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1. The magic of stochastic simulation

2. What is retrospective simulation?

3. Simulation of diffusions
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The magic of stochastic simulation

Many problems in science involve the computation of integrals:

S =

∫

X

f(x)dx

or (just as hard) sums:

S =
∑

X

f(x) .

To be concrete, assume that X = {0, 1}d, the set of all sequences of
length d. So the size of X is 2d. Also suppose f(x) ≥ 0 for all x.

Direct enumeration of the sum is prohibitively expensive unless d is small.
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The Monte Carlo Method

von Neumann (1940s)

Monte Carlo: Take X1, . . . Xn to be randomly chosen sequences uni-
formly drawn from X . Estimate

Ŝ =
2d

n

n
∑

i=1

f(Xi)

As n → ∞, Ŝ → S.

Catch! Often need to have n ≥ O(2d) for this estimator to have an
acceptably small variance.
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Try again: importance sampling

We want to concentrate more on regions where there is a high f value.
Instead write:

S =
∑

X

f(x)

g(x)
g(x)dx

Where g is a probability distribution over X which matches f as closely
as possible. (It might even be proportional to f .)

Catch! g is now typically difficult to simulate from.

Good ways of carrying out these simulations typically use Markov chain
Monte Carlo, Sequential Monte Carlo and sometimes rejection and im-
portance sampling.

Methods are generally less expensive than O(2d) though virtually always
at least O(dk) for some k > 0.

What happens in infinite dimensional problems?
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Traditional approaches involve approximation, truncation, discretisation
to reduce to a finite-dimensional simulation problem.
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What is Retrospective simulation?

Randomness and order in the exact sciences.

Retrospective simulation is an attempt to take advantage of the redun-
dancy inherent in modern simulation algorithms (particularly MCMC,
rejection sampling) by subverting the traditional order of algorithm steps.

Exact randomness by changing order.

It is (in principle) very simple!

Retrospective simulation is most powerful in infinite dimensional con-
texts, where its natural competitors are approximate and computation-
ally expensive. In contrast, restrospective methods are often computa-
tionally inexpensive and “exact”.
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Ex 1: The birth of retrospective simulation?

Consider the quiz question on a Children’s television programme:

Who is the Prime Minister of Finland?

1. Sami Hyypia

2. Jyrki Katainen

3. Sauli Niinisto

N people enter a competition to win a prize, entering their answer on
a postcard. The winner is drawn uniformly from those who get the
question right (ie most of them). Suppose a proportion p > 0.5 get it
right.
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Algorithm 1

1. Mark each of the N entries, placing the correct postcards into a
bucket.

2. Shake the bucket and then pick out one postcard, declaring its
author the winner.

Cost of this procedure, O(N).

Algorithm 2

1. Throw all the postcards into the bucket without marking them

2. Draw postcards until a winner is found

Cost of this procedure, O(p−1).
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Ex. 2: The alternating series method

Devroye (1986)

Let p = a0−a1+a2−a3+a4− . . ., where {ai} is a decreasing sequence.
To simulate an event of probability p, the retrospective method is as
follows.

Use partial sums as upper and lower bounds for p:

p+i =

2i
∑

j=0

aj(−1)j ;

p−i =

2i−1
∑

j=0

aj(−1)j ;

1. Simulate U ∼ U(0, 1).

2. Find i with both p+i and p−i are either above or below U

3. When values are less than U , event is true, otherwise false.
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Example: Simulation of BM hitting times

Let Bt be standard Brownian motion. Let τa = inf{t; Bt = a}
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The distribution of τa is readily available analytically:

P(τa > t) = 2Φ

(

−|a|

t1/2

)
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Consider two-sided hitting time, τa,−b = inf{t; Bt = a or − b}. Harder.
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However by the reflection principle there exists an expansion

P(τa,−b ≤ t) = a0 − a1 + a2 . . .

so we can apply the alternating series method.
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Ex 3: Simulating from unnormalised probabilities

We have p1, p2, . . . is a sequence of positive numbers with pi ≤ qi and
∑

∞

i=j+1
qi = G(j) < ∞.

