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A less well known part of the Standard Model

QED bound states are not part of the standard QFT curriculum

There is a consensus that the QED methods are not applicable to hadrons

Yet there are similarities between hadrons and atoms
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Applying QED to atoms is an "art”

Bodwin, Yennie and Gregorio, Rev. Mod. Phys. 57 (1985) 723

Introduction:

“Bound state theory is non-perturbative, but it is possible to develop
expressions in increasing orders of o ...
There 1s an art in developing theoretical expressions in this manner.”

Itzykson and Zuber, Quantum Field theory (1980)

Hyperfine splitting in Positronium (sect. 10.3):

“To be completely fair, we should admit that accurate predictions require
some artistic gifts from the practitioner.”



Contrast with the perturbative S-matrix



Contrast with the perturbative S-matrix

Interaction Picture: H = Hy + H,; ¢

The time dependence of the IP fields 1s given by Hop ,

dk —ik-1 1k-x
v,b[(t,a:):/(QW)SQEkZ[ua(k,)\)e YT b 4 Vo (K, N)et” dL,A}
A




Contrast with the perturbative S-matrix

Interaction Picture: H = Hy + H,; ¢

The time dependence of the IP fields 1s given by Hop ,

dk —ik-1 1k-x
br(t, @) = / (%)BQEkZ[ua(k,A)e T s 4 va (K, N)et® dLA}
A

The perturbative S-matrix 1s derived to be

o

Sii = out(fy t = o0 {Texp {—@/ dtHI(t)”\z', t— —o0)un

— O

where H;1s Hin (%), and the in and out states are free.



Contrast with the perturbative S-matrix

Interaction Picture: H = Hy + H,; ¢

The time dependence of the IP fields 1s given by Hop ,

dk —ik-1 1k-x
v,b[(t,a:):/(QW)SQEkZ[ua(k,)\)e YT b 4 Vo (K, N)et” dL,A}
A

The perturbative S-matrix 1s derived to be

o

Sii = out(fy t = o0 {Texp {—@/ dtHI(t)”\z', t— —o0)un

— O

where H;1s Hin (%), and the in and out states are free.

There is little discussion of the principal differences
between perturbation theory for bound states and scattering.




THE STATE IS NOT ABOLISHED, IT WITHERS 4
AWAY. HOW QUANTUM FIELD THEORY
BECAME A THEORY OF SCATTERING

Alexander S. Blum'

Max Planck Institute for the History of Science, Boltzmannstralde 22, 14195
Berlin, Germany

12th November 2020 2011.0598

Learning quantum field theory (QFT) for the first time, after first learning
quantum mechanics (QM), one 1s (or maybe, rather, I was) struck by the change
of emphasis: The notion of the quantum state, which plays such an essential role
in QM, from the stationary states of the Bohr atom, over the Schrodinger
equation to the interpretation debates over measurement and collapse, seems to
fade from view when doing QFT.
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Atoms are expanded around
an initial bound state

(®|in) = 0 = No Feynman diagram has a bound state pole

Atomic wave functions ®(a) are non-polynomial (exponential) in o

Their higher order corrections @(a)(1 + c10 + c,02 ) depend on D ().

The perturbative expansion for wave functions
is not unique, it depends on the choice of initial state.

Caswell &
Lepage (1975)
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Hyperfine Interact. 233 (2015) 59

Hyperfine splitting in Positronium
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G. S. Adkins,
Hyperfine Interact. 233 (2015) 59

Hyperfine splitting in Positronium
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AVQED = m a4 l — g 8 ln_Q Ths POSITRONIUM
12 7

9" 2
+04_2 5 oy 1867 5107, (221 , 1 53 )
2| 24" 648 3456 144" T3

3 3 1 21
_To” In? o + Y o (—7 In2 — —7> +0 (043)} = 203.39169(41) GHz

8T /ﬂ" 3 90
T Avexp =203.394+ 002 GHz

depends on Ina

, , Bethe-Salpeter (1950)
Bound state expansions are not unique: and others
NRQED (1986)

and they agree for measurable quantities, such as binding energies.
Paul Hoyer HIP 2022
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The Schraodinger equation from Feynman diagrams

Bound state poles in the perturbative S-matrix arise only through a
divergence of the sum of Feynman diagrams
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The Schraédinger equation from Feynman diagrams

Bound state poles in the perturbative S-matrix arise only through a
divergence of the sum of Feynman diagrams
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The sum of “ladder diagrams” (re)generates the classical potential:

i@_m_eA:ia_m_ia_mieAia_m+... — V(T):—;

Ladder diagrams are unsuppressed at the Bohr scale Igl ~ am: 1/q2 o« 1/02

Atoms are at the borderline

For gl << am: classical physics dominates: to classical physics

7
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Basic issues in need of attention 8

The Schrodinger equation is postulated in Introductory Quantum Mechanics.

