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Learning quantum field theory (QFT) for the first time, after first learning
quantum mechanics (QM), one 1s (or maybe, rather, I was) struck by the change
of emphasis: The notion of the quantum state, which plays such an essential role
in QM, from the stationary states of the Bohr atom, over the Schrodinger
equation to the interpretation debates over measurement and collapse, seems to

fade from view when doing QFT.
2011.0598
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Atoms from the QED action

The Schrodinger equation is postulated in Introductory Quantum Mechanics.

In QFT it should be derived from Sgep. C.f: /M?+ P2~ M + P?/2M

Moving bound states are often depicted as
ellipses due to Lorentz contraction

(How) 1s the classical relativistic concept
of contraction realised in QFT?

What is the wave function of Positronium in motion?
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The unbearable likeness of hadrons and atoms ®

A

QCD Meson

Hadrons are strongly bound

MN > Qmu—I—md

Yet hadron quantum numbers
reflect their valence quarks:

99, 999 n?stiy;

e-

QED Positronium

Atoms are weakly bound
Mpos = (2 — lCVQ)me

Paradox:
Hadrons are strongly bound,
but their quantum numbers

indicates weak binding.
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Strongly bound Positronium in QED2 (D = 1+1) ¢

In QED: the spectrum can be determined both for S. Coleman,
weak (e/m << 1) and strong (¢/m >> 1) coupling Annals Phys. 101 (1976) 239
e/m << 1 e/m>> 1
ete- ete-
Bound states of weakly Bound states of weakly
interacting fermions interacting bosons

For e/m — % QED:; describes a non-interacting, pointlike boson field.

The hadron spectrum suggests weakly bound valence quarks,
yet the binding energies are large, indicating strong coupling.



Quarkonia are like atoms with confinement
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Rev. Mod. Phys. 80 (2008) 1161

“The J/y 1s the Hydrogen atom of QCD”



Lattice QCD agrees with the Cornell potential
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Confinement with a classical potential

The Cornell potential with the Schrddinger equation
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Confinement with a classical potential

The Cornell potential with the Schrddinger equation

dos .
V(r)=V'r— ga_ with V' ~0.18 GeV?, a, ~ 0.39

(A

describes confinement with a classical gluon field.

This would explain the ¢g, ggg quantum numbers of mesons and baryons:

A classical field does not create particles.

Can this be implemented in QCD?

Consider the perturbative methods developed for QED atoms

Paul Hoyer Complutense 2021



PQED for atoms is impressive 0

Example: Hyperfine splitting in Positronium G.S. Adkins,
Hyperfine Interact. 233 (2015) 59
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Hyperfine Interact. 233 (2015) 59
7 a8 In2
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—Eln2oz—|—a—lna —In2 — — —|—C’)(OzS) = 203.39169(41) GHz
8T s 3 90

Avexp =203.394+ 002 GHz

Yet the principles of PQED remain obscure:

“Bound state theory 1s non-perturbative, but it 1s

possible to develop expressions in increasing Bodwin, Yennie and Gregorio,
orders of a.. There 1s an art in developing a Rev. Mod. Phys. 57 (1985) 723
theoretical expression in this manner”

Only the rest frame is considered.
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Choice of initial state

The first term of a perturbative expansion should resemble the full result.
The perturbative S-matrix starts from free in- and out-states at r = +.

Free states have no overlap with bound states.
No Feynman diagram has a bound state pole.
Free quarks and gluons excludes confinement.

The Schrodinger equation with the classical — o/r potential
provides a good initial state for atoms in the rest frame.

Schrodinger wave functions are exponential (“non-perturbative”) in a.
The perturbative series for atoms may be reordered, by
moving powers of a from/to the 1nitial wave function.

Physics guides the proper choice of initial state.
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Instantaneous interactions

Positronium le+e-) states have an instantaneous -o/r potential.
Retardation effects are described by transverse photons ( lete-y) states).

A local action can give instantaneous interactions only in a
non-relativistic approximation (constituent velocities v < ¢).

Exception: Gauge theories have truly instantaneous interactions.
Their action 1s local, but the gauge can be fixed non-locally.

The absence of do AY and V-A [ in the gauge theory action means that

AY and A do not propagate, they are fixed by the choice of gauge.

