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A perturbative expansion for QED and QCD bound states is formulated in A0 = 0 gauge. The
constituents of each Fock state are bound by their instantaneous interaction. In QCD an O

(
α0
s

)
confining potential arises from a homogeneous solution of Gauss’ constraint. The Cornell potential
is obtained for quarkonia, and corresponding ones for higher Fock states, baryons and glueballs.
Light mesons and glueballs lie on linear Regge trajectories and their daughters. A condensate of
massless JPC = 0++ bound states allows to include spontaneous chiral symmetry breaking.

Principles of bound state perturbation theory

There is a widely held opinion that QED atoms and QCD hadrons differ fundamentally, the former being perturbative
(α� 1) and the latter non-perturbative (αs & 1). I shall argue that this conclusion may be premature. Bound state
perturbation theory differs essentially from the expansion of scattering amplitudes in terms of Feynman diagrams.
Atoms are not as perturbative, and hadrons not as non-perturbative as sometimes thought.

Even “lowest order” bound state wave functions are non-polynomial in the perturbative parameter α. Wave functions
have no unique expansion, since powers of α may be shifted between the lowest term and its “higher order” corrections.
This was first recognized for the Bethe-Salpeter equation [1, 2]. For Positronium it allows to start from solutions of
the Schrödinger equation with the classical potential V (r) = −α/r [3]. For hadrons the first term in a perturbative
expansion needs to include color confinement and chiral symmetry breaking.

Bound states cannot be properly derived from Feynman diagrams, which assume non-interacting (in and out) states
at asymptotic times. Formally, there is no overlap between free and bound states because bound states have finite
size. Consequently, no Feynman diagram can have a bound state pole. Having quarks and gluons infinitely separated
in the initial and final states is inconsistent with confinement in QCD.

Hadron dynamics is known to have atomic (perturbative) features. This is apparent for heavy quarkonia, which are
well described by the Schrödinger equation with the Cornell potential [4, 5],

V (r) = V ′r − 4

3

αs
r

with V ′ ' 0.18 GeV2, αs ' 0.39 (1)

This potential was determined from fits to data and later found to agree with lattice QCD [6]. At face value, it
indicates that the confinement scale V ′ arises already in the classical potential, with a gluon coupling αs that is close
to the perturbative αs(mτ ) ' 0.33.

There are many ways to define bound state wave functions, and they are often gauge-dependent. Hence their per-
turbative expansion is not unique. On the other hand, bound state masses must have a unique expansion in powers
of α and logα since they are physical quantities (the Positronium expansion is compared with data in [7, 8]). In a
proper perturbative approach each successive approximation of the bound state (wave function) should contribute to
the mass at a corresponding, higher power of the coupling.

The hierarchy of bound state approximations is reflected in the Fock expansion of Positronium. The |e+e−〉 Fock state
determines (through the Schrödinger equation) the binding energy at lowest order, Eb = −α2me/4. Fock states with a
transverse photon |e+e−γ〉, additional pairs |e+e−e+e−〉, etc. contribute to Eb at O

(
α4
)

and higher. This is possible
because the |e+e−〉 state is bound by the instantaneous A0 field, which is not a constituent. The instantaneous
interaction similarly determines the properties of higher Fock states. Thus the Fock expansion defines a perturbative
approach to bound states, with no ambiguity concerning the initial approximation.

A Fock approach may work also for hadrons. The quarkonium phenomenology based on (1) indicates that the state
is dominated by the heavy quark pair. The reason is dynamical, since binding energies are much larger than the light
quark and gluon masses. The quantum numbers of light hadrons with relativistically bound quarks likewise reflect
their valence constituents, |qq̄〉 and |qqq〉.