In QFT it should be derived from Soep.

C f. Relativity: /M2 + P2 ~ M + P%/2M
Moving bound states are often depicted as

ellipses due to Lorentz contraction

(How) 1s the classical relativistic concept
of contraction realised in QFT:

What is the wave function of Positronium in motion?

Poincaré symmetry for extended states 1s interesting and non-trivial.

Paul Hoyer HIP 2022
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Recap: Bound state features

Atomic constituents are bound by an instantaneous, classical potential V(r)

All constituents together determine the binding field of a Fock state.

Feynman diagrams describe the propagation of free constituents.

QCD: Expanding around free quarks and gluons need not give confinement.
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Hadron data shows similarities to atoms



Non-relativistic bound states



Non-relativistic bound states
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QED: ete- atoms
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Lattice QCD agrees with the Cornell potential
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Valence Fock states govern quantum numbers and decays,
even for highly relativistic constituents.
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1S, 1 p(r70)  K*(892) $(1020) w(T82) 302 365 current gg Fock component
1'Py 17 b1(1235)  Kip' h1(1415) h;(1170)
1Py 0t ag(1450)  K3(1430) fo(1710) fo(1370)
3P, 1t a1(1260) Kqul £1(1420) f1(1285) . .
1P, 9% ay(1320) Ki(1430) £j(1525) f(1270) 206 280 E.g., pion deca}’-
1'Dy 277 ma(1670)  K2(1770)1 12(1870) 12(1645)
13Dy 17 p(1700) K*(1680)* w(1650)
13Dy 27~ K,(1820)" u W+ 4
1¥D3 37~ p3(1690) K3;(1780) ¢3(1850) w3(1670) 31.8 30.8 + M
13F,  4t+ a,(1970)  K:(2045) £,(2300) £4(2050) — AFNIAS X
18Gs 5 pa(2350)  Ki(o380) ’ Tc d <vl
215y 0T w(1300)  K(1460)  n(1475) n(1295) ;
235, 17— p(1450)  K*(1410)f ¢(1680) w(1420)
23P, 1t a1(1640)
22P, 2T ag(1700)  K3(1980)  f2(1950) f2(1640) Stan BI‘OdSky

What prevents the strong color field from creating abundant ¢g, g constituents?

Why do resonances have narrow widths: I'<<M ?| [= 0s(Aqcp) is small?
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A strategy for bound states .

Assume: The similarities of atoms and hadrons are not “accidental”

Consider the principles for atoms in QED
Can the perturbative QED methods be applied to QCD?
How to get strong binding with a small coupling

How can the confinement scale Apcp arise?

Framework: An equal-time (Ar = 0) Fock expansion with bound constituents
| Positronium) = |eTe™ ) + [eTe ) + ...

o
This requires an instantaneous potential, c.f.. V(r) = — s

... even for relativistic quarks in QCD
Paul Hoyer HIP 2022 PH 2101.06721
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Instantaneous (Af = O) interactions

Theories with a local action generally do not have instantaneous potentials:

Constituent velocities are bounded by the speed of light (causality)

Gauge theories are an exception:

Although their action is local, the gauge may be fixed non-locally

The lack of d9AY and V-A in &Z£orp means that A and Az do not propagate

Feynman gauge fixing: £cr= (dy A*)? adds the missing terms
= All gauge fields propagate, explicit Poincaré invariance

V:A(t,x) =0 (Coulomb gauge)
Instantaneous gauge interactions for
A%t,x) =0 (Temporal gauge)
Paul Hoyer HIP 2022
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Canonical quantization

Conjugate field mq Commutation relations
( ) 8[80g0a(t,a3)] [90 ( ) 5( y)]j; B ( y)

A0 has no conjugate field, due to the absence of dpA° in LoED.

This is not a problem in temporal gauge: AY(7,x) = 0.

Choose temporal gauge.

