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Seemingly, at some point the universe had little extension.
Should we think about this as a “quantum universe” ?
Superpositions ?
ground state of a “quantum Hamiltonian” ?
what are “diffeomorphism invariant observables” ?
what is distance when geometry is fluctuating ?

2d quantum gravity is a nice laboratory to address some of
these questions. It does not have propagating gravitons, but
many of the conceptional questions are still there, and it is
maximally quantum!

The reason is that the Einstein term is topological in 2d. Thus
there is no action (except a possible cosmological term without
derivatives). Formally the same as ~ → ∞: each configuration
in the path integral has the same weight. No semiclassical
dominant configuration.
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Euclidean 2d quantum gravity

Z =

∫

D[gαβ] e−Λ
R

d2ξ
√

g
∫

DgXµ e− 1
2

R

d2ξ
√

ggαβ∂αXµ∂βXµ .

In the case where we have no matter fields we simply have:

Z (Λ) =

∫

D[gαβ] e−Λ A(g), A(g) =

∫

d2ξ
√

g

Z (V ) =

∫

D[gαβ]δ(A(g) − V ), Z (Λ) =

∫ ∞

0
dV e−Λ V Z (V ).

More general amplitudes, where we have boundaries:

W (ℓ1, . . . , ℓn, Λ) =

∫

ℓ1,...,ℓn

D[gαβ] e−ΛA(g)

W (ℓ1, . . . , ℓn, V ) =

∫

ℓ1,...,ℓn

D[gαβ] δ(A(g) − V )
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Entirely a counting problem: count number of geometries with
area V and boundary lengths ℓ1, . . . , ℓn (assuming the topology
of a sphere with n boundaries)

W (ℓ1, . . . , ℓn, V ) = V n−7/2
√

ℓ1 · · · ℓn e−(ℓ1+···+ℓn)2/V

a generalized Hartle-Hawking wavefunction of 2d QG

To actually perform the calculation we need a regulatization of
the set of continuous geometries: we use piecewise linear
geometries constructed by gluing together identical building
blocks, in the 2d case equilateral triangles with side lengths a,
so-called dynamical triangulations.
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showcasing piecewise linear geometries via building blocks:

2d 3d 4d

−→
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∫

D[gµν ] e−S[gµν ] →
∑

Ta

e−S[Ta]

where a is the link length which serves as a UV cut off.

For 2d universes made of NT triangles with the topology of a
sphere with n boundaries of link-lengths Li

V =

√
3

4
a2NT , ℓi = a · Li ,

N (L1, . . . , Ln, NT ) ∝ Nn−7/2
T

√

L1 · · ·Ln e−c(L1+···+Ln)2/NT

and one has

N (L1, . . . , Ln, NT ) ∝ 1
a5n/2−7/2

W (ℓ1, . . . , ℓn, V )

J. Ambjørn 2d QG



As a side remark: as long as we only use the Einstein Hilbert
action also higher dimensional gravity reduces in principle to a
pure counting problem if we regularize the path integral using
dynamical triangulations.

The standard Einstein action has a very geometric
representation on piecewise linear geometries as a sum over
deficit angles of the (D−2)–dimensional subsimplices (Regge).
Using identical building blocks it becomes really simple:

S[g] = − 1
16πG

∫

dDx
√

g(x) R(x) +
2Λ

16πG

∫

dDx
√

g

S[T ] = −κD−2ND−2(T ) + κDND(T )

Z (x , y) =
∑

T

e−S[T ] =
∑

ND−2,ND

N (ND, ND−2) xND yND−2
x = e−κD

y = eκD−2
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Quantum field theory assumes we have a notion of distance
between spacetime points, as its basic objects are correlations
between fields separated a given spacetime distance.

Two layers of complication in a theory including gravity: (1):
how do we define field correlators which are coordinate
independent? and (2): having solved (1) in a given background
geometry (where we can define distance as geodesic distance),
how do we define distance if the quantum theory involves an
average over the geometries used to define the distance?

But clearly, already the concept of geodesic distance is going to
be complicated if geometry is a “quantum object”. As we will
see geodesic distance scales anomalously.
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The partition function for a universe with cosmological constant
Λ and where two marked points are separated a geodesic
distance R is:

ZR(Λ) =

∫

D[gαβ] e−Λ A(g)

∫∫

d2x
√

g(x)d2y
√

g(y) δ(Dg(x , y)−R)

where Dg(x , y) is the geodesic distance between x and y . If
we use as geodesic distance in the triangulations the minimal
link distance between two vertices, the calculation of ZR(Λ) also
becomes a counting problem: counting the triangulations where
two vertices are separated a given link-distance. Result:

ZR(Λ) = Λ3/4 cosh( 4
√

Λ R)

sinh3( 4
√

Λ R)
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For a given geometry, define the “area” (length) of a spherical
shell of radius R centered at x :

Sg(x , R) =

∫

d2y
√

g(y) δ(Dg(x , y) − R).

