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Paul Hoyer, University of Helsinki

Hadrons and atoms have unexpected similarities

Can the first-principles bound state methods of QED be adapted to QCD?

This is a real possibility!




I. Motivations



Non-relativistic bound states

QCD: bb, cc quarkonia
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Lattice QCD agrees with the Cornell potential
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Light quarks: m, p, N,...

Valence Fock states govern quantum numbers and decays,
even for highly relativistic constituents.
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Valence Fock states govern quantum numbers and decays,
even for highly relativistic constituents.
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Valence Fock states govern quantum numbers and decays,
even for highly relativistic constituents.

Valence quantum numbers Current quark Fock states
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What prevents the strong color field from creating abundant gg, g constituents?

Why do resonances have narrow widths: I'<<M ?| 0O is small (perturbative)
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Strongly bound Positronium in QED2 (D = 1+1)

In QED: the spectrum can be determined both for S. Coleman,
weak (e/m << 1) and strong (e/m >> 1) coupling Annals Phys. 101 (1976) 239

e/m << 1 e/m>> 1

ete- ete-

Bound states of weakly Bound states of weakly
interacting fermions interacting bosons

For e/m — % QED:; describes a non-interacting, pointlike boson field.

The hadron spectrum suggests weakly bound valence quarks,

Paradox: yet the light quarks are strongly bound (relativistic).



PQED for atoms is impressive

Example: Hyperfine splitting in Positronium G.S. Adkins,
Hyperfine Interact. 233 (2015) 59
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Yet the principles of PQED for bound states remain obscure:

“Bound state theory 1s non-perturbative, but it 1s

possible to develop expressions in increasing Bodwin, Yennie and Gregorio,
orders of a.. There 1s an art in developing a Rev. Mod. Phys. 57 (1985) 723
theoretical expression in this manner”
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Atoms from the QED action ®

The Schrodinger equation is postulated in Introductory Quantum Mechanics.

In QFT it should be derived from Soep,

— yet this 1s not done 1n textbooks.

Cf: M2+ P2~M+ P?/2M

Moving bound states are often depicted as
ellipses due to Lorentz contraction

(How) 1s the classical relativistic concept
of contraction realised in QFT?

Poincaré symmetry:

What is the wave function of Positronium in motion?
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A strategy for bound states

Assume: The similarities of atoms and hadrons are not “accidental”

Consider the principles for atoms in QED

Try to apply the QED methods to QCD
How to get strong binding with a small coupling

How can the confinement scale Aocp arise?

Even failure 1s instructive:

Bound state principles: Art — Theory

Poincaré invariance for atoms
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Perturbative expansion

+ - + -
e e —=>ee
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e e
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€ e

Scattering amplitudes are
expanded around free states

. Scattering vs. bound states

Positronium
et et
T i T T i
i [ I I [
@) yr ot D)
1 1 1 1
x X X x
e~ e~

Atoms are expanded around
an initial bound state

Schrodinger wave functions for atoms ®g(a) are exponential in o

Their power corrections ®(a)(1 + c10 + c202 ) depend on P(a).

The perturbative expansion for wave functions
is not unique, it depends on the choice of initial state.

Paul Hoyer CPHT 2021

Caswell & Lepage (1975)
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The Schrodinger equation from Feynman diagrams ~ »

ete— — ete
pi p1—k p4 pi pl—k D4 5
0 ‘9064‘ e ‘
p _> k—q + — 0 - —|_ . ..
- pY — E e
P2 p3 p2 p2+k D3 P2 ps- k ps

(b)

Bound state poles in ete- — e*e- arise only through a Bohr scale gl ~ aum:
divergence of the perturbative sum propagators « 1/02

Atoms are at the borderline

For |gl - classical physi I : : :
or gl << am: classical physics dominates to classical physics

QED: Sum of “ladder diagrams” generates the classical field V(r) = — @
-

QCD: V(r) = V’r Free quarks & gluons are an unlikely start for confinement

— |Need to derive the Schrodinger equation with proper boundary conditions




Instantaneous (Af = O) interactions

Equal-time gg Fock states must be bound by instantaneous interactions.

Cf. the V(r) = — a/r potential of the NR Schrodinger equation.