Bound state calculations generally use Coulomb gauge with Dirac constraints.

Paul Hoyer HIP 2022
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Time-independent gauge transformations

AO(t,x) = 0 1s preserved under time-independent gauge transformations.

These are generated by the operator of “Gauss’ law™:
Willemsen (1978)
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In temporal gauge this does not vanish in an operator sense.
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Willemsen (1978)
0SQED -
= 0, F"(x) — e T(x
In temporal gauge this does not vanish in an operator sense.
| | 0SQED
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Time-independent gauge transformations

AO(t,x) = 0 1s preserved under time-independent gauge transformations.
These are generated by the operator of “Gauss’ law™:

Willemsen (1978)
0SQED -
= 0, F"(x) — e T(x
In temporal gauge this does not vanish in an operator sense.
| | 0SQED
Physical states are defined by the constraint: 0 ‘ phy S> =0
0 AY (x)

which makes then invariant under the time-independent transformations.

This determines V- Er in terms of the charge distribution in the state.

Paul Hoyer HIP 2022
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The classical, instantaneous field EL

0SQED

5AO () phys) is not an operator relation, it is a constraint on |phys)
0S8

5 Acgaz; 0) =0 implies E; = 0 in the vacuum. No particles are created.

In temporal gauge the electric field E; acts like a classical field.
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iphys) = 0 is not an operator relation, it is a constraint on |phys)

0) =0 implies E; = 0 in the vacuum.

No particles are created.

In temporal gauge the electric field E; acts like a classical field.

E| can bind e*e- Fock states strongly, without pair creation.

Temporal gauge allows to understand the weak-strong paradox of hadrons.
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The classical, instantaneous field EL

0SQED

5AO () phys) is not an operator relation, it is a constraint on |phys)
0S

S A%ZS 0) =0 implies E; =0 in the vacuum. No particles are created.

In temporal gauge the electric field E; acts like a classical field.

E| can bind e*e- Fock states strongly, without pair creation.

Temporal gauge allows to understand the weak-strong paradox of hadrons.

Contrast: In Coulomb gauge A9 is a quantum field, which creates particles.

Paul Hoyer HIP 2022



Fock state expansion for Positronium in A%=0 gauge
ete”)

chosen to start from the le+e-) Fock state, EL
which 1s bound by its classical field Er :

The perturbative expansion in o 1s
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Fock state expansion for Positronium in A%=0 gauge

ete”)
The perturbative expansion in o 1s
chosen to start from the le+e-) Fock state, EyL

which 1s bound by its classical field Er :

] - ete)
Higher order corrections include states
with transverse photons and ete- pairs, IZLZ/Z/[A E:
as determined by Hogp le*e-) !
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Fock state expansion for Positronium in A%=0 gauge

The perturbative expansion in o 1s

eter)

chosen to start from the le+e-) Fock state, EL
which 1s bound by its classical field Er :
| . ete )
Higher order corrections include states
with transverse photons and ete- pairs, E
. Ar L
as determined by Hogp le*e-)

Paul Hoyer HIP 2022

Each Fock component of the bound state
includes its particular instantaneous E, field.

This Fock expansion 1s valid in any frame,
and 1s formally exact at O(a®).

e
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Positronium in motion: Contraction

The binding energy in the rest frame (P =0) is £p = — 02 m./4 + O(0*)

At large momenta P the binding is « 1/P :

2me By
P

AE(P) = /P2 + (2m. + F})2 — \/P2 + 4m?2 = + 0O (o)

The potential energy — O /7
1s independent of P forr L P

Hence the Coulomb potential
provides too strong binding

There must be more than contraction going on!

Paul Hoyer HIP 2022



Positronium in motion: Fock expansion *
lete™) ete )
e e
= Transverse photon
EL e+ T At g e+ vertex < € pPe

In the rest frame: p. = O m. : transverse photon contribution 1s O(o*)

For P> 0: p.= P/2: transverse photon contribution is leading, O(0?)

The transverse photon exchange cancels the P-independent AY contribution,
leaving an O(1/P) contribution which agrees with Poincaré invariance.

M. Jarvinen, Phys. Rev. D71 (2005) 085006, PH 2101.06721
Other Fock states do not contribute to the binding energy at O(0.?)

