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DYNAMICAL MODELS FOR PALEO-CLIMATIC TIME SERIES: STATISTICS AND NOISE INDUCED TRANSITIONS

1. Paleo-climatic time series

Lisiecki, Raymo, Paleoceanography 2005 variation of concentration of 18O to
16O from deep sea core measurements obtained at 57 different sites (for
example Brunhes, Matuyama, Jaramillo):

time series of global average temperature

basic property:

• from 0 to -1 Myr periodicity ∼ 100 000 y

• from -1 Myr to -1.8 Myr periodicity ∼ 44 000 y

Question: where does periodicity come from?
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2. Astronomical factors

Earth receives its energy from
the sun.
solar constant
Q ≈ 1366W/m2

Trajectories of planets are el-
lipses (Kepler).

absorption of solar energy varies seasonally.

Question: Are there variations with periods of ≈ 100 000, 40 000 years?
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3. Milankovich cycles
Milankovich (1920): astronomically caused perturbations of earth’s trajectory
generate three basic cycles: axial precession, axial tilt, eccentricity

axial tilt (41 000 y)

periodic wobbling of earth’s rotation axis: 2,4 degrees of variation of axial tilt
with respect to plane of rotation; periodicity: 41 000 y; inclination today: 23,4
degrees.

increasing tilt: increasing amplitude of seasonal insolation, in summer
increased insolation, in winter less
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3. Milankovich cycles
eccentricity (100 000 y)

SonneSonne

Erde

Erde

eccentricity: measures deviation of ellipse from circle; periodic variation
between 0,005 and 0,058; reasons: interaction of gravitational fields of Jupiter
and Saturn; periodicity: 100 000 y; eccentricity today: 0,017.

orbital mechanics: extreme eccentricity means seasons at aphelion (far from
sun) last longer.
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4. The paradigm: energy balance models
(Lit: C., G. Nicolis ’80, Benzi, Parisi, Sutera, Vulpiani ’80; McNamara,
Wiesenfeld ’89;...)

Aim: analytical explanation of basic features of glacial cycles in earth’s history

Model basis of Energy-Balance Models (EBM):

balance between incoming and outgoing radiative energy;

incoming (solar) radiation varies in periods of 105 years:
variation explained by Milankovich (eccentricity) cycle

outgoing radiative energy: earth considered as a black body radiating energy
in proportion to the fourth power of temperature

earth considered as point in space; Tt: global averaged temperature at time t
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4. The paradigm: energy balance models
power of incoming radiation Sin:

Sin(t) = Q(t)(1 − a(T (t)))

• Q(t) = Q0(1 +A sin Ωt) — solar constant, modulated by Milankovich
eccentricity, Ω = 2π

100 000
[ 1
J
], A small.

• albedo a(T ) = reflected radiation
incoming radiation

a(T)

TT Tl h

heute

vor 16 000 J.

e.g. fresh snow 0.75-0.95, grassland 0.12-0.30, forests 0.05-0.20
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4. The paradigm: energy balance models
Earth considered as ideal black body

Stefan–Boltzmann law for power of black body radiation

power of outgoing radiation Sout:

Sout(t) = σT (t)4

σ = 5.669 · 10−8 W
m2K4 — Stefan–Boltzmann constant
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4. The paradigm: energy balance models

Energy Balance (EB)
energy change = power incoming radiation - power outgoing radiation

first law of thermodynamics

energy change = c · temperature change

energy change at t = Sin(t)− Sout(t),

c
dT (t)

dt
= Q(t)(1− a(T (t)))− σT (t)4

Henderson-Sellers, Mc Guffie:

These models have been instrumental in increasing our understanding of the
climate system and in the development of new parameterizations and
methods of evaluating sensitivity for more complex and realistic models.
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4. The paradigm (climate background)

warm age
ice age

}
equilibria TK, TH of equation, solution of

dT (t)

dt
= 0

σΤ
4

TK TH

T

Q(1−a(T))

TU
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4. The paradigm: energy balance models

σΤ
4

TK TH

T

Q(1−a(T))

TU K THT

T

t TU

Problems: A small

• temperature shifts too small

• relaxation times too long

• no transitions between
TK, TH

Idea: (Nicolis, Benzi et al.)
add noise term to EBM:

c
dT (t)

dt
=Q(t)(1− a(T (t)))− σT (t)4+

√
εẆ (t)

W : 1-dim. Brownian motion

• transitions possible

• relaxation times more realistic
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4. The paradigm: energy balance models

General situation

t=t t=t1 2

U(t  ,x)1 U(t  ,x)2

−U ′(t, x) = f(t, x) = Q(t)(1− a(x))− σx4, x↔ T
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5. Weakly periodic dynamical systems with noise
Consider system as motion of overdamped physical particle in potential
landscape given by weakly periodic potential function (with 2 wells, 1 saddle)

Ũ(t, x), t ≥ 0, x ∈ Rd,

Ũ(kT + t, ·) = Ũ(t, ·), period T very large

white noise of intensity ε, W d–dimensional standard Wiener process

Y (t)← T (t); motion of particle given by SDE

dY ε(t) = −∇Ũ(t, Y ε(t))dt+
√
εdW (t).

