
Microeconomic Theory

Lecture 3



Consumer with preferences

² From lecture 1: If % is rational, i.e. complete and rational, then ¤(¢ %)
satis…es WA.

² Let ( ) = ¤( ( ) %), i.e. the outcome ( ) maximizes pref-
erences % in ( )

² Since ( ) = ( ), for all 0 . ( ) is homogenous of
degree 0.

² For Walras’ Law, we need new assumptions.



Axiom 1 Preferences % are monotonic if, for all 2

for all imply Â
They are strongly monotonic if, for all 2

¸ and 6= imply Â

² A weaker axiom with similar spirit:

Axiom 2 Preferences % are locally nonsatiated if for all 2 and for all
0, there exists 2 such that

k ¡ k and Â

² Local nonsatiation is implied by monotonicity but not vice versa.



² Local nonsatiation of % implies Walras’ Law, thus monotonicity implies it.



² Assume from now on nonsatiated preferences % and unique ( ) Then
(¢ ¢)

i is homogenous of degree 0

ii meets Walras’ law

² Hence, by lect. 2, ( ) also satis…es the compensated law of demand,
and the Slutsky matrix is negative semide…nite.



² To guarantee continuoity and uniqueness of (¢ ¢) we make other structural
assumptions:

Axiom 3 Preferences % are convex if for all 2 and for all 2 [0 1],

% implies ( + (1¡ ) ) %

They are strictly convex if for all 2 and for all 2 (0 1),

% implies ( + (1¡ ) ) Â

² Conevexity implies continuity of strict convexity its uniqueness.

² Recall the de…nition of quasi-concave functions:



De…nition 4 Let be de…ned on the convex set ½ R . It is a quasiconcave
function if and only if

( 1 + (1¡ ) 2) ¸ min[ ( 1) ( 2)]

for every 1 2 2 and 0 · · 1.

Theorem 5 Let µ R be a convex set. Function : ! R is quasicon-
cave if its upper contour sets ( ) = f : 2 ( ) ¸ g are convex
sets for 2 R



² Recall the upper and lower contour sets ( %) = f 2 : % g and
( %) = f 2 : % g

Axiom 6 Preferences % are continuous if, for all 2 , the sets ( %)
and ( %) are closed.

Proposition 7 Let rational preferences % be continuous. Then there is a con-
tinuous utility function which represents those preferences. Moreover, if % is
convex, then is quasiconcave and convex valued.

² Notice from here the connection between quasiconcavity of a representation
and the convexity of the underlying preferences. Note also that a concave
function is quasiconcave but not vice versa.



² Note also that single valuedness of ( ) would follow from strict con-
vexity of %.

² Thus there is a continuous such that ( ) is the unique solution to
the utility maximization problem

max
2 ( )

( )

or, equivalently,

max
¸0

( )

s.t. ¢ ·

² Is it w.l.o.g. to assume ( ) exists?



Proposition 8 (Weierstrass) Let : ! R be a continuous function and
a compact set. Then attains its maximum (minimum) on .

² Recall: ½ R is compact if and only if it is closed and bounded.

² It is easy to see through counterexamples that continuity, boundedness and
closedness are all required for the result.

² We have assumed À 0, so that ( ) is a compact convex set, and
is continuous, hence a utility maximizer does exist.



² How to characterize ( )?

² Construct a Lagrangean

L( : ) = ( )¡ ( ¢ ¡ )

where 2 R is the Lagrange multiplier

² Let ( ) := ¤ maximize the Lagrangean (assuming an interior solution
¤ 0). The …rst order conditions are

( ¤) ¡ = 0 for all = 1

¢ ¤ =



² Thus
( ¤)
( ¤)

=

² The ratio is the marginal rate of substitution between goods and
at ¤

² On the ther hand
( ¤)

=

² Lagrange multiplier gives the marginal (shadow) value of relaxing the
constraint, i.e. the marginal value of wealth . To see this, recall that by



the …rst order condition,

L( ¤ : ) = ( ¤)¡ = 0

Recalling that ¤ = ( ), we obtain

L ( ( ) : ) = [ ( ( ))¡ ( ¢ ( )¡ )]

=
( )

( ( ( ))¡ ) +

=

The second equality follows by the chain rule and the last one from the
FOC of the Lagrangean. The important observation that only the direct
e¤ect of a parameter change matters (on the value function) is known as
the envelope theorem.



² De…ne the indirect utility function by condition

( ) = ( ( ))

² What are the properties of ( ) implied by the utility maximization
problem?

² Conversely, if (¢ ¢) is known, can we recover the utility function (¢)
i.e. the preferences %?



² Let represent non-satiated and continuous preferences %. Then (¢ ¢)
is:

i homogenous of degree 0

ii strictly increasing in strictly decreasing in for all

iii continuous

iv quasiconvex if % is convex.

² Note that quasiconvexity is equal to ¡ ( ) being quasiconcave, or
f( ) : ( ) · 0g being a convex set for all 0 0.