Initial bound states are simplified by an instantaneous potential

= Coulomb (VA = 0) or temporal (A° = () gauge are preferable

Paul Hoyer Complutense 2021
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Temporal gauge: A9=0
Temporal gauge 1s suitable for bound states defined at an instant of time ¢:

e Preserves the translation and rotation symmetry of the Hamiltonian

e Canonical quantisation straightforward (unlike in V- A = 0 gauge)
E'(t,x), A (t,y)] =07 8(z — y)

e Time-independent gauge transformations 58

are fixed by Gauss constraint SAO(t, ) iphys) =0

Classical equation, determines E.

(&
T — Y|

QED: E.(t,z)|phys) = -V, / dy o vy (t, y) [phys)

Hy =1 / dzx E7 gives the potential energy. For le=(x1) e+(x2)),

oY —
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Fock state expansion for Positronium in A%=0 gauge

efe)
The initial state is chosen to be
the le*e~) Fock state, bound by the EL

classical field E;, of its constituents:

‘ ete” 7>
Higher order corrections given by states
with transverse photons and e*e- pairs, as /?T/Z’% E;
determined by H lete-) , erc.

Each Fock component of the bound state
includes the instantaneous E;, field in Hy.

This Fock expansion is valid in any frame.

e



Positronium in motion: Contraction

The binding energy in the rest frame (P =0) is £p = — 02 m./4 + O(0*)
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Positronium in motion: Contraction

The binding energy in the rest frame (P =0) is £p = — 02 m./4 + O(0*)

At large momenta P the binding is « 1/P :

2me By
P

AE(P) = /P2 + (2m. + F})2 — \/P2 + 4m?2 = + 0O (o)

The potential energy -0 /1
1s independent of P forr L P

Hence the Coulomb potential
provides too strong binding

There must be more than contraction going on!
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M. Jarvinen, Phys. Rev. D71 (2005) 085006, PH 2101.06721

Higher Fock states do not contribute to the binding energy at O(0?)



Positronium in motion: Fock expansion

lete™) ‘6+6_’7>

E e = € Transverse photon
L T At g e+ vertex &« ¢ pe

In the rest frame: p. = O m. : transverse photon contribution 1s O(o*)

For P> 0: p.= P/2: transverse photon contribution is leading, O(0?)

The transverse photon exchange cancels the P-independent AY contribution,
leaving an O(1/P) contribution which agrees with Poincaré invariance.

M. Jarvinen, Phys. Rev. D71 (2005) 085006, PH 2101.06721

Higher Fock states do not contribute to the binding energy at O(0?)

QFT gets things right when it is treated correctly




III. Applications to hadrons



The classical fields of QED and QCD differ

Global gauge invariance allows a classical gauge field for neutral atoms,
but not a color octet gluon field for color singlet hadrons.
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each color component C of the proton
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The blue quark 1s bound by the E;4(x,C) field of the red and green quarks.



The classical fields of QED and QCD differ

Global gauge invariance allows a classical gauge field for neutral atoms,
but not a color octet gluon field for color singlet hadrons.

X1 X2
Positronium (QED) Q Proton (QCD) ®@®
1 e

X3
e 1 1
E(x) = - V. - )| Ef(z)=0 forall
However:
There 1 lassical gluon field f
ere 1s a classical gluon field for ECLL(QZ,C) £ ()
each color component C of the proton

The blue quark 1s bound by the E;4(x,C) field of the red and green quarks.

An external observer sees no field:

The gluon field generated by a color Z Ef(x,C)=0
singlet state vanishes. C
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Temporal gauge in QCD: AL =0

Gauss’ gauge constraint determines E; , for all hadron Fock states:

0B} () [phys) = g[ — fabcALEL + ¢ T%(z)] |phys)

In QED we impose the boundary condition: E;(x) — O for Ix| — o

In QCD E. . (x) = 0 for color singlet Fock states, ensures Er4 () =0

—> We may consider a homogeneous solution of Gauss’ constraint

g
dr|x — y|

B} o(@) phys) = ~07 [ dywe -y + £4(y) [phys)

where  E.,(y) = — fabe AL EL(y) + 1T (y)

The homogeneous solution & % of the gauge constraint
is the only one that is compatible with Poincaré invariance
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Including the k # O homogeneous solution for Ej

B} .(x) [phys) = —0; /dy{m y+4ﬂw_yd5a(y) phys)

where Eq(y) = — farc AL EL(y) + T (y) and Eq(y)[0) =0
k # K(x,y): this is a homogeneous solution of 0; E'(x) = 0

The linear dependence on x makes E; independent of x, as required by
translation invariance: The field energy density is spatially constant.