Having defined the perturbative framework we may ask whether it is compatible with color confinement. The confining
potential must be due to the instantaneous interaction which binds the |qq̄〉 quarkonia (see also [9]). The A0 field
is determined by its equation of motion (Gauss’ law), which does not have the QCD scale. In the absence of loop
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contributions (which involve higher Fock states) the scale can arise only from a boundary condition. It turns out that
there is a reason for choosing different boundary conditions for atoms and hadrons.

The V (r) = −α/r potential of the Positronium |e−(x1)e+(x2)〉 Fock state (r = |x1 − x2|) follows from Gauss’ law,
−∇2A0(x) = eδ(x−x1)−eδ(x−x2). The boundary condition lim|x|→∞A0(x) = 0 eliminates long range interactions.
The Fock state is invariant under global U(1) gauge transformations, which also leave A0 invariant.

A color singlet hadron is similarly invariant under global SU(3) transformations, but the octet gluon field is not.
Consequently a hadron’s classical field A0

a(x) = 0 for all x, and there is no need for a boundary condition as in QED.
A
∣∣qC q̄C〉 Fock state does generate a classical field for each quark color C, but it cancels in the sum over C. The

quark qC is bound by the field of the q̄C . That field is non-vanishing and depends on the boundary condition.

Homogeneous (sourceless) solutions of Gauss’ law for the
∣∣qC q̄C〉 Fock state have A0

a(x) 6= 0 at spatial infinity.
Translation and rotation invariance restrict the sourceless field up to a single parameter Λ, which characterizes its
x-independent field energy density. The corresponding potential is linear for |qq̄〉 (meson) and gg (glueball) states.
The potential is confining also for |qqq〉 (baryons) and higher meson Fock states such as |qq̄g〉.

Loop contributions are suppressed insofar as the lowest Fock state dominates at hadronic scales Q . Λ. In this energy
range the coupling αs(Q) is then independent of Q, which is consistent with its moderate value in (1).

In the following we illustrate our approach using QED atoms and then summarize the results obtained in QCD. A
full description is given in [10].

Positronium in QED

We use temporal gauge (A0 = 0) [11–15] since it reveals the hierarchy of Fock states. The electric fields Ei = F i0 =
−∂0Ai are conjugate to the photon fields Ai (i = 1, 2, 3). Gauss’ operator G(x), defined by

G(t,x) ≡ δS
δA0(t,x)

= ∂iE
i(t,x)− eψ†ψ(t,x) (2)

is time independent since it commutes with the Hamiltonian, [G,H] = 0. Because A0 is eliminated G does not vanish
as an operator. However, G(t,x) generates time-independent gauge transformations, which are unconstrained by the
A0 = 0 gauge condition. The gauge is completely fixed by imposing Gauss’ law as a constraint on physical states [12],

G(t,x) |phys〉 = 0 (3)

The e+e− Fock component of Positronium may be expressed as (henceforth t = 0 is implicit),

∣∣e+e−,M〉 =
∑
α,β

∫
dx1dx2 ψ̄α(x1)Φαβ(x1 − x2)ψβ(x2) |0〉 ≡

∫
dx1dx2 Φ(x1 − x2) |x1,x2〉 (4)

where ψ(x) is the electron field and the wave function Φ(x1 − x2) is a 4 × 4 matrix in the Dirac indices α, β. The
state (4) is invariant under space translations, as appropriate for the rest frame. In the non-relativistic limit only the
electron and positron creation operators contribute (b† in ψ̄ and d† in ψ), and the wave function Φ is simply related
to the Schrödinger wave function [10].