QFT gets things right when it is treated correctly
Paul Hoyer HIP 2022
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Application to QCD
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The classical fields of QED and QCD differ

Global gauge invariance allows a classical gauge field for neutral atoms,
but not a color octet gluon field for color singlet hadrons.
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The classical fields of QED and QCD differ

Global gauge invariance allows a classical gauge field for neutral atoms,
but not a color octet gluon field for color singlet hadrons.

Positronium (QED) Q
1 e
e 1 1
A e
r(@) A7 lx — x|  |x— 29
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The classical fields of QED and QCD differ

Global gauge invariance allows a classical gauge field for neutral atoms,
but not a color octet gluon field for color singlet hadrons.

Positronium (QED) Q
s
e 1 1
E(x) = - V. -
r(@) A7 lx — x|  |x— 29

)

x1® @xz

X3

Ef(x)=0 forallx

Proton (QCD)
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The classical fields of QED and QCD differ

Global gauge invariance allows a classical gauge field for neutral atoms,
but not a color octet gluon field for color singlet hadrons.

X2
Positronium (QED) Q
1 e
e 1 1
r(®) 47 lx — x| |x— x4
However:

There is a classical gluon field for
each color component C of the proton

)

x1® @xz

X3

Ef(x)=0 forallx

Proton (QCD)

ES(x,C) #0

The blue quark is bound by the E7 (x, C) field of the red and green quarks.
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The classical fields of QED and QCD differ

Global gauge invariance allows a classical gauge field for neutral atoms,
but not a color octet gluon field for color singlet hadrons.

X1 X2
Positronium (QED) Q Proton (QCD) ®®
1 e

X3
e 1 1
E(x) = - V. - )| Ef(z)=0 forall
However:
There 1 lassical gluon field f
ere 1s a classical gluon field for E%(xjc) £ ()
each color component C of the proton

The blue quark is bound by the E7 (x, C) field of the red and green quarks.

An external observer sees no field:

The gluon field generated by a color Z Ef(x,C)=0
singlet state vanishes. C



Temporal gauge in QCD: ALQ

0
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Temporal gauge in QCD: AL =0

The temporal gauge constraint determines V- E; , for each state:

0B} () [phys) = g[ — fabcALEL + ¢ T%(z)] |phys)
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The temporal gauge constraint determines V- E; , for each state:

0:E, . () [phys) = g[ — fave AVEL + 1T ¢ ()] [phys)
In QED we impose the boundary condition: E;(x) — 0 for |x| — o

In QCD E. . (x) =0 for (globally) color singlet Fock states.

The color electric field £, . (x) # O for each quark color component
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Temporal gauge in QCD: AL =0

The temporal gauge constraint determines V- E; , for each state:

0,E} ,(z) |phys) = g[ — fabe AYEL + T (z)] [phys)
In QED we impose the boundary condition: E;(x) — 0 for |x| — o

In QCD E. . (x) =0 for (globally) color singlet Fock states.

The color electric field £, . (x) # O for each quark color component

Include a homogeneous solution, V' E . (x) =0 with E., (x) # 0.
E. . (x) binds each quark color component of a hadron.

The field cancels in the sum over quark colors for singlet states.




Including a homogeneous solution for Ej ,

E} . () |[phys) = —3f/dy {W Y+

where E,(y) = — furc AL EL(y) + WT%(y)

T | £a(y) Iphys)

4| — y|

and &,(y)|0) =0
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Including a homogeneous solution for Ej ,

E} . () |[phys) = —@?/dy {W Y+

where E,(y) = — furc AL EL(y) + T T (y)

The contribution o g gives the gluon exchange potential:

T | £a(y) Iphys)

4| — y|

and &,(y)|0) =0

25

Vir)=—- —
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Including a homogeneous solution for Ej ,

£y () [phys) = —0; / dy {mr Y+ 4W’w_yd5a(y) phys)
where £, (y) = —fac AL EL(y) + T (y) and Eq(y)[0) =0

The contribution * g gives the gluon exchange potential: V' (r) = —— —

The contribution & x # r(x,y) is homogeneous: O;E'(x) =0
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The homogeneous solution & % of the gauge constraint is the
only one that gives invariance under translations and rotations
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Including a homogeneous solution for Ej ,

B} .(x) [phys) = —0; / dy {Mv Y+ 4W’w_yd5a(y) phys)
where £, (y) = —fac AL EL(y) + T (y) and Eq(y)[0) =0

The contribution * g gives the gluon exchange potential: V' (r) = —— —

The contribution % k # k(x,y) is homogeneous: 0, E'(x) = 0

The homogeneous solution & % of the gauge constraint is the
only one that gives invariance under translations and rotations

E; 1s independent of x, as required by translation invariance:
The gluon field energy density is spatially constant.