² If % is monotonic, then need not be strictly increasing in



Proposition 9 If ( ) satis…es i-iv, then there exists a non-satiated, con-
tinuous, and quasiconcave ( ) such that ( ) = ( ( ))

² We can solve such a ( ) from the problem

min
2R++

( )

s.t ¢ =



Proposition 10 (Roy’s Identity) Let represent nonsatiated, strictly convex,
and continuous preferences %. Given an indirect utility function ( ) the
Walrasian demand ( ) can be recovered from

( ) = ¡ ( )

( )

² To see this, note that

( )
= L( ( ) : )

= [ ( ( ))¡ ( ¢ ( )¡ )]

=
( )

( ( ( ))¡ )¡ ( )

= ¡ ( )



where the third equality follows by the chain rule and the last one from
the FOC of the Lagrangean. As above,

( )
=



Duality

² The problem with the utility function and the indirect utility functions is
that they are not observable, only , and are. the important property
called duality of the optimal choice transforms the problem into language
of the observables, and hence allows us to make emprically testable pre-
duictions.

² Given utility function (¢) denote by ( ¹) the choice that solves the
expedinture minimizing problem given utility of at least and prices :

min
2R+

¢

s.t. ( ) ¸ ¹



² Notice that even though the feasible set is not bounded, the problem has
a solution when 2 R++.



² ( ¹) is called the Hicksian or compensated demand function.

² Denote the value function under the minimizer by ( ¹); the expenditure
function.

( ¹) = ¢ ( ¹)

² The following observation is key to the development that follows.

Proposition 11 Fix a price vector 2 R++

1. If ¤ = ( ) then ¤ = ( ( ¤)) = ( ( ))



2. If ¤ = ( ¹) then ¤ = ( ¢ ¤) = ( ( ¹))

² Summarizing:

( ) = ( ( )) and ( ¹) = ( ( ¹))

² Obviously then also:

= ( ( )) and = ( ( ¹))



Proposition 12 Let represent nonsatiated, strictly convex, and continuous
preferences %. Then, for all ( )

( ¹) = ( ¹)

² To see this, observe that ( ¹) is the value of the Lagrangean

L( : ¹) = ¢ ¡ [ ( )¡ ¹]

at the minimizer = ( ¹) That is, by FOC,

¡ ( ( ¹)) = 0

( ( ¹))¡ ¹ = 0



Thus, by the envelope theorem,

( ¹) = L( ( ¹) : ¹)

= f ¢ ( ¹)¡ [ ( ( ¹))¡ ¹]g
= ( ¹) + [ ¡ ( ( ¹))] ¢ ( ¹)

= ( ¹)

² Hicksian demand (¢ ¢) thus satis…es

– adding up: ¢ ( ¹) =

– homogeneity of degree 0 in : ( ) = ( ¹) for all , and
scalars 0

– convexity: if % is convex, then ( ¹) is a convex set; if % is strictly
convex, then ( ¹) is a function,



– matrix ( ¹) negative semide…nite, symmetric, and satis…es ( ¹) =

0 (by homogeneity)



² Expedinture function (¢ ¢) satis…es:

– ( ¹) is homogenous of degree 1 in

– increasing in and non-decreasing in for all ,

– concave in

– continuous in ¹



² How to express ( ¹) in terms of ( )?

² Recall :

( ¹) = ( ( ¹))

Therefore (Slutsky Equation):

( ¹)

= ( ( ¹)) + ( ( ¹)) ( ¹)

= ( ( ¹)) + ( ( ¹)) ( ¹)

= ( ) + ( ) ( )

where we have set = ( ¹) = ( ( ))

² The signi…cance: ( ¹) and hence 2 ( ¹) can be computed from
( ) which is observable and thereby potentially testable.



² Recall the properties of ( ), the substitution matrix de…ned in the
choice-based approach.

² ( ¹) is symmetric due to preference maximization. Conversely, if the
observed ( ¹) not symmetric, then there are no (locally nonsatiated,
cont.) preferences that rationalize them.

² The restrictions under the preference-based approach are stronger, so we
obtain additional observable implications.



1. Homothetic Preferences

2. Quasilinear Preferences

3. Additively Separable Preferences

De…nition 13 A continuous rational preference relation % is homothetic if for
all 0 we have % if and only if %

Exercise 14 Show that for homothetic preferences, ( ) = ( )



Engel curves are rays through origin.

Let ( ) be a representatition of %

Exercise 15 If ( ) is linearly homogenous (i.e. ( ) = ( ) for all ),
then % is homothetic.

Clearly all representations of % cannot be linearly homogenous.

Exercise 16 If % is homothetic, then there exists a representation ( ) that
is linearly homogenous.



Hint: Let = (1 1) 2 R+ Show that for each 2 R+ there is a unique
( ) 2 R such that » ( ) Show that if % is homothetic, then ( ) is

linearly homogenous.

Denote now the …rst unit vector by 1 = (1 0 0)

De…nition 17 A continuous rational preference relation % on R£R ¡1
+ is qua-

silinear with respect to good 1 (numeraire) if » implies that ( + 1) »
( + 1) for all 2 R and + 1 Â for all 0

Here the Engel curves are lines parallel to 1 axis.

Exercise 18 A rational preference relation % on R£R ¡1
+ is quasilinear with

respect to good 1 if and only if it admits a utility representation of the form
( ) = 1 + ( 2 ) (Show only the if part)



Utility functions of the form

( ) =
P
=1

( )

are called additively separable. It can be shown that the following restriction
on preferences is equivalent to additive separability:

De…nition 19 A continuous rational preference relation % is additively sepa-
rable if for all ½ f1 g we have

¡
¡

¢
%

³ 0
¡

´
if and only if

³ 0
¡

´
%

³ 0 0
¡

´

for all ¡ 0
¡ 2 R (¡ )

+ where (¡ ) is the number of elements not
in



Exercise 20 Show that whenever a utility representation is additively separa-
ble, then the above property holds. (The converse is hard.)