To investigate interplay of T and ε: rescale time t→ t
T , use

U(t, x) = Ũ( tT , x), t ≥ 0, x ∈ Rd; U has period 1

General system:

dXε(t) = −∇U(t,Xε(t))dt+
√
εdW (t).
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5. Weakly periodic dynamical systems with noise
Use the following simple caricature of the potential function

U(t, x) =

{
U1(x), t ∈ [0, 12[,
U2(x) = U1(−x), t ∈ [12, 1[,

periodic

U U

−1 −11 1

−v/2

1 2

−V/2

Problem of stochastic resonance:

given T large, find ε = ε(T ) for which tuning of (Xε) is optimal
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6. Gaussian transition times
action functional⇒ pseudopotential V (x, y) = 2[work x→ y],

x y

U(x)

U(y)

x y

U(x)

U(y)

U(0)

V (x, y) = 2[U(y)− U(x)]+ V (x, y) = 2[U(0)− U(x)]+

τεy = inf{t ≥ 0 : Xε
t = y} transition time

Thm 1(Freidlin, transition law)
for all δ

Px

[
exp

(
V (x, y)− δ

ε2

)
≤ τεy ≤exp

(
V (x, y) + δ

ε2

)]
→ε→0 1

interprets Kramers-Eyring law: Ex(τ
ε
y) ∼exp(

V (x,y)
ε2

)
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7. The heuristics of optimal tuning

ε small

X

t

ε big t

X

ε good t

X
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8. Dansgaard-Oeschger events
temperature indicators: 18O, 16O, methane, calcium etc.

GRIP ice core data: 20 abrupt changes in climate of Greenland during last ice
age (-91 000 to -11 000 y) (D/O events).
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• rapid warming by 5-10◦C within one decade

• subsequent slower cooling
within a few centuries

• fast return to stable cold ground state

simulations: Ganopolsky/Rahmstorf,

Potsdam Institute for Climate Impact

Research
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9. Dansgaard-Oeschger events. Statistical analysis
Calcium signal from GRIP: about 80 000 samples for 80 000 y

typical waiting time between D/O events: 1000 – 2000 y,
waiting times between D/O events: multiples of ∼1470 years.

What triggers the transitions?

modeling by Langevin equation:

dX(t) = −U ′(t,X(t))dt+NOISE

U — multi well potential, wells correspond to climate states

P. Ditlevsen (Geophys. Res. Lett. 1999): power spectrum analysis of time
series:
NOISE contains strong α-stable component with α ≈ 1.75.
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10. p-Variation as test statistic
Which model of noise fits best with time series: estimate, test parameter

Ditlevsen’s analysis: power spectrum of residua of time series

Problem: Stationarity?

Aim: better test statistics than peaks of power spectrum.

Model assumption: with some U interpret data as

Xε(t) = x−
∫ t

0

U ′(Xε(s−))ds +εL(t)= Y ε(t)+Lε(t)

L Lévy process containing α-stable component with unknown α, Y ε of
bounded variation; estimate, test α

Idea: p-variation characteristic for fluctuation behavior of noise processes.

V p,nt (X) =

[nt]∑
i=1

|X(
i

n
)−X(

i− 1

n
)|p, V pt = lim

n→∞
V p,nt
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11. α-stable Lévy Processes
L Lévy process with characteristics (d, γ, ν) iff

E(exp(iuL(t))) = exp(t(−1
2
du2+iγu+

∫
R

[eiuy−1−iuy1{|y|≤1}]ν(dy))), u ∈ R, t ≥ 0,

ν measure on Borel sets in R with ν({0}) = 0,
∫

R
[|y|2 ∧ 1]ν(dy) <∞.

L α-stable symmetric Lévy process if

E(exp(iuL(t))) = exp(−c(α)t|u|α), ν(dy) =
1

|y|α+1
dy, u, y ∈ R.
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12. p-Variation and the Blumenthal-Getoor Index
L α-stable process with jump measure ν; then p-variation identified by

Blumenthal-Getoor index

βL = inf{s ≥ 0 :

∫
{|y|≤1}

|y|sν(dy) <∞}

γL = inf{p > 0 : V p1 (L) <∞}

Thm 2
L symmetric α-stable. Then

γL= βL= α.

