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Scattering vs. Bound States in QF T

S-matrix (textbooks): Interaction Picture, start from Hy

Bound states through an infinite sum of Feynman diagrams
Regenerates the classical potential V(r) = — a/r

Physics: Constituents propagate in their mutual fields

Consider: Poincaré covariance o ‘

Instantaneous (in time) interactions in relativistic dynamics

(= . . , .
@ \@1) The QCD scale A is compatible with the action

Get confining potential « A of O(os?)

QCD dynamics at as=0 has parton-hadron duality
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Brief review of bound state PT (1)

1951 A Relativistic Equation for Bound-State Problems

E. E. SALPETER AND H. A. BETHE
Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New York

(Received August 24, 1951)
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Allows to calculate relativistic corrections to atomic binding energies

Very complicated: No analytic solution at “lowest order”
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Brief review of bound state PT (2)

1978  Reduction of the Bethe-Salpeter equation to an equivalent
Schrodinger equation, with applications

William E. Caswell

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
and Department of Physics, Brown University, Providence,~ Rhode Island 02912

G. Peter Lepage

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
(Received 10 February 1978) |

We propose a new relativistic two-body formalism which reduces to a nonrelativistic Schrodinger theory for
a single effective particle. The formalism is equal in rigor to that of Bethe and Salpeter, and considerably
simpler to apply. We illustrate its use by computing O(a®) terms in the ground -state splitting of muonium
and positronium involving 1nﬁn1te Coulomb exchange.

“Lowest order” bound state wave functions are of O(0*)

This allows to reorder the perturbative series.

The choice of state to expand around determines its higher order corrections
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Brief review of bound state PT (3)

1986: NRQED  Today’s method of choice for QED

Volume 167B, number 4 PHYSICS LETTERS 20 February 1986

EFFECTIVE LAGRANGIANS FOR BOUND STATE PROBLEMS
IN QED, QCD, AND OTHER FIELD THEORIES

W.E. CASWELL G.P. LEPAGE

A renormalization group strategy for the study of bound states in field theory i1s developed Our analysis 1s completely
different from conventional analyses, based upon the Bethe—Salpeter equation, and 1t 1s far simpler This 1s 1llustrated 1n
state-of-the-art calculations for the ground state sphittings in muonium and positronium

Expand around the Schrodinger atom L= —3E* - B+ yl(id, —ep + D?/2m)Y

: : + 97 e D4/8m3 +c,(e/2m)o B
Calculate the corrections using e L1 2(€/2m)
the etfective, non-relativistic +c,5(e/8m?) V-E +c,(e/8Sm?) {(iD-E X 6}] ¥,

field theory of NRQED +y1[d, (e/8m>){D?, 0 B} ¥

Expansion in powers of p_/m_ = (dyfmgm )Wiov ) (Wiev,) + .,
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Brief review of bound state PT (4)

G. S. Adkins,
Hyperfine Interact. 233 (2015) 59

Hyperfine splitting in Positronium

Avgep = mea’ {% _ % (g + 11172) S%i‘r:‘ POSITRONIUM
:—2 [—2—54772 Ina + 163T687 - 2111—2272 + (%712 + %) In2— 2—2C(3)]
_78;.7(5 In® o + %3 Ino (%7 In2— %) + O (043)} = 203.39169(41) GHz
T / Avexp = 203.394+ .002 GHz
depends on log(a)

The perturbative series for measurable quantities 1s unique
QED agrees with data.
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The instantaneous potential of QED

Is an 1nstantaneous interaction compatible with a local action?
Or is it only a non-relativistic approximation?

How do we describe constituents propagating in their mutual field?

Avoid free propagation (Feynman diagrams)
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Gauge theories have instantaneous interactions:

Although their action is local, the gauge may be fixed non-locally

The lack of dpA% and V-A 1n F v means that AY and A; do not propagate

The values of A% and A are determined by the choice of gauge

Covariant gauge fixing: £cr= (dy A®)? adds the missing derivatives

This hides the instantaneous potential, obscures bound state dynamics.