Imposing the constraint (3) on the state |x1,x2〉 = ψ̄α(x1)ψβ(x2) |0〉 determines the action of ∂iE
i(t,x) on this state,

∂iE
i
L(x) |x1,x2〉 = eψ†ψ(x) |x1,x2〉 = e

[
δ(x− x1)− δ(x− x2)

]
|x1,x2〉 (5)

where the index L reminds that this constrains only the longitudinal component of E. Requiring lim|x|→∞EiL(x) = 0,

EiL(x) |x1,x2〉 = − e

4π
∂xi

( 1

|x− x1|
− 1

|x− x2|

)
|x1,x2〉 (6)

The QED Hamiltonian in temporal gauge is

H =

∫
dx
[
1
2 (EiLE

i
L + EiTE

i
T ) + 1

4F
ijF ij + ψ†(−iα ·∇− eα ·AT +mγ0)ψ

]
(7)
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The contribution of E2
L is determined by (6). Partially integrating in x we get the classical potential1,∫

dx 1
2E

2
L(x) |x1,x2〉 = − α

|x1 − x2|
|x1,x2〉 ≡ V (|x1 − x2|) |x1,x2〉 (8)

Adding the contribution from the free fermion part of the Hamiltonian (7) and neglecting the higher Fock states
created by ψ†ATψ we can impose stationarity on the Positronium state (4), H |e+e−,M〉 = M |e+e−,M〉. This gives
the bound state equation for Φ(x),[

iα ·
→
∇ +mγ0

]
Φ(x) + Φ(x)

[
iα ·

←
∇−mγ0

]
=
[
M − V (|x|)

]
Φ(x) (9)

which in the non-relativistic limit reduces to the Schrödinger equation [10]. The Fock states |e+e−γ〉, |e+e−e+e−〉 , . . .
created by H contribute to M at higher orders in α, and their instantaneous potentials can be determined similarly
as for |e+e−〉. Because Gauss’ law is imposed as a constraint in temporal gauge the instantaneous interaction does
not create new states. In Coulomb gauge (∇ ·A = 0) the operator A0 can create an e+e− pair.

Hadrons in QCD

The qq̄ Fock component of a meson state may be expressed similarly as for Positronium in (4),

|qq̄,M〉 =
1√
NC

∑
α,β

∑
A,B

∫
dx1dx2 ψ̄

A
α (x1)δABΦαβ(x1 − x2)ψBβ (x2) |0〉 ≡

∫
dx1dx2 Φ(x1 − x2) |x1,x2〉 (10)

The state is invariant under global gauge transformations since the wave function δABΦαβ(x) is diagonal in the quark
colors A,B. In the temporal gauge of QCD (A0

a = 0) [12–15] Gauss constraint (3) has also a gluon contribution,

∂iE
i
L,a(x) |phys〉 = g

[
− fabcAibEic + ψ†T aψ(x)

]
|phys〉 (11)

The solution of this constraint for EL is not unique due to contributions from large gluon fields (Gribov copies [16]).
This does not concern the perturbative expansion in g which we consider here. At lowest order we may neglect the
contribution of EL on the rhs. of (11). For the qq̄ Fock components defined in (10) (suppressing Dirac indices),

∂iE
i
L,a(x) |x1,x2〉 = gψ̄A(x1)T aABψB(x2)

[
δ(x− x1)− δ(x− x2)

]
|0〉 (12)

In QED the component |x1,x2〉 of Positronium gives rise to the dipole electric field (6). The meson state (10) on the
other hand cannot create a classical, color octet electric field EL,a(x) at any x since it is a color singlet under global
gauge transformations. The expectation value of ∂iE

i
L,a(x) in the color C component of |x1,x2〉 is

〈0|ψC†β (x2)γ0ψCα (x1)|∂iEiL,a(x)|ψ̄Cα (x1)ψCβ (x2) |0〉 ∝ g
[
δ(x− x1)− δ(x− x2)

]
T aCC (13)

An external observer does not see any color field since the sum over the quark colors C vanishes, TrT a = 0. On the
other hand, the color C quark interacts only with the color C antiquark in the same Fock state, and thus experiences
a non-vanishing EL. This motivates adding a homogeneous (∂iE

i
L,a(x) = 0) term to the solution of (11),

EiL,a(x) |phys〉 = −∂xi
∫
dy
[
κx · y +

g

4π|x− y|

]
Ea(y) |phys〉

Ea(y) = −fabcAibEic(y) + ψ†T aψ(y) (14)

with a normalization κ that is independent of x and y. Since ∂xi (κx · y) = κ yi the field energy density of this term
is independent of x, as required by translation invariance for a sourceless contribution.

