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Gary Larson: The Far Side

“And now Edgar’s gone. ...
Something’s going on around here.”
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THE STATE IS NOT ABOLISHED, IT WITHERS 2
AWAY. HOW QUANTUM FIELD THEORY
BECAME A THEORY OF SCATTERING
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Learning quantum field theory (QFT) for the first time, after first learning
quantum mechanics (QM), one 1s (or maybe, rather, I was) struck by the change
of emphasis: The notion of the quantum state, which plays such an essential role
in QM, from the stationary states of the Bohr atom, over the Schrodinger
equation to the interpretation debates over measurement and collapse, seems to
fade from view when doing QFT.
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QED atoms are omitted from QFT textbooks

There 1s no systematic discussion of bound states in QFT,
analogous to that of the S-matrix in the Interaction Picture.

See: C.Itzykson and J.-B. Zuber: Quantum Field Theory (1980)

10-3 HYPERFINE SPLITTING IN POSITRONIUM

It should not be concluded that relativistic weak binding corrections cannot be
obtained for two-body systems that agree with experiment. On the contrary, the
positronium states give an example of a successful agreement. This will serve to

illustrate the theory.|To be completely fair, we should admit that accurate pre-

dictions require some artistic gifts from the practitioner.| As yet no systematic
method has been devised to obtain the corrections in a completely satisfactory

way.

I & 7 do not discuss how the Schrodinger equation follows from the QED action.
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State of the art: Hyperfine splitting in Positronium

Atomic calculations start from
the NR Schrodinger atom at rest,

with its O(0.) wave function

spin-1

U(x) ~ exp(—amr/2) S POSITRONIUM

Example: Hyperfine splitting in Positronium G.S. Adkins,
Hyperfine Interact. 233 (2015) 59
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Hadrons are Paradoxical

Relativistic mass spectrum
but qq quantum numbers
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Particle Data Group

Strong color fields should

create many constituents

Why do hadron quantum numbers agree
with the non-relativistic quark model?

G o

?

We know the QCD action:
We can find out!



Quarkonia are like atoms with confinement
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E. Eichten, S. Godfrey, H. Mahlke and J. L. Rosner,
Rev. Mod. Phys. 80 (2008) 1161



Lattice QCD agrees with the Cornell potential
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Generalized laws must reproduce earlier facts (1)

Relativistic — non-relativistic dynamics:
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New physical laws must reproduce earlier facts (2)

Free propagation:

With EM interactions:

Quantum
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Note: Motion in a field 1s a “non-perturbative’:
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Lorentz force postulated

Series diverges when
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New physical laws must reproduce earlier facts (3)

Quantum Field Theory ¥—  Quantum Mechanics

w2
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_ i F F*+ Schrodinger equation
w(la —ed - m)y Electron moves in a classical potential
QED Atoms are ‘“‘non-perturbative”
?
N
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Dirac equation

What state does the Dirac wave function 1 (x) describe?
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Classical Lorentz Contraction

THE

VISUAL

APPEARANCE

OF RAPIDLY MOVING OBJLCTS

V. F. Weisskopt
Physics Today 13 (1960) 24

The invisibility of length contraction

D. Appell
Physics World 32 (2019) 41

Curiouser and curiouser A row of stationary dice (bottom), with other dice
moving from left to right (top) at 90% of the speed of light. All cubes, whether
moving or at rest, have the same orientation. However, we cannot see the
Lorentz contraction of the upper cubes, which instead are rotated. Indeed, due
to the fact the speed of light is finite, we can actually see the “rear” sides of the
upper cubes.



Do Atoms Lorentz Contract?

Quantum physics
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QED reconciles relativistic kinematics and dynamics




Preconceptions of hadrons

Hadrons are non-perturbative: Only numerical lattice approaches are feasible

The strong coupling o, = 1
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