The field energy o volume of space is / Prose =52
irrelevant only if it is universal. \ ‘ /
This relates the normalisation # of all — <—
Fock components, leaving an /

overall scale A as the single parameter. \J t b/

// \\.
. . “empty vacuum”  QCD vacuum
® appears in a gauge constraint

“Bag model without a bag”
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The potential energy #y, =1 / dz Ef-Ef

Hy = /dydz{y-z{%#/daﬂrgﬁ;} + 3 |yofz’}8a(y)5a(z)

Recall: Sa(y) — _fabcAéEg(y) _|_ ¢TTG¢(y)

Gives translation invariant potentials only for (globally) color singlet states

Meson component: |q(T1)q(x2)) = Z (1) 7 (2) |0)
A

g Field energy density:
F
1 — T2 A4
Hv) = 53
29 OF

Vg1, 2) = A2]w1 — x| — C
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The potential energy #y, =1 / dz Ef-Ef

Hy = /dydz{y-z{%@/daﬂrgﬁ;} + 3 |ysz] }Sa(y)é’a(z)

Recall: Sa(y) — _fabcAéEg(y) _|_ wTTa¢(y)

Gives translation invariant potentials only for (globally) color singlet states

Meson component: |q(1)q(x2)) = Z (1) 7 (2) |0)
A

Q Field energy density:
Vog(x1, @2) = A|zy — 2| — Cp - 4
1 — T2 (Hy) = A
Y 2920k

This potential 1s valid also for relativistic

: ] 0
47 Fock states. in any frame The linear potential is of G(0.)




Baryon Fock state potential

Baryon: [q(x1)q(x2)q(T3)) = Z EABCIDL(wl)wL(@)@bZ:(wS)|0>
A,B,C

Paul Hoyer Complutense 2021
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Baryon Fock state potential

Baryon: [q(x1)q(x2)q(T3)) = Z EABc?ﬂL(wl)wg(@)@bg(wS)|0>
A,B,C

2 1 1 1
Vg (®1, @2, @3) = A dygq(@1, @2, T3) — 3 C“S(|m1 — @] T [Ta— i X3 — 1131|)

1

dyqq(T1, T2, T3) = _2\/(5131 — T2)? + (T2 — 3)* + (T3 — x1)*

Paul Hoyer Complutense 2021
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Baryon Fock state potential

Baryon: [q(x1)q(x2)q(T3)) = Z GAB(JwL(wl)wTB(w2)wé(w3)|O>
A,B,C

2 1 1 1
Vige(T1, T2, 23) = AQdQQQ(wl’mQ’w?’) 3 Oés(|331 — X " |xo — a3 " x5 — 1131|)

1
2

Agqq(Z1, @2, T3) = V(@1 — x2)? 4 (22 — 3) + (23 — 1)?

For x; = x3 the baryon potential reduces to the meson one:

quq(w17m27w2) — AQ’wl _ .’132‘ - 5 — qu(wl,mg)

Paul Hoyer Complutense 2021



The qqq potential

A (q state, after the emission of a transverse gluon:

q(m1)g(2g)q(x2)) = > ()

A,B,b

Paul Hoyer Complutense 2021

A} (2g)Th gbs(x2) |0)

q
q
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The qqq potential

q
A (q state, after the emission of a transverse gluon: ;T%tg; E. _
q

q(@1)g(xg)q(x2)) = Y dalmr) A (24)Thp¢s(2) |0)
A,B,b

Vq(g(l)cz(whwgv T2) = \/T—F dggq(T1,Tg, T2) (universal A)

Paul Hoyer Complutense 2021



24

The qqq potential

q
A (q state, after the emission of a transverse gluon: ;T%tg; E. _
q

q(@1)g(xg)q(x2)) = Y dalmr) A (24)Thp¢s(2) |0)
A,B,b

Vq(g(l)cz(whwgv T2) = \/T—F dggq(T1,Tg, T2) (universal A)

1 1 1 1
) . _ 1 . [ — N( )}
194 (T1, T, T2) = 5 @ N |z — x| 1 — x| i T2 — g
o 0
When g and g coincide: Vq(go(; (331 = Ly, 332) — A2|331 — 332’ — Vq(ci)

(1) _ _ @)
Vi@ =g, x2) =V
Paul Hoyer Complutense 2021



The gg potential

A “glueball” component: ‘9(5131)9(332» - Z Aé(wl) Aﬁ;(wz) ’O>

N
has the potential Vg = o A?|zy — 9| — N
I

¥

|$1 — L2

Paul Hoyer Complutense 2021
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The gg potential

A “glueball” component: ’9(331)9(332» - Z AZ(%) Ai(wz) |O>

N
has the potential Vg = o A?|zy — 9| — N
I

g

|€U1 — L2

This agrees with the ggg potential where the quarks coincide:
Vog(@, 2g) = Vygq(x, 24, )

It 1s straightforward to work out the instantaneous potential for any Fock state.