The QCD Hamiltonian in temporal gauge is

H =

∫
dx
[
1
2E

i
L,aE

i
L,a + 1

2E
i
T,aE

i
T,a + 1

4F
ij
a F

ij
a + ψ†(−iα ·∇ +mγ0 − gα ·Aa

TT
a)ψ
]

(15)

1 The “self-energy” contributions proportional to 1/|x1 − x1| and 1/|x2 − x2| are independent of x1,x2 and may be subtracted.
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where F aij = ∂iA
a
j − ∂jAai − gfabcAbiAcj . From (14) the longitudinal electric field contributes

HV ≡ 1
2

∫
dxEia,LE

i
a,L = 1

2

∫
dx
{
∂xi

∫
dy
[
κx · y +

g

4π|x− y|

]
Ea(y)

}{
∂xi

∫
dz
[
κx · z +

g

4π|x− z|

]
Ea(z)

}
=

∫
dydz

{
y · z

[
1
2κ

2
∫
dx+ gκ

]
+ 1

2

αs
|y − z|

}
Ea(y)Ea(z) ≡ H(0)

V +H(1)
V (16)

where the terms of O
(
gκ, g2

)
were integrated by parts.

The states |x1,x2〉 =
∑
A ψ̄

A
α (x1)ψAβ (x2) |0〉 are eigenstates of HV since∑

a

Ea(y)Ea(z) |x1,x2〉 = CF
[
δ(y − x1)− δ(y − x2)

][
δ(z − x1)− δ(z − x2)

]
|x1,x2〉 (17)

where CF = (N2 − 1)/2N = 4/3 for N = NC = 3. For H(0)
V in (16) this gives,

H(0)
V |x1,x2〉 = CF

[
1
2κ

2
∫
dx+ gκ

]
(x1 − x2)2 |x1,x2〉 (18)

The O
(
κ2
)

contribution arises from the field energy and is proportional to the volume of space. It is irrelevant only
if it is the same for all bound state components. This requires

κ =
Λ2

gCF

1

|x1 − x2|
(19)

We extract the factor gCF from the definition of the universal scale Λ in order to simplify the coefficient of the
confining potential. The gκ term in (18) gives

V (0)(|x1 − x2|) = gCFκ (x1 − x2)2 = Λ2|x1 − x2| (20)

The gluon exchange potential arising from H(1)
V in (16) is V (1) = −CFαs/|x1−x2|. Neglecting higher Fock states the

stationarity condition H |qq̄,M〉 = M |qq̄,M〉 gives the bound state equation (9) for the (color reduced) wave function
in (10), with V = V (0) + V (1). In the non-relativistic limit this agrees with the approach to quarkonia based on the
Cornell potential (1) [4, 5].

At O
(
α0
s

)
only the linear potential (20) and the ψ̄ψ state (10) contribute, even for light (relativistic) quarks2. Fock

states with transverse gluons such as |qq̄g〉 are suppressed by factors of g. See [10] for a study of the states determined
by the relativistic bound state equation (9).

The instantaneous potential is analogously derived for any state using (14). The field energy density, i.e., the O
(
κ2
)

term in the Hamiltonian HV (16), must be the same for all states, making the scale Λ universal. Three examples [10]:

|gg〉 = Aia,T (x1)Aja,T (x2) |0〉 : Vgg(x1,x2) =

√
N

CF
Λ2 |x1 − x2| −N

αs
|x1 − x2|

(21)