We would like to simulate from the discrete distribution with probabili-
ties proportional to {pi}.

Why not use the inverse CDF method?

1. Calculate s =
∑

∞

i=1
pi

2. Simulate U ∼ U(0, 1).

3. Set X = inf{j;
∑j

i=1
pj/s ≥ U}.
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Retrospective inverse CDF method

s−j =

j
∑

i=1

pi

s+j =

j
∑

i=1

pi +G(j)

Clearly
s−j ≤ s−j+1

≤ s ≤ s+j+1
≤ s+j+1

P+j
i =

j
∑

k=1

pk

s−j

P−j
i =

j
∑

k=1

pk

s+j

X+j(U) = inf{j; P+j
i ≥ U}

X−j(U) = inf{j; P−j
i ≥ U}
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1. Simulate U ∼ U(0, 1).

2. Calculate X−j(U) and X+j(U), j = 1, 2, . . . until X−j(U) =
X+j(U). Set X to be this common value.

P
−j
1

P
−j
2

P
−j
3

P
+j
1

P
+j
2

P
+j
3

U
0 1

Here X+j = X−j = X = 2.
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Ex. 4: Retrospective MCMC

Many opportunities.

Peeking forward at future observations ....

Eg simulate from π(θ,X) with θ ‘simple’ and X ‘complex’.

Consider Gibbs sampler which alternates between updating θ|X andX|θ.
The latter step is harder than the former.

However by suitable construction of random map X 7→ θ (eg by catalytic
field coupler, Breyer + R, 2001) we can often avoid having to calculate
‘all’ of X.
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Ex. 5: Coupling from the past

Propp and Wilson (1996).

Here the naive sampler starts at time −∞ from all possible states. It
then records the chain value at time 0.

CFTP starts at time 0 and proceeds backwards till the chain value at
time 0 is inevitable.
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Ex 6: Rejection sampling

Let f be a density of interest, and g be a density from which we can
simulate. f/g bounded by K say.

1. Sample X from g.

2. Compute p(X) = f(X)/(Kg(X)).

3. Simulate U ∼ U(0, 1).

4. Accept X if p(X) > U . Otherwise return to 1.

blue steps are often unnecessary!
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Retrospective rejection sampling

1. Sample V ∼ U(0, 1).

2. Identify a function h(V,X) and a set A(V ) such that

PV {h(V,X) ∈ A(V )} = p(X)

3. Simulate h(X,V ).

4. If h(X,V ) ∈ A(V ) the accept. Otherwise return to 1.

5. Fill in missing bits ofX from distribution ofX|h(X,V ) as required.
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Simulation of stochastic processes

Suppose that X : [0, 1] → Rd is a stochastic process with associated
probability measure P0.

Suppose we are able to simulate from P0.

Suppose that we wish to simulate from a different distribution P which
cannot be directly simulated, but for which we can write:

dP

dP0

(X) ∝ exp{−r

∫ 1

0

φ(Xs)ds} = a(X)

for some function φ taking values in [0, 1].

This applies to very wide range of stochastic processes, eg point processes
in space and time, diffusions, jump diffusions, processes used in Bayesian
non-parametrics.
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For example, given this trajectory, a(X) describes the Radon-Nikodym
derivative between P and P0 for this particular trajectory.
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The exact algorithm for diffusion processes output
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Beskos, Papaspiliopoulos and R (2006, Bernoulli)

The red points act as the DNA for the entire trajectory.



qqq

Rejection for sample paths

Would like to just propose a sample path fom P0 and use rejection
sampling. However

• Just storing all of X could require infinite storage capacity.

• Calculating
∫ 1

0
φ(Xs)ds is likely to require infinite computation

We could approximate in some way, but this seems unsatisfactory, and it
would typically be very difficult to quantify the resulting approximation
error.
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Retrospective rejection simulation

Key observation: a(x) is the probability of a Poisson random variable of

parameter r
∫ 1

0
φ(Xs)ds taking value 0.