Instantaneous (Af = O) interactions

Equal-time gg Fock states must be bound by instantaneous interactions.

Cf. the V(r) = — a/r potential of the NR Schrodinger equation.

Theories with a local action generally do not have instantaneous potentials.



Instantaneous (Af = O) interactions

Equal-time gg Fock states must be bound by instantaneous interactions.

Cf. the V(r) = — a/r potential of the NR Schrodinger equation.

Theories with a local action generally do not have instantaneous potentials.

Gauge theories are an exception:
Although their action is local, the gauge may be fixed non-locally




Instantaneous (Af = O) interactions

Equal-time gg Fock states must be bound by instantaneous interactions.

Cf. the V(r) = — a/r potential of the NR Schrodinger equation.

Theories with a local action generally do not have instantaneous potentials.

Gauge theories are an exception:
Although their action is local, the gauge may be fixed non-locally

The lack of d9AY and V-A in &Z£orp means that A and Az do not propagate

Feynman gauge fixing: £cr= (dy A*)? adds the missing terms
= All gauge fields propagate, explicit Poincaré invariance



Instantaneous (Af = O) interactions

Equal-time gg Fock states must be bound by instantaneous interactions.

Cf. the V(r) = — a/r potential of the NR Schrodinger equation.

Theories with a local action generally do not have instantaneous potentials.

Gauge theories are an exception:
Although their action is local, the gauge may be fixed non-locally

The lack of d9AY and V-A in &Z£orp means that A and Az do not propagate

Feynman gauge fixing: £cr= (dy A*)? adds the missing terms
= All gauge fields propagate, explicit Poincaré invariance

V:A(t,x) =0 (Coulomb gauge)
Instantaneous gauge interactions for
A%t,x) =0 (Temporal gauge)
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Canonical quantization

Conjugate field mq Commutation relations
( ) 8[80g0a(t,ac)] [gp ( ) 5( y)]j: B ( y)

A© has no conjugate field, due to the absence of dpA° in LoED.

Not a problem in temporal gauge: A°(7,x) = 0. |Choose temporal gauge.

A%t x)=01s pres§rved unc.ier time-independent 5865ED — O.E () — GW ()
gauge transformations, which are generated by  0A%(x)
Willemsen (1978)

Physical states are gauge invariant 0SQED h —0
. . L S |phys) =
provided they satisfy the constraint: 0A(x)

This determines V- E1 in terms of the charge distribution in the state.
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The classical, instantaneous field EL

0SQED

5AO () phys) is not an operator relation, it is a constraint on |phys)
0S

S A%ZS 0) =0 implies E; =0 in the vacuum. No particles are created.

In temporal gauge the electric field E; is like a classical field.

E| can bind e*e- Fock states strongly, without pair creation.

Temporal gauge allows to understand the weak-strong paradox of hadrons

Bound state calculations generally use Coulomb gauge with constraints

Paul Hoyer CPHT 2021



Fock state expansion for Positronium in A%=0 gauge

The perturbative expansion in o starts

from the le+e-) Fock state, bound by
1ts classical field E; :

Higher order corrections include states
with transverse photons and e+e- pairs,

as determined by Hogp le*e-)

Paul Hoyer CPHT 2021
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Fock state expansion for Positronium in A%=0 gauge

The perturbative expansion in o starts

eter)

from the le+e-) Fock state, bound by E;
its classical field E :
| . ete )
Higher order corrections include states
with transverse photons and ete- pairs, E
. Ar L
as determined by Hogp le*e-)

Paul Hoyer CPHT 2021

Each Fock component of the bound state
includes its particular instantaneous E, field.

This Fock expansion 1s valid in any frame,
and 1s formally exact at O(a®).

e
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Positronium in motion: Contraction

The binding energy in the rest frame (P =0) is £p = — 02 m./4 + O(0*)

At large momenta P the binding is « 1/P :

2me By
P

AE(P) = /P2 + (2m. + F})2 — \/P2 + 4m?2 = + 0O (o)

The potential energy — O /7
1s independent of P forr L P

Hence the Coulomb potential
provides too strong binding

There must be more than contraction going on!
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Positronium in motion: Fock expansion
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E e = € Transverse photon
L T At g e+ vertex &« ¢ pe

In the rest frame: p. = O m. : transverse photon contribution 1s O(o*)

For P> 0: p.= P/2: transverse photon contribution is leading, O(0?)