Paul Hoyer Complutense 2021



O (o)) qq bound states

An O (ag) meson state with P = 0 and wave function ®:

|M> = Z /diBleBQ &é(t — O, 331)5AB(I)QB(331 — ZBQ)wﬁB(t — O, 2132) ‘O>
A,B;a,p

Paul Hoyer Complutense 2021
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O (o)) qq bound states

An O (ozg) meson state with P = 0 and wave function ®:

|M> = Z /d.’EldCBQ &ﬁ(t — O, 2131)5AB(I)@5(2B1 — wg)wﬁB(t — O, 2132) ‘O>
A,B;a,p

The (rest frame) bound state condition H |M) = M |M) gives, at O (cvg)

iy - 3 + my?|®(x) + D(x) [iv - % —my’] = [M = V(|z|)]®(x)

wherex=xi—x;and V(lx ) =VixI=A2lx1.

Paul Hoyer Complutense 2021
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O (o)) qq bound states

An O (ozg) meson state with P = 0 and wave function ®:

’M> = Z /d.’I;ldCBQ &ﬁ(t — O, $1)5AB(I)QB(ZU1 — mg)wﬁB(t — O, 2132) ‘O>
A,B;a,3

The (rest frame) bound state condition H (M) = M |M) gives, at O (ag)
o <
[z’fyofy -V + mfyo] O(x) + ¢(x) [z’fyofy -V — mfyo] = [M — V(\az\)]@(az)
wherex=xi—x;and V(lx ) =VixI=A2lx1.

In the non-relativistic limit (m > A) this reduces to the Schrédinger equation.

If we add the instantaneous gluon exchange potential:

—> The quarkonium phenomenology with the Cornell potential.

Paul Hoyer Complutense 2021
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Separation of radial and angular variables

iV Ay, ®(x)} + m 70, P(x)] = [M — V(x)|®(x)

Expanding the 4 x 4 wave function B | | .
in a basis of 16 Dirac structures [';(x) O(x) = Z Li(x)F; (T)Y}A ()
7
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Separation of radial and angular variables
iV {17, @)} +m [, e(x)] = [M — V(z)|d(z)

Expanding the 4 x 4 wave function F .
) X
in a basis of 16 Dirac structures I’i(x) Z jr (@)

We may use rotational, parity and charge con]ugatlon invariance to determine
which I'/(x) may occur for a state of given jPC:

0~ trajectory [s =0, {=j] —np =1nc = (=1)7 v, 95, Ba-x, ya-xx L

0~ trajectory [s=1, £ =j]: np=nc=—(-1)Y YPywa -z, Vsa-xxL, a-L, y°a-L

0" trajectory [s=1,f=35+1]: np=nc=+(-1) 1, -z, Ya -z, a-zx L, Ya-zx L, Vy5a-L
0"~ trajectory [exotic] : np=-nc= (-1 4% s a-L
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Separation of radial and angular variables
iV {7y, @)} +m [, (x)] = [M — V(x)|P(z)

Expanding the 4 x 4 wave function F .
) X
in a basis of 16 Dirac structures Fi(x) Z jr (@)

We may use rotational, parity and charge con]ugatlon invariance to determine
which I'/(x) may occur for a state of given jPC:

0~ trajectory [s =0, {=j] —np =1nc = (=1)7 v, 95, Ba-x, ya-xx L

0~ trajectory [s=1, £ =j]: np=nc=—(-1)Y YPywa -z, Vsa-xxL, a-L, y°a-L

0" trajectory [s=1,f=35+1]: np=nc=+(-1) 1, -z, Ya -z, a-zx L, Ya-zx L, Vy5a-L
0"~ trajectory [exotic] : np=-nc= (-1 4% s a-L

—> There are no solutions for quantum numbers that would be exotic
in the quark model (despite the relativistic dynamics)

