (p,e(p,a)).



Proposition 12 Let u represent nonsatiated, strictly convex, and continuous
preferences =. Then, for all (p, w)

h(p,’L_l,) — Dpe(p,ﬂ,).

e To see this, observe that e (p, @) is the value of the Lagrangean
L(x,A:p,u)=p-x— MNu(x) — 4]
at the minimizer x = h (p, @) . That is, by FOC,

p — ADzu(h(p,u)) = 0,
u(h (p,u)) —u = 0.



Thus, by the envelope theorem,

Dpe (p, @) DpL(h (p, @), A : p,a)

Dp{p - h(p,u) — Alu(h (p,u)) — u]}

h(p, @) + [p — ADgu(h (p, @))] - Dph (p, @)
h(p,u).

e Hicksian demand h (-, -) thus satisfies
— adding up: p- h(p,a) = w,

— homogeneity of degree 0 in p: h(ap,u) = h(p,u) for all p,u, and
scalars a > 0,

— convexity: if 7 is convex, then h (p, @) is a convex set; if = is strictly
convex, then h (p, @) is a function,



— matrix Dph (p, @) negative semidefinite, symmetric, and satisfies Dph (p, @) p =
0 (by homogeneity).



e Expedinture function e(-, -) satisfies:
— e (p, u) is homogenous of degree 1 in p,
— increasing in u and non-decreasing in p; for all [,
— concave in p,

— continuous in p, u.



e How to express Dph (p, @) in terms of x (p, w)?

e Recall :

h(p,a) =z (p,e(p,)) -
Therefore (Slutsky Equation):
Dph (p7 ’17,)
= Dpz (p,e(p,a)) + Duwz (p, e (p, @)) Dpe (p, u)
= Dpz(p, e (p, @) + Duwz (p, e (p,@)) h (p, 7)"
= Dpz (p,w) + Duwz (p, w) z (p,w)’,

where we have set w = e (p,u) = e(p,v (p,w)) .

e The significance: Dph (p, @) and hence Dz%e (p, @) can be computed from
x (p, w) which is observable and thereby potentially testable.



e Recall the properties of S(p,w), the substitution matrix defined in the

choice-based approach.

e Dyh (p,u) is symmetric due to preference maximization. Conversely, if the
observed Dph (p, @) not symmetric, then there are no (locally nonsatiated,

cont.) preferences that rationalize them.

e The restrictions under the preference-based approach are stronger, so we

obtain additional observable implications.



1. Homothetic Preferences

2. Quasilinear Preferences

3. Additively Separable Preferences

Definition 13 A continuous rational preference relation 2~ is homothetic if for
all a > 0, we have x =~ y if and only if ax =~ ay.

Exercise 14 Show that for homothetic preferences, = (p, cw) = ax (p, w) .



Engel curves are rays through origin.

Let u (x) be a representatition of =~ .

Exercise 15 If u (x) is linearly homogenous (i.e. u(ax) = au (x) for all x),
then 7~ is homothetic.

Clearly all representations of =~ cannot be linearly homogenous.

Exercise 16 If 7~ is homothetic, then there exists a representation u (x) that
is linearly homogenous.



Hint: Lete = (1,...,1) € RJLF. Show that for each zz € R, there is a unique
A () € R, such that x ~ A (x) e. Show that if 2~ is homothetic, then A (x) is
linearly homogenous.

Denote now the first unit vector by e; = (1,0, ...,0).

Definition 17 A continuous rational preference relation =~ on RXRi_l IS qua-
silinear with respect to good 1 (numeraire) if x ~ y implies that (z + aeq) ~
(y + aeq) forallaa € R and x + aeq = x for all o > 0.

Here the Engel curves are lines parallel to x1 axis.

Exercise 18 A rational preference relation 2~ on R X Rfﬁ_l is quasilinear with
respect to good 1 if and only if it admits a utility representation of the form
u(x) =x1+ ¢ (o, ...,x1) . (Show only the if part)



Utility functions of the form

L
u(z) = 3 w(z)
=1

are called additively separable. It can be shown that the following restriction
on preferences is equivalent to additive separability:

Definition 19 A continuous rational preference relation 7~ is additively sepa-
rable if for all M C {1,.., L} we have

(Zar Y—r) 2 <x§\4,y_M) if and only if (a;M,y/_M) = <x§\4,y/_M)

for all y_pr,y' 2y € RZ(_M), where n. (— M) is the number of elements not

in M.



Exercise 20 Show that whenever a utility representation is additively separa-
ble, then the above property holds. (The converse is hard.)