|qqq〉 = εABCψ
A†
α (x1)ψB†β (x2)ψC†γ (x1) |0〉 : With dqqq(x1,x2,x3) ≡ 1√

2

√
(x1 − x2)2 + (x2 − x3)2 + (x3 − x1)2 ,

Vqqq(x1,x2,x3) = Λ2dqqq(x1,x2,x3)− 2

3
αs

( 1

|x1 − x2|
+

1

|x2 − x3|
+

1

|x3 − x1|

)
(22)

|qgq〉 = ψ̄A(x1)Ajb,T (xg)T
b
ABψB(x2) |0〉 : With dqgq(x1,xg,x2) ≡

√
1
4 (N − 2/N)(x1 − x2)2 +N(xg − 1

2x1 − 1
2x2)2 ,

Vqgq =
Λ2

√
CF

dqgq(x1,xg,x2) + 1
2 αs

[ 1

N

1

|x1 − x2|
−N

( 1

|x1 − xg|
+

1

|x2 − xg|

)]
(23)

In each case a bound state equation may be derived by adding the kinetic terms in the Hamiltonian, and the mixing
with higher Fock components taken into account at higher orders of αs. Let us illustrate this for |gg〉 (“glueball”)
states at O

(
α0
s

)
.

2 When the binding is relativistic the state (10) has virtual qq̄ contributions, which may be thought of as due to Z-diagrams and have
the features of sea quarks.
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The full O
(
α0
s

)
Hamiltonian is H = H0 +H(0)

V , with H(0)
V given in (16) and

H0 =

∫
dx
[
1
2E

i
a,TE

i
a,T + 1

2A
i
a,T (−δij∇2 + ∂i∂j)A

j
a,T

]
(24)

The canonical commutation relation
[
Eia(t,x), Ajb(t,y)

]
= iδabδ

ijδ(x− y) gives[
H0, A

i
a,T (x)

]
= iEia,T (x)

[
H0, E

i
a,T (x)

]
= i∇2Aia,T (x) (25)

For |gg〉 to be an eigenstate of H0 it must have AA, AE ,EA and EE components,

|gg〉 ≡
∫
dx1dx2

[
Aia,T (x1)Aja,T (x2)ΦijAA(x1 − x2) +Aia,TE

j
a,TΦijAE + Eia,TA

j
a,TΦijEA + Eia,TE

j
a,TΦijEE

]
|0〉 (26)

The free Hamiltonian H0 mixes the components. Suppressing the i, j indices (which are not changed by H0 +H(0)
V ),

H0 |gg〉 = i

∫
dx1dx2

{[
Ea(x1)Aa(x2) +Aa(x1)Ea(x2)

]
ΦAA(x1 − x2) +

[
EaEa +AaAa∇2

]
ΦAE

+
[
AaAa∇2 + EaEa

]
ΦEA +

[
AaEa + EaAa

]
∇2ΦEE

}
|0〉 (27)

The instantaneous Hamiltonian H(0)
V gives all four components the same potential V

(0)
gg as the AA term in (21). The

eigenvalue condition H |gg〉 = M |gg〉 allows to express ΦAA,ΦAE and ΦEA in terms of ΦEE , which should satisfy

∇2ΦEE(x)−
V ′g

M − V
∂rΦEE(x)−

V ′g
r(M − V )

ΦEE(x) + 1
4 (M − V )2ΦEE(x) = 0 (28)

where V = V ′g |x| with V ′g =
√

N
CF

Λ2 = 3
2 Λ2 as in (21). The radial r = |x| and angular Ω variables may be separated

for states with orbital angular momentum L2 = `(` + 1) and Lz = λ, ΦEE(x) = F (r)Y`λ(Ω). This gives the radial
equation

F ′′(r) +
(2

r
−

V ′g
M − V

)
F ′(r) +

[
1
4 (M − V )2 −

V ′g
r(M − V )

− `(`+ 1)

r2

]
F (r) = 0 (29)

The glueball masses M are determined by requiring the wave function to be regular at r = 0 and at M − V (r) = 0,
which ensures a probabilistic interpretation of Φ [10]. The glueball states lie on approximately linear Regge trajectories
and their parallel daughters. Using V ′ = Λ2 = 0.18 GeV2 from the Cornell potential (1) the lightest glueball has
M ' 1.6 GeV.