Coulomb gauge (V-A = 0) Keeps explicit rotational invariance

— VA% t, @) = e (t, x)(t,x) Operator EoM (Gauss’ law)
Canonical quantization complicated by constraints: S # S(9gA?)

Paul Hoyer Torino 10/23



Temporal gauge in QED: A%(#,x) =0

Canonical quantisation is straightforward: A0 = 0pA0 =0

[Ei(t, x), A7 (1, y)} =0 (x — y) Ei=—0dgAi Electric field

AO(t,x) = 0 1s preserved under time-independent gauge transformations.

These are generated by the operator of “Gauss’ law™: Willemsen (1978)

0S .
5 A%ZS = 0;E'(z) — ey(x)  Does not vanish as an operator since A0= 0

Physical states must be invariant under all gauge transformations:

0S
5AC§ (E:S iphys) =0 Determines V-E; from the charges in each state
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Temporal gauge in QCD: AL =0

Canonical quantization without constraints. Willemsen (1978)
Gauss law 1s not an EoM

) SQC D ; Generates time-
5 A0 =V - E,+ gfavcAp - Ec — g"T,1)  independent gauge
a transformations

05 QLCD ’ phy S> —0 Ensures the full gauge invariance of physical states.
Defines V- E; for each Iphys)

©

Include a homogeneous solution for Erq,: V- Er.(x)=0

V5]

Introduces the QCD scale from a boundary condition

Maintaining translation and rotation symmetry imposes tight constraints

Color singlet states required for translation invariance
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Including a homogeneous solution for EL

a . ) g a
E7 (x) |phys) = Vx/dy[m Y + 47T|w_y|]5 (y) [phys)

where £,(y) = — fapc ALE(y) + T T%(y)
! / de» E} - Ef

:/dydz{y-z{%mz/dw%—g/@} 1% }5a(y)5a(z)

ly — z|

Hy

The field energy o« volume of space is irrelevant only 1f it is universal.

This relates the normalisation % for all physical states,

leaving a universal scale A = O(0s°) as the single parameter.
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qq Fock state potential

\q(:cl)cj(:@)} = Z &A(wl) ”QDA(CC2) \0> globally color singlet

A
— 1 a a _ _
Hy =3 /deZEL B Hv |9q) = Vaq lad)
2 Xs
Vig(@1, 2) = A|z1 — 22| — CF [ — 2o Cornell potential

This potential is valid also for relativistic gg Fock states, in any frame
A4
29°CF

The universal vacuum energy density is [/ =
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Baryon Fock state potential

Baryon: q(x1)q(22)q(x3)) = Z 6ABC¢T4(331)¢13(332)¢2($3) 0)
A,B,C

2 1 1 1
Vaga(®1, @2, T3) = Adggq (1, 2, 3) — §&8<‘w1 — &9 i [z — 3 i T3 — 131‘)

1
dgqq(T1, T2, T3) = ﬁ\/(if/‘l — )2 + (X2 — x3)? + (3 — 21)?

When two of the quarks coincide the potential reduces to the gg potential:

4 Qg

quq(mlﬂw%mQ) — AQ‘wl - wZ‘ - VQQ(m17m2)

g‘ibl—wg‘ N

Analogous potentials are obtained for any globally color singlet
quark and gluon Fock state, such as ggg and gg.



The qgq potential

A (q state, with the exchange of a transverse gluon: ;TLZ% E;r

q(z1)g(2g)q(2)) Z a(x1) Al (2,)Th 5B (22) |0)

A2
Vq(;cg(mlv Ty, T2) = \/77 dggq(T1,Tg, T2) (universal A)

dng(xl’wg’ 332) = \/i(N - Q/N)(wl — $2)2 + N(wg — %5131 — %:EQ)Q

1 1 1 1
v ~ S| - ( )
194 (T1, Tg, T2) = 5 @ N |z — x| [T — x| i 2 — @

When ¢ and g coincide: Vq(gog( =X,, T2) = A|xq — xo| = Vq(g)

(1) _ _ v
| ngq( =Xy, T2) = Vyq
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The gg potential

A “glueball” component: 9(x1)g(x2)) = Z AZ(%) Ai(wz) 0)

