

If you can't choose, throw dice - Random constructions in mathematical (harmonic) analysis

Tuomas Hytönen
University of Helsinki, Finland

Harmonic analysis
(traditionally) = Fourier analysis
= study of decomposition ('analysis') of functions / signals into basic sine waves ('harmonics')

$$
f(x)=\sum_{k=-\infty}^{\infty} \hat{f}(k) e^{i 2 \pi k x}
$$

Harmonic analysis
(today) = study of multiple phenomena that have emerged and grown 'around' the classical theory of Fourier series

* interactions of spatio-temporal and spectral information
* cancellations, orthogonality, oscillations

'Modern' block waves and wavelets:

Rademacher and Haar functions

$$
\begin{aligned}
& r_{j}(x):=\operatorname{sign}\left(\sin \left(2 \pi \cdot 2^{j} x\right)\right) \\
& h_{j, k}(x):=h_{I}(x):=\frac{1_{I}(x)}{|I|^{1 / 2}} r_{j}(x) \\
& \\
& \quad I=I_{j, k}=\left[\frac{k}{2^{j}}, \frac{k+1}{2^{j}}\right)
\end{aligned}
$$

Dyadic analysis of a function $f(x)$

$$
\begin{aligned}
\Delta_{I} f & :=1_{I_{\mathrm{left}}}\langle f\rangle_{I_{\mathrm{left}}}+1_{I_{\mathrm{right}}}\langle f\rangle_{I_{\mathrm{right}}}-1_{I}\langle f\rangle_{I}=h_{I}\left\langle h_{I}, f\right\rangle \\
f & =\sum_{I} \Delta_{I} f=\sum_{I} h_{I}\left\langle h_{I}\right\rangle f
\end{aligned}
$$

More robust for 'rough' situations

$$
\Delta_{I}^{\mu} f:=1_{I_{\text {left }}}\langle f\rangle_{I_{\text {left }}}^{\mu}+1_{I_{\text {right }}}\langle f\rangle_{I_{\text {right }}}^{\mu}-1_{I}\langle f\rangle_{I}^{\mu}=h_{I}^{\mu}\left\langle h_{I}^{\mu}, f\right\rangle
$$

- Averaging over intervals is meaningful with respect to any mass distribution ('measure') in place of the uniform distribution (Lebesgue measure)

$$
\langle f\rangle_{I}^{\mu}:=\frac{1}{\mu(I)} \int_{I} f(x) \mathrm{d} \mu(x)
$$

- Weighted Haar functions h_{I}^{μ} remain piecewise constant, average to zero with respect to μ

Dyadic analysis - what for?

- Divide and conquer - estimates for general f reduced to simpler $\Delta_{i} f$.

$$
f=\sum_{I} \Delta_{I} f
$$

- Especially when estimating the norm of a linear operator T acting on f

$$
|\langle T f, g\rangle| \leq C\|f\|\|g\| ? \quad\langle T f, g\rangle=\sum_{I, J}\left\langle T \Delta_{I}^{\mu} f, \Delta_{J}^{\nu} g\right\rangle
$$

Key question: bounds for the Hilbert transform

$$
H f(x)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(y) \mathrm{d} y}{x-y}
$$

Classical Fourier analysis: $\widehat{H f}(\xi)=-i \operatorname{sign}(\xi) \hat{f}(\xi)$

$$
\begin{aligned}
\|H f\|_{L^{2}} & =\left(\int_{-\infty}^{\infty}|H f(x)|^{2} \mathrm{~d} x\right)^{1 / 2} \\
& =\|\widehat{H f}\|_{L^{2}}=\|\hat{f}\|_{L^{2}}=\|f\|_{L^{2}}
\end{aligned}
$$

But for the weighted Hilbert transform...

$$
H(f \mathrm{~d} \mu)(x)=\int_{-\infty}^{\infty} \frac{f(y) \mathrm{d} \mu(y)}{x-y} \quad\left|\int H(f \mathrm{~d} \mu) g \mathrm{~d} \nu\right| \leq C\|f\|_{L^{2}(\mu)}\|g\|_{L^{2}(\nu)} ?
$$

...need dyadic analysis!