The BSE gives the radial equations for the Fi(r)
(There are two coupled radial equations for the O++ trajectory)



Example: O trajectory wf's

b (2) = [ (ia - V +my®) + 1] Fi(r)Ya (@)

, , 2 %
Radial equation: F|" + (; + V)Fl’ - H(M — V)2 —m? —

Paul Hoyer Complutense 2021

ne=(-1y+
ne=(1y

jG+1)
2

.-
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Example: O trajectory wf's

2 . — 0 X np = (_1)j+1
O, ()= [M_V(@a.v+m )+1}75 Py (r)Yin (&) ne= -1y
- S 2 v’ r |1 2 o JU+1) _
Radial equation: F|" + (; + 7 V)F1 + [Z(M — V)" —m* — ;- }Fl =0

Local normalizability at » = 0 and at V(r) = M (!) determines the discrete M

C f.: Dirac eq.: Has continuous spectrum

Paul Hoyer Complutense 2021



28

Example: O trajectory wf's

2 . — 0 X np = (_1)i+1
O, ()= [M_V(za-V—l—m*y )+1b5 Py (r)Yin (&) ne= -1y
- S 2 v’ r |1 2 o JU+1) _
Radial equation: F|" + (; + 7 V)F1 + [Z(M — V)" —m* — ;- }Fl =0

Local normalizability at » = 0 and at V(r) = M (!) determines the discrete M

C f.: Dirac eq.: Has continuous spectrum

m=20
Mass spectrum: 7
4 L .
Linear Regge J e e e e e e
trajectories 3+ ® © o e o o o o o o
with daughters
2 - o o o o o o [ o [ o
Spectrum similar to *
dual models 10 ® o o o o o o o o o
; Mz/V°
® ® @ ® e o ® e —© @ ‘ : ‘
) 10 15 20

Paul Hoyer Complutense 2021



Bound states in motion

An O (o)) gg bound state with CM momentum P may be expressed as

M, P) = /dazl dro Y(t = 0,21) e F@F22)/2P) (11 — z0) (¢t = 0, z5) |0)
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Bound states in motion

An O (o)) gg bound state with CM momentum P may be expressed as

M, P) = /dazl dro Y(t = 0,21) e F@F22)/2P) (11 — z0) (¢t = 0, z5) |0)

The bound state equation 1is:

AVERE @(P)(w)} — P |a, @(P)(w)] +m[y°, @(P)(w)] = |E - V(a:)]CI)(P)(w)



29

Bound states in motion

An O (o)) gg bound state with CM momentum P may be expressed as

M, P) = /dazl dro Y(t = 0,21) e F@F22)/2P) (11 — z0) (¢t = 0, z5) |0)

The bound state equation 1is:

AVERE <I>(P)(a:)} — P |a, @(P)(w)] +m[y°, <I><P)(a:)] = |E - V(a:)]CI)(P)(w)

There is an analytic solution in D = 1+1 dimensions: E(P) = /M2 + P?
In D = 3+1 dimensions the wave function at x; = 0 is known analytically.
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Bound states in motion

An O (o)) gg bound state with CM momentum P may be expressed as

M, P) = /dazl dro Y(t = 0,21) e F@F22)/2P) (11 — z0) (¢t = 0, z5) |0)

The bound state equation 1is:

AVERE CID(P)(:B)} — P |a, @(P)(w)] +m[y°, <I><P)(a:)] = |E - V(a:)]CI)(P)(w)

There is an analytic solution in D = 1+1 dimensions: E(P) = /M2 + P?
In D = 3+1 dimensions the wave function at x; = 0 is known analytically.

D=1+1: The P-dependence reduces to Lorentz contraction only at weak coupling.

D=3+1: No contribution from transverse gluons at O(a.°)
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QED bound states have a long history: Valuable experiences
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Summary

QED bound states have a long history: Valuable experiences

The “nonperturbative” nature of bound states 1s due to classical fields
Temporal gauge (A% = 0) 1s suitable for bound states

Gauss’ gauge constraint determines the classical, instantaneous E;, field

Perturbative expansion around initial, valence Fock states (in any frame)

Homogeneous solution of gauge constraint gives confinement in QCD

Mutually consistent instantaneous potentials for Iqqg), Iqqq), Iqqg), Igg)

Bound state equation for Iqq) states of any J, J;, #p , ¢, momentum P

Brave new QCD world! PH 2101.06721, 2109.06257