N
has the potential Vg = o AZ X1 — x| — N
F

g

|2131 — 9

This agrees with the qgq potential where the quarks coincide:
Vog(@, 2g) = Vygg(x, 24, )

It 1s straightforward to work out the instantaneous potential for any Fock state.
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Bound Fock expansion for mesons in A%=0 gauge

q4

The perturbative expansion in o starts

from the lgg) Fock state, bound by the E;
O(0,s") instantaneous potential V,; :

448
O(as) corrections include states with
transverse gluons and quark pairs, ;/Z,% E;
determined perturbatively by Hocp lgg) T

Each Fock component of the bound state
includes its O(0,s°) instantaneous potential.

This Fock expansion is valid in any frame,

and 1s formally exact at O(os™).
Paul Hoyer Torino 10/23
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O (a7) qQq bound states

An O (ozg) meson state with P = 0 and wave function ®:

’M> = Z /d.’I;ldCBQ &ﬁ(t — O, $1)5AB(I)QB(ZU1 — mg)wﬁB(t — O, 2132) ‘O>
A,B;a,3

The (rest frame) bound state condition H |M) = M |M) gives
o <
[z'fyofy -V + mfyo] O(x) + ¢(x) [z’fyofy .V — mfyo] = | M —V(jz|)| ®(x)

where x=x1—x2and V(x) = A2’m‘ at O (a(;)

In the non-relativistic limit (m > A) this reduces to the Schrodinger equation.

—> The quarkonium phenomenology with the Cornell potential.
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Example: —np =1nc = (—1)7 states at O(0sP)

2 N .
¢, (x) = [ (i - V +mr?) + 1] vs Fi(r)Yia ()
M-V
; LIS /" g v’ / 1 . 2 Q_j(j—|_1) _
Radial equation: F| + (r + 7 V)F1 + L(M V) —m ;s }Fl =0

Regularity of the wave function determines the bound state masses M

Mass spectrum: * m=0
. 4 B ’
Linear Regge J e e e
trajectories 3- ® © © e e o o o o o
with daughters
2 - [ [ [ [ [ o o [ o [

Spectrum similar to
dual models
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Bound states with momentum P
Bound state with CM momentum P:

‘M P d.’IJldCUQ w ) iP'<w1+m2)/25AB(I)(P)(CB1 — w2)¢B($2) ’0>

Wave function satisfies bound state equation:

iV - {a, 2P (x)} —LP - [a, @7 (z)] + m[1°, 2P (z)] = [E — V(x)| 2P (x)

The energy eigenvalues satisfy (for a linear potential only): F — \/ M2 + pP?

An infinitesimal boost € in the z-direction transforms the wave function as

<
E-V C2E-V)

O @' = o -VV, o] — 1las, &7
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Frame dependence of EM form factors

In a perturbative expansion each order in o, including O(o),
must have exact Poincaré covariance.

Check with electromagnetic form factor for any states A, B:

Fl(y) = (B, Pplj(y) |4, Pa) = P2 ~PAU (B Py|j#(0) | A, P a)
Fhip(q) = / d*ye " Fhp(y) = (2m)*6* (P — Pa — ¢)G4 5(q)

GAB—/dwez<PB PA)m/2Tr{<I>T x)y VOCI)A( )}

With 0c E = P, 0: P = E and 0z P as above, the
form factor G# indeed transforms as a 4-vector.
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QFT dynamics at O (o)

DR

Bound state overlap determined by their wf’s: (B C'|A)

7N

Hadron loops: Required by unitarity a a

Dihadron component of hadron wt (ctf. form factors)\_/

String breaking: Quark pairs created in V(r) : A

7

A new 0,s° world defined by QCD
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Summary

Bound states in QED and QCD should be defined
systematically, as for the perturbative S-matrix.

In temporal gauge (A9 = 0) the constituents instantaneously determine V-E;,

A Bound Fock expansion: Formally exact when summed to all orders in o
q o q
Er _+ Ar E.  +..
q q

Including a homogeneous solution for E;, gives confinement in QCD

The O(a) “Born term” provides a promising hadron dynamics
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