The transverse photon exchange cancels the P-independent AY contribution,
leaving an O(1/P) contribution which agrees with Poincaré invariance.

M. Jarvinen, Phys. Rev. D71 (2005) 085006, PH 2101.06721

Other Fock states do not contribute to the binding energy at O(0.?)



Positronium in motion: Fock expansion

lete™) ‘6+6_’7>

E e = € Transverse photon
L T At g e+ vertex &« ¢ pe

In the rest frame: p. = O m. : transverse photon contribution 1s O(o*)

For P> 0: p.= P/2: transverse photon contribution is leading, O(0?)

The transverse photon exchange cancels the P-independent AY contribution,
leaving an O(1/P) contribution which agrees with Poincaré invariance.

M. Jarvinen, Phys. Rev. D71 (2005) 085006, PH 2101.06721

Other Fock states do not contribute to the binding energy at O(0.?)

QFT gets things right when it is treated correctly




III. Application to QCD
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Temporal gauge in QCD: AL =0

The temporal gauge constraint determines V- E; , for each state:

0B} () [phys) = g[ — fabcALEL + ¢ T%(z)] |phys)

In QED we impose the boundary condition: E;(x) — O for Ix| — o

In QCD E. . (x) =0 for (globally) color singlet Fock states.

A GredaGrea color component is bound by E; 4 (x) #0

a __ _ AT . g
Bra(e) =07 [ay[ @y + e ks

where  E,(y) = — farc Ap EL(Y) + ¥ T Y(y)

The homogeneous solution & % is the only one that is
compatible with invariance under space translations and rotations
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Including the k # O homogeneous solution for Ej

i _ o . g
£y () [phys) = —0; /dy{m y+4ﬂw_yd5a(y) phys)

K # K(T,Yy) makes this a homogeneous solution: 9, E*(x) = 0

The linear dependence on x makes E; independent of x, as required by
translation invariance: The field energy density is spatially constant:
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) _ __ A% ] g
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K # K(,Y) makes this a homogeneous solution: ~ 9; E'(z) = 0
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translation invariance: The field energy density is spatially constant:
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Including the k # O homogeneous solution for Ej

) _ __ A% ] g
Ey () [phys) = —0; /dy[mr Yy + 4W,w_yd5a(y) phys)

K # K(,Y) makes this a homogeneous solution: ~ 9; E'(z) = 0

The linear dependence on x makes E; independent of x, as required by
translation invariance: The field energy density is spatially constant:

Hy = %/deE%-E"’L
:/dydz{y-z[gfe?/dﬁgn} — }Sa(y)ga(Z)

°ly — z|

The field energy o volume of space 1s
irrelevant only 1f it 1s universal.

This relates the normalisation % of all
Fock components, leaving an

overall scale A as the single parameter.
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Including the k # O homogeneous solution for Ej

i — 7 . g
BLu(@) Iohys) = ~07 [ dy[ra-y+ L |&.(w) hys)

K # K(,Y) makes this a homogeneous solution: ~ 9; E'(z) = 0

The linear dependence on x makes E; independent of x, as required by
translation invariance: The field energy density is spatially constant:

Hy = %/deE%-E"’L
:/dydz{y-z[gfe?/dﬁgn} — }Sa(y)ga(Z)

“ly — 2|
pressure =5
The field energy o volume of space 1s N i 7
irrelevant only 1f it 1s universal. — ()=
This relates the normalisation « of all // ¢ :\
Fock components, leaving an vl

“empty vacuum”  QCD vacuum

overall scale A as the single parameter. “Bag model without a bag”
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Z v (1) Y™ (x2) [0)  globally color singlet
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Meson Fock state potential

q(21)q(T2)) Z?ﬂ T) 5132) |0)  globally color singlet

1 a a :
Hy = 5 / dx Z Er - By does not create particles

Cornell potential

This potential is valid also for relativistic gg Fock states,
in any frame
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Baryon Fock state potential