25

Including a homogeneous solution for Ej ,

B} .(x) [phys) = —0; / dy {mr Y+ 4W’w_yd5a(y) phys)
where £, (y) = —fac AL EL(y) + T (y) and Eq(y)[0) =0

The contribution * g gives the gluon exchange potential: V' (r) = —— —

The contribution % k # k(x,y) is homogeneous: 0, E'(x) = 0

The homogeneous solution & % of the gauge constraint is the
only one that gives invariance under translations and rotations

E; 1s independent of x, as required by translation invariance:
The gluon field energy density is spatially constant.

This solution is excluded by the free field BC of Feynman diagrams.



The instantaneous potential from the Hamiltonian

i _ 5 . 9
B} .(x) [phys) = —0; /dy{m Y+ 47T]w—y|}ga(y) [phys)

26



The instantaneous potential from the Hamiltonian

Bra(@)lphys) = <07 [ dy[wa -y + 2] .(v) Iohys)

Hy

%/deE%-E%

dydz{y z[ /d:c—l—g/i} + § v — 2|

g

|
\

beu(y)Ea()
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The instantaneous potential from the Hamiltonian

B} .(x) [phys) = —0; /dy{m y+4ﬂw_yd5a(y) phys)

Hy

%/deE%-E"’L
:/dydz{y-z[%f#/daﬁgn} T }5a(y)5a(Z)

*ly — z|

The field energy o« volume of space is irrelevant only if it is universal.

This relates the normalisation % of all Fock components,
leaving an overall scale A as the single parameter.
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The instantaneous potential from the Hamiltonian

i _ 5 . 9
B} .(x) [phys) = —0; /dy{m y+4ﬂw_yd5a(y) phys)

Hy

%/deE%-E"’L
:/dydz{y-z[gﬁfdﬁgn} T }5a(y)5a(Z)

*ly — z|

The field energy o« volume of space is irrelevant only if it is universal.

This relates the normalisation % of all Fock components,
leaving an overall scale A as the single parameter.

“Bag model without a bag”

“empty vacuum”  Qcp vacuum
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Meson qq Fock state potential

Z 2 (x1) Y (22) [0)  globally color singlet
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Meson qq Fock state potential

lq(x1)q(x2)) Zw 1) :cg) |0) globally color singlet

Paul Hoyer HIP 2022

/ dx Z ES - E} does not create particles
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Meson qq Fock state potential

Paul Hoyer HIP 2022

(@2) [0)

globally color singlet

does not create particles

Cornell potential

27
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Meson qq Fock state potential

‘Q(ml)g(ﬂh» = Z &A(wl) ”QDA(CB2) \0> globally color singlet
A

Hy = % / dx Z E; - EY does not create particles

Hv [99) = Vag lqq)

g

Vog(@1, @2) = AQ‘fBl — Ta| — T — @ Cornell potential

This potential is valid also for relativistic gg Fock states,
in any frame

Paul Hoyer HIP 2022



Baryon:

Baryon Fock state potential

q(z1)q(z2)a(®3)) = Y eapcil (®1) v (m2) ¥ (23) 0)

A,B,C

28
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Baryon Fock state potential

Baryon: [q(z1)q(®2)q(xs3)) = Z 6ABC¢L($1)¢E($2)¢ZJ($3)|O>
A,B,C

2 1 1 1
Vaga(®1, @2, T3) = Adggq (1, 2, 3) — §&8<‘IB1 — &9 i [z — 3 i T3 — $1‘>

1

dyqq(T1, T2, T3) = _2\/(5131 — T2)? + (T2 — 3)* + (T3 — x1)*



28

Baryon Fock state potential

Baryon: [q(z1)q(®2)q(xs3)) = Z 6ABC¢T4($1)¢L(CB2)¢2(333) 0)
A,B,C

2 1 1 1
Vaga(®1, @2, T3) = Adggq (1, 2, 3) — §&8<‘w1 — &9 i [z — 3 i T3 — 131‘)

1
dgqq(T1, T2, T3) = ﬁ\/(wl — )2 + (X2 — x3)? + (3 — 21)?