Dyadic analysis of the weighted Hilbert transform

$$
\int H\left(\Delta_{I}^{\mu} f \mathrm{~d} \mu\right) \Delta_{J}^{\nu} g \mathrm{~d} \nu=\iint_{I \times J} \frac{1}{x-y} \Delta_{I}^{\mu} f(y) \Delta_{J}^{\nu} g(x) \mathrm{d} \mu(y) \mathrm{d} \nu(x)
$$

Difficulties:

- Division by zero if $\boldsymbol{x}=\boldsymbol{y}$
- Discontinuity if y lies at centre or boundary of I
- Or if \boldsymbol{x} lies at centre or boundary of \boldsymbol{J}

Worst case: all at once, say $\quad x \approx y \approx \partial I \approx \partial J \quad(\partial=$ boundary $)$
In particular: $|I| \ll|J| \quad \operatorname{dist}(I, \partial J) \ll|J| \quad$ - 'bad' case!

But this should be 'rare' - more 'likely' to be in the interior than the boundary.

Enter probability: random dyadic cubes

(F. Nazarov, S. Treil, A. Volberg)

- Start from a given finest scale of dyadic intervals, coarser scales to be chosen
- For a representative of these intervals, need to decide if it will be the left or right half of its dyadic 'parent'

Random dyadic cubes, continued

$$
1 \text { = heads } \quad 0=\text { tails }
$$

- Probability space: an infinite product of coin tosses

$$
\Omega=\{0,1\}^{\mathbb{Z}} \ni \omega=\left(\omega_{j}\right)_{j \in \mathbb{Z}}
$$

- Random intervals $=$ random translates of standard intervals

$$
I \dot{+} \omega:=I+\sum_{\substack{j \in \mathbb{Z} \\ 2^{-j}<|I|}} 2^{-j} \omega_{j} \sim I+u \quad u \sim \operatorname{Unif}[0,|I|]
$$

- A random translate of I is 'bad' if for some much bigger J

$$
\begin{aligned}
2^{r}|I| & <|J| \quad \operatorname{dist}(I \dot{+} \omega, \partial(J \dot{+} \omega)) \leq|I|^{\gamma}|J|^{1-\gamma}=\left(\frac{|I|}{|J|}\right)^{\gamma}|J| \\
\mathbf{1} & =\text { heads }
\end{aligned}
$$

- Rigorous probabilistic bound $\mathbb{P}(I \dot{+} \omega$ is bad $) \leq c_{\gamma} 2^{-r \gamma}$

Random cubes and bounds for operators

- Splitting into good and bad parts:

$$
\begin{gathered}
f=\sum_{I: I \dot{+} \omega \text { is good }} \Delta_{I \dot{+} \omega}^{\mu} f+\sum_{I: I \dot{+} \omega \text { is bad }} \Delta_{I \dot{+} \omega}^{\mu} f=: f_{\text {good }}+f_{\text {bad }} \\
\langle T f, g\rangle=\left\langle T f_{\text {good }}, g_{\text {good }}\right\rangle+\left\langle T f_{\mathrm{bad}}, g_{\mathrm{good}}\right\rangle+\left\langle T f, g_{\mathrm{bad}}\right\rangle
\end{gathered}
$$

- Good part: 'direct' estimates, valid for any $\boldsymbol{\omega}$

$$
\left|\left\langle T f_{\text {good }}, g_{\text {good }}\right\rangle\right| \leq C\|f\|\|g\|
$$

- Bad part: 'indirect' estimate, valid only on average

$$
\begin{aligned}
& \mathbb{E} \mid\left\langle T f_{\text {bad }}, g_{\text {good }}\right\rangle+\left\langle T f, g_{\text {bad }}\right\rangle \leq \epsilon\|T\|\|f\|\|g\| \\
& \text { if }|\langle T f, g\rangle| \leq\|T\|\|f\|\|g\|
\end{aligned}
$$

Synthesis:

$$
\|T\| \leq C+\epsilon\|T\| \quad \Rightarrow \quad\|T\| \leq \frac{C}{1-\epsilon}
$$

Achievements based on random dyadic intervals:

Nazarov-Treil-Volberg's characterization (~2000) of the measures for which:

$$
|\langle H(f \mathrm{~d} \mu), g \mathrm{~d} \mu\rangle| \leq C\|f\|_{L^{2}(\mu)}\|g\|_{L^{2}(\mu)}
$$

In 2D (the complex plane), this led to the solution of Painlevé's problem:
Which planar sets E have the
removability property that
if a function f is bounded and analytic outside E, then it has an extension to E that remains bounded and analytic?