Define the average length of a spherical shell for a given
geometry of area V as

Sg(R) =
1
V

∫

d2x
√

g(x) Sg(x , R).

For smooth, compact geometries we have (expressing that the
geometry is two-dimensional)

Sg(x , R) ∝ R, Sg(R) ∝ R, R → 0.
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ZR(V ) =

∫

A(g)=V
D[gαβ]

∫∫

d2x
√

g(x)d2y
√

g(y) δ(Dg(x , y)−R)

ZR(Λ) =

∫ V

0
dV e−Λ V ZR(V )

〈Sg(R)〉V =
1

Z (V )

∫

A(g)=V
D[gαβ] Sg(R) =

ZR(V )

VZ (V )

From ZR(Λ) we can calculate ZR(V ) and we know that
VZ (V ) ∝ V−5/2. Thus

〈Sg(R)〉V = R3F
(

R
V 1/4

)

, F (0) > 0.
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Define the Hausdorff dimension by

〈Sg(R)〉V ∝ Rdh−1, R → 0

Thus we see that dh = 4 in 2d quantum gravity and that
geodesic distance scales anomalously.

Presumable, a precise mathematical statement is that the path
integral is over continuous 2d geometries and a continuous 2d
geometry is a.s. fractal with Hausdorff dimension dh = 4.

〈Sg(R)〉V =
1

Z (V )

∫

A(g)=V
D[g] Sg(R)

R is an external parameter setting a
scale
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Consider now the interaction between matter and geometry in
to form of 2d quantum gravity coupled to a conformal field
theory with central charge c < 1.

Z (β)V =

∫

A(g)=V
D[gαβ]ZM(g, β)

where ZM(g, β) is the matter partition function coupled
covariantly to geometry, defined by the metric gαβ(x).

What is dh for this ensemble of geometries?

dh(c) = 2

√
49 − c +

√
25 − c√

25 − c +
√

1 − c
, dh(0) = 4, dh(−∞) = 2.

Is the formula correct ?
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The “derivation” (Watabiki): let Φn[g] be an operator invariant
under diffeomorphisms and assume the following classical
scaling Φn[λg] = λ−nΦ[g] for constant λ. Then the quantum
average satisfies (so-called generalized KPZ-DDK scaling)

〈Φn[g]〉λV = λ−α−n/α1〈Φ[g]〉V , αn =
2n

1 +
√

25−c−24n
25−c

one now applies this to the operator

Φ1[g] =

∫

dx
√

g ∆g(x) δg(x , x0)|x=x0 , Φ1[λg] = λ−1Φ1[g]

This operator appear when we study diffusion on a smooth
manifold with metric gµν . The diffusion kernel is

K (x , x0; t) = et∆g K (x , x0; t), K (x , x0; 0) = δg(x , x0)
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The short distance behavior is

K (x , x0; t) ∼ e−D2(x ,x0)/2t

td/2
(1 + O(t)), 〈D(x , x0; t)2〉 ∼ t + 0(t2)

The return probability is

P(t) =
1
V

∫

dx
√

g K (x , x ; t)

=
1
V

∫

dx
√

g (1 + t∆g + · · · ) δg(x , x0)|x=x0

= 1 + t Φ1[g] + O(t2)

The problem with the derivation is that most likely these
expansions are not true on the fractal structures encountered in
2d quantum gravity
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For the Hausdorff dimension we have (declaring Dim[V ] = 2)

〈V 〉R = Rdh , Dim[R] =
2
dh

From the diffusion equation

Dim[D(x , x0)] = −1
2

Dim[Φ1[g]]

Taken the quantum average, using KPZ scaling:

Dim[〈D(x , x0)〉] = −1
2

Dim[〈Φ1[g]〉] = −α−1

α1

Thus

dh =
−2α1

α−1
= 2

√
49 − c +

√
25 − c√

25 − c +
√

1 − c
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Test the formula in the case of toroidal topology.

Virtues:

(1) the shorest non-contractable loop is automatically a
geodesic curve. Thus in the discretized case we only have to
look for such loops.