Baryon: [q(z1)q(®2)q(xs3)) = Z 6ABC¢L($1)¢E($2)¢ZJ($3)|O>
A,B,C

2 1 1 1
Vaga(®1, @2, T3) = Adggq (1, 2, 3) — §&8<‘IB1 — &9 i [z — 3 i T3 — $1‘>

1

dyqq(T1, T2, T3) = _2\/(5131 — T2)? + (T2 — 3)* + (T3 — x1)*
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Baryon Fock state potential

Baryon: [q(z1)q(®2)q(xs3)) = Z 6ABC¢T4($1)¢L(CB2)¢2(333) 0)
A,B,C

2 1 1 1
Vaga(®1, @2, T3) = Adggq (1, 2, 3) — §&8<‘w1 — &9 i [z — 3 i T3 — 131‘)

1
dgqq(T1, T2, T3) = ﬁ\/(wl — )2 + (X2 — x3)? + (3 — 21)?

When two of the quarks coincide the potential reduces to the gg potential:

4 Qg

quq(mlﬂw%mQ) — AQ‘wl - wZ‘ - VQQ(m17m2)

g‘i[ﬁl—wg‘ N

Analogous potentials are obtained for any quark and gluon Fock state,
such as ggg and gg.
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The qqq potential

A (qq state, with the emission of a transverse gluon: XTLZ/% E;

q(z1)g(2g)q(2)) Z a(x1) Al (2,)Th 5B (22) |0)

A2
Vq(gOg(mlv Ty, T2) = \/77 dggq(T1,Tg, T2) (universal A)

dng(xl’wg’ 332) = \/i(N - Q/N)(wl — $2)2 + N(wg — %5131 — %:EQ)Q

1 1 1 1
v ~ S| - ( )
194 (T1, Tg, T2) = 5 @ N |z — x| [T — x| i 2 — @

When ¢ and g coincide: Vq(gog( =T, xa) = A2|331 — | = Vq(g)

(1) _ _ (1)
ngq( — &g T2) = qui
Paul Hoyer CPHT 2021
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The gg potential

A “glueball” component: ’9(331)9(332» - Z AZ(%) Ai(wz) |O>

N
has the potential Vg = o A?|zy — 9| — N
I

g

|€U1 — L2

This agrees with the qgq potential where the quarks coincide:
Vog(@, 2g) = Vygg(x, 24, )

It 1s straightforward to work out the instantaneous potential for any Fock state.

Paul Hoyer CPHT 2021



O (o)) qq bound states

An O (ag) meson state with P = 0 and wave function ®:

|M> = Z /diBleBQ &é(t — O, 331)5AB(I)QB(331 — ZBQ)wﬁB(t — O, 2132) ‘O>
A,B;a,p

Paul Hoyer Complutense 2021
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O (o)) qq bound states

An O (ozg) meson state with P = 0 and wave function ®:

|M> = Z /d.’EldCBQ &ﬁ(t — O, 2131)5AB(I)@5(2B1 — wg)wﬁB(t — O, 2132) ‘O>
A,B;a,p

The (rest frame) bound state condition H |M) = M |M) gives, at O (ozS)
— —
iy - V +my?| @ () + &(x) [i°y - V —mny’] = [M — V(|z|)] ()

wherex=xi—x;and V(lx ) =VixI=A2lx1.

Paul Hoyer Complutense 2021
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O (o)) qq bound states

An O (ozg) meson state with P = 0 and wave function ®:

’M> = Z /d.’I;ldCBQ &ﬁ(t — O, $1)5AB(I)QB(ZU1 — mg)wﬁB(t — O, 2132) ‘O>
A,B;a,3

The (rest frame) bound state condition H |[M) = M |M) gives, at O (ozg)
o <
[z’fyofy -V + mfyo] O(x) + ¢(x) [z’fyofy -V — mfyo] = [M — V(\az\)]@(az)
wherex=xi—x;and V(lx ) =VixI=A2lx1.

In the non-relativistic limit (m > A) this reduces to the Schrédinger equation.

Including the instantaneous gluon exchange potential:

—> The quarkonium phenomenology with the Cornell potential.