Or ... the probability that a Poisson process of rate r on the unit square
has no points on the epi graph {(u, v) ∈ [0, 1]2; v ≤ φ(u)}.
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Slightly more general ....

Again we are able to simulate from P0, but want to simulate from P:

dP

dP0

(X) ∝ exp{−r

∫ 1

0

φ(Xs)ds} = a(X)

If Φ is unbounded below then rejection sampling intrinsically fails.

If Φ is bounded below but is an unbounded function above, then
rejection sampling still works in principle, but how can we simulate from
the epigraph under φ(Xt)?
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Simulation of diffusions

Continuous, strong Markov processes described by stochastic differ-
ential equation:

dXt = α(Xt)dt+ σ(Xt)dBt

where B is standard Brownian motion.
This can be interpreted constructively as

Xt+ǫ = Xt + ǫα(Xt) + σ(Xt)N(0, ǫ)

approximately for ‘small’ ǫ (the Euler approximation) written as
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Interested in simulating without discretisation error and obtaining a
realisation of the whole path in some sense.
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Diffusion densities

Consider simplest case, σ constant and drift α which is bounded with
bounded derivative.

dXt = α(Xt)dt+ dBt

and let the law of this diffusion on [0, 1] be denoted P, with W0 being
that of the Brownian motion (Wiener measure) .
Then under very weak regularity conditions

dP

dW
(X) = G(X)

where G is given by the Cameron-Martin-Girsanov formula:

logG(X) =

∫ 1

0

(

α(Xs)dXs − α2(Xs)ds/2
)
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Towards a simulation algorithm: simplifying G

By a suitable rearrangement we can rewrite

dP

dW
(X) = G(X) ∝ exp

{

A(X1)− r

∫ 1

0

φ(Xs)ds

}

:= a(X)

where A(x) =
∫ x

0
α(u)du and φ always always takes values in the interval

[0, 1].

This is almost in the exponential form required for the Poisson process
idea above.
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So we consider biased Brownian motion proposals for rejection sampling:

P0(X1 ∈ dx) ∝ exp{A(x)− x2/2} dx (∗)

with X|X1 ∼Brownian bridge, so that

dP

dP0

∝ exp

{

−r

∫ 1

s=0

φ(Xs)ds

}

.

Let Φ be a Poisson process of rate r on {0 ≤ y ≤ φ(Xs), 0 ≤ s ≤ 1}.
Then

P

(

Φ is the empty configeration = exp

{

−r

∫ 1

0

φ(Xs)ds

})

.
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The basic algorithm (EA1)

1. Set B0 = 0. Simulate B1 from (*)

2. Generate Poisson process of rate r on [0, 1] × [0, 1]: Φ =
{(U1, V1), . . . (Un, Vn)}

3. For each Ui, draw BUi
from its appropriate Brownian bridge

probabilities.

4. If φ(BUi
) > Vi for ANY i, erase skeleton and go to (1).

5. Output the currently stored skeleton {(0, B0), (1, B1), (Ui, BUi
), 1 ≤

i ≤ n}.
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Part of a simulation study

 0

 10

 20

 30

 40

 50

 60

 70

 80

dXt=θtanh(γXt)dt +dBt
functional: XT, time: Euler/EA1
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Some concluding remarks

More exotic algorithms needed to relax assumptions made.

Exact simulation of stochastic processes can be used very generally in
statistical inference for stochastic processes. Current application areas
include financial econometrics and infections disease modelling.

There are classes of stochastic processes for which the methodology
works, but others where is intrinsically inapplicable. In such cases more
complicated importance sampling methods can be adopted.

Retrospective simulation methods has very broad applications also in
stochastic simulation. Many applications in Bayesian Statistics.

There is often no price for exactness! In fact exact methods frequently
are more efficient than approximate alternatives.

Currently still a very active area of research.