All bound states have corrections even at O
(
α0
s

)
stemming from real decays and hadron loops. The transition

a → b + c is given by the matrix element 〈b c |a〉 which may be evaluated using the (zero width) meson and glueball
states discussed above. For the parts of |a〉 that have a large r, and hence large V (r), the transition has the features
of color string breaking. Such transitions need to be iterated (expanded in powers of 1/NC) for unitarity to apply at
the level of hadrons.

For massless (m = 0) quarks the bound state equation (9) has chiral symmetry: If Φ(x) solves the equation then so
does γ5Φ(x). There are also massless bound states [17], since the condition that the wave function is regular at r = 0
coincides with the condition at V (r) = M when the potential is linear and M = 0. The JPC = 0++ “sigma” solution
of (9) is analytic,

1

Nσ
Φσ(x) = J0( 1

4r
2) + iα · x 1

r
J1( 1

4r
2) (m = M = 0) (30)

where J0,1 are Bessel functions and Nσ is a normalization constant. The corresponding massless 0−+ “pion” wave
function is Φπ(x) ∝ γ5Φσ(x). These states have 4-momentum Pµ = 0 in all frames and are thus not physical.
However, we may explicitly verify the standard mechanism for the spontaneous breaking of chiral symmetry. The
sigma state can mix with the vacuum without breaking Poincaré invariance, forming a “chiral condensate”,

|χ〉 ≡ exp
[ ∫

dx1 dx2 ψ̄(x1) Φσ(x1 − x2)ψ(x2)
]
|0〉 (31)
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The scalar operator ψ̄(x)ψ(x) annihilates the sigma, 〈0|ψ̄ψ |σ〉 = Tr [γ0Φσ(0)γ0] = 4Nσ. Hence chiral symmetry is
broken by the chiral condensate,

〈ψ̄ψ〉 = 〈χ|ψ̄(x)ψ(x) |χ〉 = 4Nσ〈χ|χ〉 (32)

An infinitesimal chiral transformation Uχ(β) (β � 1) transforms the quark fields as

Uχ(β) ψ̄(x)U†χ(β) = ψ̄(x)(1− iβγ5) Uχ(β)ψ(x)U†χ(β) = (1− iβγ5)ψ(x) (33)

Since Φπ = γ5Φσ = 1
2 {γ5,Φσ} (up to the relative normalization) we get,

Uχ(β) |χ〉 = exp
[ ∫

dx1dx2 ψ̄(x1)
[
Φσ − iβ {γ5,Φσ}

]
ψ(x2)

]
|0〉 = (1− 2iβ π̂) |χ〉 (34)

where π̂ creates a pion, |π〉 = π̂ |0〉. Thus a chiral transformation of |χ〉 creates massless pions, as expected.

There is a massless (M = 0) 0++ sigma state also for a non-vanishing quark mass, m 6= 0. The corresponding pion
with M ∝ m2 satisfies the PCAC relation for small m [10], motivating further study.

Quantum field theory is subtle, and bound states especially so. The method presented here and in [10] needs further
tests, and possibly modifications. Hopefully it can contribute to making bound state calculations more systematic
and less of an art, as they are occasionally described.

My work on these topics over many years has been supported by discussions with colleagues, among them Jean-Paul
Blaizot, Stan Brodsky, Dennis D. Dietrich, Matti Järvinen, Jörn Knoll and Stephane Peigné. During the preparation
of this material I enjoyed visits to ECT* (Trento), Jlab (Newport News) and CP3 (Odense). I am grateful for their
hospitality, and to the Department of Physics at Helsinki University for my privileges of Professor Emeritus. An
annual travel grant from the Magnus Ehrnrooth Foundation has been much appreciated.
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