Paul Hoyer Complutense 2021
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Separation of radial and angular variables

iV Ay, ®(x)} + m 70, P(x)] = [M — V(x)|®(x)

Expanding the 4 x 4 wave function B | | .
in a basis of 16 Dirac structures [';(x) O(x) = Z Li(x)F; (T)Y}A ()
7
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Separation of radial and angular variables
iV {17, @)} +m [, e(x)] = [M — V(z)|d(z)

Expanding the 4 x 4 wave function F .
) X
in a basis of 16 Dirac structures I’i(x) Z jr (@)

We may use rotational, parity and charge con]ugatlon invariance to determine
which I'/(x) may occur for a state of given jPC:

0~ trajectory [s =0, {=j] —np =1nc = (=1)7 v, 95, Ba-x, ya-xx L

0~ trajectory [s=1, £ =j]: np=nc=—(-1)Y YPywa -z, Vsa-xxL, a-L, y°a-L

0" trajectory [s=1,f=35+1]: np=nc=+(-1) 1, -z, Ya -z, a-zx L, Ya-zx L, Vy5a-L
0"~ trajectory [exotic] : np=-nc= (-1 4% s a-L



27

Separation of radial and angular variables
iV {7y, @)} +m [, (x)] = [M — V(x)|P(z)

Expanding the 4 x 4 wave function F .
) X
in a basis of 16 Dirac structures Fi(x) Z jr (@)

We may use rotational, parity and charge con]ugatlon invariance to determine
which I'/(x) may occur for a state of given jPC:

0~ trajectory [s =0, {=j] —np =1nc = (=1)7 v, 95, Ba-x, ya-xx L

0~ trajectory [s=1, £ =j]: np=nc=—(-1)Y YPywa -z, Vsa-xxL, a-L, y°a-L

0" trajectory [s=1,f=35+1]: np=nc=+(-1) 1, -z, Ya -z, a-zx L, Ya-zx L, Vy5a-L
0"~ trajectory [exotic] : np=-nc= (-1 4% s a-L

—> There are no solutions for quantum numbers that would be exotic
in the NR quark model (despite the relativistic dynamics)

The BSE gives the radial equations for the Fi(r)
(There are two coupled radial equations for the O++ trajectory)



Example: O trajectory wf's

b (2) = [ (ia - V +my®) + 1] Fi(r)Ya (@)

, , 2 %
Radial equation: F|" + (; + V)Fl’ - H(M — V)2 —m? —

Paul Hoyer Complutense 2021

ne=(-1y+
ne=(1y

jG+1)
2

.-

28
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Example: O trajectory wf's

2 . — 0 X np = (_1)j+1
O, ()= [M_V(@a.v+m )+1}75 Py (r)Yin (&) ne= -1y
- S 2 v’ r |1 2 o JU+1) _
Radial equation: F|" + (; + 7 V)F1 + [Z(M — V)" —m* — ;- }Fl =0

Local normalizability at » = 0 and at V(r) = M (!) determines the discrete M

C f.: Dirac eq.: Has continuous spectrum

Paul Hoyer Complutense 2021
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Example: O trajectory wf's

2 . — 0 X np = (_1)i+1
O, ()= [M_V(za-V—l—m*y )+1b5 Py (r)Yin (&) ne= -1y
- S 2 v’ r |1 2 o JU+1) _
Radial equation: F|" + (; + 7 V)F1 + [Z(M — V)" —m* — ;- }Fl =0

Local normalizability at » = 0 and at V(r) = M (!) determines the discrete M

C f.: Dirac eq.: Has continuous spectrum

m=20
Mass spectrum: 7
4 L .
Linear Regge J e e e e e e
trajectories 3+ ® © o e o o o o o o
with daughters
2 - o o o o o o [ o [ o
Spectrum similar to *
dual models 10 ® o o o o o o o o o
; Mz/V°
® ® @ ® e o ® e —© @ ‘ : ‘
) 10 15 20

Paul Hoyer Complutense 2021
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Summary

The similarities of hadrons and atoms are unlikely to be “accidental”
Need to consider the principles of QED bound states

Temporal gauge (A% = 0) 1s advantageous for equal-time bound states

The gauge constraint determines the classical, instantaneous E;, field
for each Fock component

Perturbative expansion, starting from *“non-perturbative” valence Fock states

A homogeneous solution of the gauge constraint gives confinement in QCD

Many features of hadrons thus obtained look promising & intriguing

PH 2109.06257
Special thanks to Matti Jarvinen, for valuable advice PH 2101.06721v2