When two of the quarks coincide the potential reduces to the gg potential:

4 Qg

quq(mlﬂw%mQ) — AQ‘wl - wZ‘ - VQQ(m17m2)

g‘i[ﬁl—wg‘ N

Analogous potentials are obtained for any quark and gluon Fock state,
such as ggg and gg.



O (o)) qq bound states

An O (ag) meson state with P = 0 and wave function ®:

|M> = Z /diBleBQ &é(t — O, 331)5AB(I)QB(331 — wg)wﬁB(t — O, 2132) ‘O>
A,B;a,p

Paul Hoyer HIP 2022

29



O (o)) qq bound states

An O (ozg) meson state with P = 0 and wave function ®:

|M> = Z /dZBldCBQ &ﬁ(t — O, ZBl)éAB(I)aB(ZBl — wg)wﬁB(t — O, 2132) ‘O>
A,B;a,p

The (rest frame) bound state condition H |[M) = M |M) gives
— +—
[z'fyofy -V + mfyo] O(x) + ¢(x) [z’fyofy .V — mfyo] = [M - V(\w\)]@(w)

where x =x1—x;2and V(x) = A?|z|

Paul Hoyer HIP 2022
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O (o)) qq bound states

An O (ozg) meson state with P = 0 and wave function ®:

’M> = Z /d.’I;ldCBQ &ﬁ(t — O, $1)5AB(I)QB(ZU1 — mg)wﬁB(t — O, 2132) ‘O>
A,B;a,3

The (rest frame) bound state condition H |[M) = M |M) gives
— +—
[z'fyofy -V + mfyo] O(x) + ¢(x) [z’fyofy .V — mfyo] = [M - V(\az\)]@(a})

where x =x1—x;2and V(x) = A?|z|

29

In the non-relativistic limit (m > A) this reduces to the Schrédinger equation.

—> The quarkonium phenomenology with the Cornell potential.

Paul Hoyer HIP 2022
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Separation of radial and angular variables

iV Ay, ®(x)} + m 70, P(x)] = [M — V(x)|®(x)

Expanding the 4 x 4 wave function B | | .
in a basis of 16 Dirac structures [';(x) O(x) = Z Li(x)F; (T)Y}A ()
7
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Separation of radial and angular variables
iV {17, @)} +m [, e(x)] = [M — V(z)|d(z)

Expanding the 4 x 4 wave function F .
) X
in a basis of 16 Dirac structures I’i(x) Z jr (@)

We may use rotational, parity and charge con]ugatlon invariance to determine
which I'/(x) may occur for a state of given jPC:

0~ trajectory [s =0, {=j] —np =1nc = (=1)7 v, 95, Ba-x, ya-xx L

0~ trajectory [s=1, £ =j]: np=nc=—(-1)Y YPywa -z, Vsa-xxL, a-L, y°a-L

0" trajectory [s=1,f=35+1]: np=nc=+(-1) 1, -z, Ya -z, a-zx L, Ya-zx L, Vy5a-L
0"~ trajectory [exotic] : np=-nc= (-1 4% s a-L
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Separation of radial and angular variables
iV {7y, @)} +m [, (x)] = [M — V(x)|P(z)

Expanding the 4 x 4 wave function F .
) X
in a basis of 16 Dirac structures Fi(x) Z jr (@)

We may use rotational, parity and charge con]ugatlon invariance to determine
which I'/(x) may occur for a state of given jPC:

0~ trajectory [s =0, {=j] —np =1nc = (=1)7 v, 95, Ba-x, ya-xx L

0~ trajectory [s=1, £ =j]: np=nc=—(-1)Y YPywa -z, Vsa-xxL, a-L, y°a-L

0" trajectory [s=1,f=35+1]: np=nc=+(-1) 1, -z, Ya -z, a-zx L, Ya-zx L, Vy5a-L
0"~ trajectory [exotic] : np=-nc= (-1 4% s a-L

—> There are no solutions for quantum numbers that would be exotic
in the NR quark model (despite the relativistic dynamics)

The BSE gives the radial equations for the Fi(r)
(There are two coupled radial equations for the O++ trajectory)



Example: O+ trajectory wf's at O(as0)

b (2) = [ (ia - V +my®) + 1] Fi(r)Ya (@)