Problem: How to read γL= α off the sequence (V p,nt (L))n∈N?

Calls for results about the asymptotic behavior of the sequence.
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13. The case α < 2

(Lit: Corcuera, Nualart, Wörner ’07; case p < α for LLN type, p < α
2 for CLT

type)

Problem: p < α
2 < 1 not satisfactory for paleo-climatic data! Beyond α

2 no CLT
type result available, no asymptotic normality, but asymptotically of different
type.

Thm 3 (LLT type)
L α-stable with α ∈]0, 2[. Then

(V p,nt (L)−Bnt (α, p))t≥0 → L̃

weakly with respect to the Skorokhod metric, and an independent αp -stable
process L̃. Here

Bnt (α, p) =

 n1−pαtE(|L(1)|p), α
2 < p < α,

nt2E(sin((nt)−1|L(1)|p)), p = α,
0, α < p.

Same result with L+ Y instead of L if Y is of finite p-variation and α
2 < p < 1

or p > α.
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14. Test for α with real and simulated data
Thm 4 law of V 2p,n(X) converges to 1

2-stable law if data of time series X have
α-stable residuals, α = p

Kolmogorov-Smirnov statistics: distance between empirical law of V 2p,n(X)
and 1

2-stable law, as a function of p; minimum of curve: right α
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15. The dynamics: simple system with Levy noise
consider SDE driven by α-stable Lévy noise of small intensity

Xε(t) = x−
∫ t

0

U ′(Xε(s−)) ds+εL(t), ε ↓ 0.

• L is α-stable symmetric Lévy process, α ∈ (0, 2)

multi well potential U
• n local minima mi

• n− 1 local maxima si
• U ′′(mi) > 0, U ′′(si) < 0

x

U(x)

m

m

s
s

1

1

n

n−1

τ 1

aim: investigate exit and transition rates, meta-stability.
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16. The dynamics: probabilistic approach of exit times

L(t) = ξε(t) + ηε(t)

νεξ = ν|[− 1√
ε
, 1√
ε
], νεη = ν|[− 1√

ε
, 1√
ε
]c

νεξ(R) =∞ νεη(R) =
2

α
εα/2 = βε

εξε sum of ε·BM and small jump (≤
√
ε) process

εηε big jump (≥
√
ε) compound Poisson process

big jumps at τk, inter-jump time Tk with exponential law

E(Tk) = (βε)−1 = α
2ε
−α/2
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17. The dynamics: the small and large jump parts
U with stable state 0, exit from [−b, a] for a, b > 0

between big jumps Xε is Y perturbed by εξε

Xε(t)= x−
∫ t
0
U ′(Xε(s−)) ds+ εξε(t), t ∈ [0, T1), Y (t)= x−

∫ t
0
U ′(Y (s)) ds

ε

−εγ

γ T1
R(  )ε

Yt

deviation P

(
sup
[0,T1)

|Xε(t)− Y (t)| ≥ εγ

2

)
≤ P

(
sup
[0,T1)

|εξε(t)| ≥ εγ

C

)
≤ e−1/ε

δ

relaxation T (x, ε) =

∫ x

εγ/2

dy

|U ′(y)|
≈
∫ x

δ

dy

|U ′(y)|
+

∫ δ

εγ/2

dy

My

≈ Const +
γ

M
| ln ε| ≤R(ε) = O(| ln ε|)

asymptotically, big jumps coincide with exits
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18. the dynamics: Gaussian vs. Lévy
σ̂ = inf{t ≥ 0 : X̂ε(t) /∈ [−b, a]} σ = inf{t ≥ 0 : Xε(t) /∈ [−b, a]}

−b a

x

U(x)

h

h = U(−b) < U(a)

X̂ε(t) = x−
∫ t
0
U ′(X̂ε(t)) ds+ εW (t)

Thm 5 (Freidlin-Wentzell):

Px(e
(2h−δ)/ε2 < σ̂ < e(2h+δ)/ε

2
)→ 1

Kramers’ law (’40, Williams, Bovier et al.):

Exσ̂ ≈ ε
√
π

|U ′(−b)|
√
U ′′(0)

e2h/ε
2

Exponential law (Day, Bovier et al.)

Px(
σ̂

Exσ̂
> u) ∼ exp (−u)

−b a

x

U(x)

h

h = U(−b) < U(a)

Xε(t) = x−
∫ t
0
U ′(Xε(s−)) ds+ εL(t)

Thm 6

Px(
1

εα−δ
< σ < 1

εα+δ
)→ 1

Exσ ≈ 1
εα

( ∫
R\[−b,a]

dy
|y|1+α

)−1
Px(

σ
Exσ

> u) ∼ exp (−u)
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