Solution to Painlevé's problem by X. Tolsa (2003):

A compact set E is non-removable for bounded analytic functions
if and only if
it supports a positive Radon measure with linear growth and finite curvature

$$
\mu(D(x, r)) \leq C r \quad \iiint_{\mathbb{C} \times \mathbb{C} \times \mathbb{C}} \frac{\mathrm{d} \mu(x) \mathrm{d} \mu(y) \mathrm{d} \mu(z)}{R(x, y, z)^{2}}<\infty
$$

Solution to the two-weight problem by M. Lacey (2013):

For a pair of measures (μ, v)
(with no common point masses)

```
    \(|\langle H(f \mathrm{~d} \mu), g \mathrm{~d} \nu\rangle| \leq C\|f\|_{L^{2}(\mu)}\|g\|_{L^{2}(\nu)}\)
if and only if
```

it holds whenever either $f=1_{I}$ or $g=1_{I}$
(Sawyer-type 'testing condition') and

$$
\sup _{(x, t) \in \mathbb{R}_{+}^{2}} P(\mu)(x, t) \cdot P(\nu)(x, t)<\infty
$$

(the 'Poisson $\mathbf{A}_{\mathbf{2}}$ condition').

Beyond Euclidean spaces:
 - Principle of 'dyadic' decomposition is very general

Metric measure space (X, d, μ)

- a set X equipped with
- 'distance' d and
- 'measure' μ ('mass' / 'volume' / etc.)

Example: $X=$ 'the Internet' (= all devices connected to it)
$d(x, y)=$ time it takes to transfer 1 Mb of data from x to y
$\mu(E)=$ total data storage capacity of all devices $x \in E$

Metric space 'dyadic cubes' of M. Christ (1990)

- Built from 'centres' and 'parent-child' relation between 'cubes' of different generation
- Randomization by T.H. \& H. Martikainen (2012): for every cube, pick a child (randomly), let its centre be the centre of the new cube

Abstract extensions of many results above

Smoother wavelets

$$
\begin{aligned}
& f=\sum_{j, k} \psi_{j, k}\left\langle\psi_{j, k}, f\right\rangle \\
& \\
& \quad \psi_{j, k} \text { 'smoothly' localized around } I_{j, k}
\end{aligned}
$$

- Often preferred over Haar in analysis on the Euclidean space with Lebesgue measure
- What about more general spaces?

General construction of wavelets from a multiresolution analysis (Y. Meyer)

$$
\begin{aligned}
\{0\} \subseteq \ldots \subseteq V_{j-1} \subseteq V_{j} & \subseteq V_{j+1} \subseteq \ldots \subseteq L^{2}(\mu) \\
V_{j} & =\operatorname{span}\left\{\phi_{j, k}: k \in \mathcal{K}_{j}\right\}
\end{aligned}
$$

Then we can find wavelets with same regularity

$$
V_{j+1}=V_{j} \oplus W_{j} \quad W_{j}=\operatorname{span}\left\{\psi_{j, k}: k \in \mathcal{K}_{j}^{\prime}\right\}
$$

Example: piecewise linear splines

$$
V_{j}=\left\{f \text { linear on each }\left[\frac{k}{2^{j}}, \frac{k+1}{2^{j}}\right], k \in \mathbb{Z}\right\}=\operatorname{span}\left\{\phi_{j, k}: k \in \mathbb{Z}\right\}
$$

Interpretation via probability:

$$
\phi_{j, k}(x)=2^{j} \int_{0}^{2^{-j}} 1_{I_{j, k}+u}(x) \mathrm{d} u=\mathbb{E}_{\omega} 1_{I_{j, k} \dot{+} \omega}
$$

Using the abstract random dyadic cubes:
first continuous splines \& wavelets in metric measure spaces by P. Auscher \& T.H. (2013)

$$
\phi_{j, k}(x):=\mathbb{E}_{\omega} 1_{I_{j, k}(\omega)}
$$

Thank you!