, , 2 %
Radial equation: F|" + (; + V)Fl’ - H(M — V)2 —m? —

Paul Hoyer HIP 2022

ne=(-1y+1
ne=(1y

jG+1)
2

31
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Example: O+ trajectory wf's at O(as0)

2 . — 0 X np = (_1)i+1
O, ()= [M_V(za-V—l—m*y )+1b5 Py (r)Yin (&) ne= -1y
- S 2 v’ r |1 2 o JU+1) _
Radial equation: F|" + (; + 7 V)F1 + [Z(M — V)" —m* — ;- }Fl =0

Local normalizability at » = 0 and at V(r) = M (!) determines the discrete M

C f.. Dirac eq.: Has continuous spectrum for a linear potential

Paul Hoyer HIP 2022
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Example: O+ trajectory wf's at O(as0)

2 . — 0 X np = (_1)i+1
O, ()= [M_V(za-V—l—m*y )+1b5 Py (r)Yin (&) ne= -1y
- S 2 v’ r |1 2 o JU+1) _
Radial equation: F|" + (; + 7 V)F1 + [Z(M — V)" —m* — ;- }Fl =0

Local normalizability at » = 0 and at V(r) = M (!) determines the discrete M

C f.. Dirac eq.: Has continuous spectrum for a linear potential

Mass spectrum: 7 m=0
4 L .
Linear Regge J e e e
trajectories 3+ ® © e o o o o o o o
with daughters
2 - [ [ [ [ [ o o [ o [
Spectrum similar to *
dual models 10 ® o o o o o o o o o
* M?>/V°
® ® @ ® e - © ® o o @ . ‘
) 10 15 20

Paul Hoyer HIP 2022



Summary
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Summary

The similarities of hadrons and atoms are unlikely to be “accidental”
Need to consider the principles of QED bound states

Temporal gauge (A% = 0) 1s advantageous for equal-time bound states

The gauge constraint determines the classical, instantaneous E;, field
for each Fock component

Perturbative expansion, starting from *“non-perturbative” valence Fock states

A homogeneous solution of the gauge constraint gives confinement in QCD

Many features of hadrons thus obtained look promising & intriguing

PH 2109.06257
Special thanks to Matti Jarvinen, for valuable advice PH 2101.06721v2
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Back-up slides
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The qqq potential

A (qq state, with the emission of a transverse gluon: XTLZ/% E;

q(z1)g(2g)q(2)) Z a(x1) Al (2,)Th 5B (22) |0)

A2
Vq(gOg(mlv Ty, T2) = \/77 dggq(T1,Tg, T2) (universal A)

dng(xl’wg’ 332) = \/i(N - Q/N)(wl — $2)2 + N(wg — %5131 — %:EQ)Q

1 1 1 1
V(l) ’ 9 — l $|: o N( ):|
a9q (1 Ty T2) = 5 s | T — 2| 2 —a,| | J2s - x,

When ¢ and g coincide: Vq(gog( =T, xa) = A2|331 — | = Vq(g)

(1) _ _ 1)
Vigq(®1 = &g, @2) = Vg
Paul Hoyer HIP 2022
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The gg potential

A “glueball” component: ’9(331)9(332» - Z AZ(%) Ai(wz) |O>

N
has the potential Vg = o A?|zy — 9| — N
I

g

|€U1 — L2

This agrees with the qgq potential where the quarks coincide:
Vog(@, 2g) = Vygg(x, 24, )

It 1s straightforward to work out the instantaneous potential for any Fock state.

Paul Hoyer HIP 2022



Strongly bound Positronium in QED2 (D = 1+1) N

In QED: the spectrum can be determined both for S. Coleman,
weak (e/m << 1) and strong (e/m >> 1) coupling Annals Phys. 101 (1976) 239
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Strongly bound Positronium in QED2 (D = 1+1) N

In QED: the spectrum can be determined both for S. Coleman,
weak (e/m << 1) and strong (¢/m >> 1) coupling Annals Phys. 101 (1976) 239
e/m << 1 e/m>> 1
ete- ete-
Bound states of weakly Bound states of weakly
interacting fermions interacting bosons

For e/m — % QED:; describes a non-interacting, pointlike boson field.

The hadron spectrum suggests weakly bound valence quarks,

Paradox: yet the light quarks are strongly bound (relativistic).

Paul Hoyer HIP 2022