(2) If the manifold is analytic we have harmonic forms which
have very nice discretized analogies, and we can use the these
to construct a conformal mapping from the abstract
triangulation to the complex plane.
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Since the shortest contractable loop is a geodesic we expect

〈L〉N ∼ N1/dh(c)

left figure c = 0, i.e. dh = 4, right figure c = −2, dh = 3.56
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Quantitative check of 〈L〉N ∼ N1/dh for c = −2

10 100 1000 104 105 106 107
N1

2

5

10

20

50
<L>

Straight line: 〈L〉n = 0.45 N1/3.56.
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The (regularized) bosonic string c = d :

Z (µ) =
∑

T

e−µNT

∫

∏′

△∈T , ν

dxν(△) e− 1
2

P

△,△′ (xν(△)−xν(△′))2
.

Z (µ) =
∑

N

e−µNT Z (N), Z (N) =
∑

TN

(

det(−∆
′

TN
)
)−d/2

(Note that d = −2 is special.)
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However, the situation for c > 0 more difficult and until recently
numerical simulations could not really determine dh(c) for
c > 0. Matter correlation functions gave agreement with
Watabiki’s formula, but geometric measurements agreed better
with dh = 4 for 0 < c < 1.

Using simulations of the DT-torus with Ising spin (c=1/2) and
3-state Pott’s model (c=4/5), and analyzing the second shortest
(independent) loop, one obtains data with little discretization
“noise”.
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The probability distributions for homotopy classes Γi of simple
connected, non-contractable loops:

P(i)
N (ℓi) = N1/dhFi(xi) xi =

ℓi

N1/dh

Refence loop distributions for N = 8000:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
{i0.00

0.05

0.10

0.15

0.20

0.25

PN H{iL
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-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
c

3.6

3.8

4.0

4.2

4.4

4.6

4.8

dh

c dh (by fit) dh (theoretical)
−2 3.575 ± 0.003 3.562

0 4.009 ± 0.005 4.000
1/2 4.217 ± 0.006 4.212
4/5 4.406 ± 0.007 4.421
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Let us finally turn to the definition of correlation functions in a
theory of fluctuating geometries.

Ordinary QFT: Assume the volume V is sufficiently large and
rotation and translational invariance except for boundary
effects. (S(R) “area” of spherical shell)

〈φφ(R)〉V ≡
1
V

1
S(R)

∫

Dφ e−S[φ]

∫∫

dx dy φ(x)φ(y) δ(R−|x − y |).

〈φφ(R)〉V ∼ 1
R2∆0

, R ≪ 1
mph

, [φ] = ∆0

〈φφ(R)〉V ∼ R−αe−mphR 1
mph

≪ R ≪ 1
V 1/d
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Generalization to a diffeomorphism invariant, metric theory

〈φφ(R)〉V ≡ 1
V

∫

D[g] δ
(

A(g)−V
)

∫

Dgφ e−S[g,φ]

∫∫

dx dy

√

g(x)
√

g(y)

Sg(y , R)
φ(x)φ(y) δ(R−Dg(x , y)).

Dg(x , y) is the geodesic distance between x and y .
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Thus we expect the following behavior for a conformal theory
coupled 2d Euclidean QG:

〈φφ(R)〉V = R−dh∆ F
(

R
V 1/dh

)

,

〈φφ(R)〉V = V−∆ F (x)

xdh∆
, x =

R
V 1/dh

Here F (0) = const . > 0, and F (x) falls of at least exponentially
fast for x > 1.

∆ = 2
√

c − 1 + 12∆0 −
√

c − 1√
25 − c −

√
1 − c

, KPZ − DDK scaling.
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Test this using dynamical triangulations: links of length a, the
lattice UV cut off. V ∼ Na2. Geodesic distance ℓ ≈ link
distance.

〈φφ(ℓ)〉N = N−∆ F (x)

xdh∆
x =

ℓ

N1/dh
FSS!
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Finite Size Scaling allows us to determine ∆ and dh∆

Theory for Ising model (c = 1/2):

∆0 =
1
8
→ ∆ =

1
3
, 2∆0 =

1
4
→ dh∆ = 1.40...
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Conclusion

I have shown that it makes sense to apply ordinary field
theoretical concepts to a theory of fluctuating geometries
coupled to matter. Further, it is a theory of extreme quantum
fluctuations, far from any semiclassical geometry coupled to
matter.

2d quantum gravity of course differs from attempts to study
higher dimensional quantum gravity using only conventional
field theory methods: the theory is renormalizable. It is still an
open question if these higher dimensional theories exist at all
(unless one goes beyond the framework of QFT (string
theory)). Some evidence (functional renormalization group
methods, causal dynamical triangulations provide some hope,
but nothing is settled).
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