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In view of color confinement and strong binding, hadrons have unexpected similarities with
atoms. This motivates to try QED methods for atoms also on QCD hadrons. Here I
summarise a Hamiltonian method for QED which is applicable in any frame and adheres
to the principles of quantum field theory. Its application to hadrons appears promising. A
detailed description is found in [1] and a shorter summary in [2].

The similarities of hadrons and atoms are well-known:

• Heavy (cc̄ and bb̄) quarkonia are well described using the Schrödinger equation with
a phenomenological, linear potential [3, 4]. This “Cornell” potential turned out to
agree with the potential energy of static quarks calculated using lattice QCD [5]. It is
remarkable that the novel effects of confinement can be thus simply described.

• Hadron quantum numbers are determined by their valence quark constituents (qq̄ and
qqq). Yet light (u, d, s) quark states are strongly bound, with excitations energies
comparable to their masses. Hadron spectra show no sign of the expected abundance,
due to the strong interaction, of quark pairs and gluon constituents.

• The valence Fock states appear to consist of fundamental (“current”) quarks, rather
than “constituent” quarks with a cloud of gluons and ∼ 300 MeV effective masses.
Decays such as π+ → µ+νµ are unsuppressed (fπ = 93 MeV ∼ ΛQCD), and occur only
from the valence ud̄ Fock state without gluons1.

The prevailing view is that perturbative QCD (PQCD) methods apply only to hard (short-
distance) scattering processes, not to the soft interactions that form bound states. On the
other hand, atomic properties are calculated with high precision using PQED. If hadrons
were essentially non-perturbative their similarity to atoms would be “accidental”.

Part of this dilemma originates from the definition of “non-perturbative”. Functions with
an essential singularity such as exp(−α/mr) cannot be expanded in powers of α around
r = 0 and are in this sense truly non-perturbative. On the other hand, functions like
exp(−αmr) are non-polynomial in α yet do have a perturbative expansion at r = 0. The
solutions of the Schrödinger equation belong to the second category. Atoms may be (and are
[6]) considered “non-perturbative”: Feynman diagrams lack atomic poles, and atomic wave
functions describe exponentially suppressed tunneling processes. Atomic binding energies
can nevertheless be expanded in powers of α and logα. Hadrons may be “non-perturbative”
similarly as atoms, not excluding a perturbative expansion.

Bound states are rarely discussed in modern textbooks on Quantum Field Theory. The
topic is considered to involve some “art” [6], in stark contrast to the systematic expansion
of scattering amplitudes in terms of Feynman diagrams.

1 This observation is due to Stan Brodsky (private communication).
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In [1] I propose a formally exact bound state method based on a perturbative expansion
around a “non-perturbative” approximation. In QCD the scale parameter Λ stems from a
boundary condition on the gauge constraint. This results in a confining potential, agreeing
with the Cornell potential for quarkonia. The applications to bound states with light quarks
appears promising. In the following I summarize the key aspects of the approach.

The initial state of the perturbative expansion

Scattering amplitudes are expanded around free, O (α0) in and out states. This is an obvious
choice, given that the scattering matrix assumes the absence of interactions between the
incoming as well as outgoing particles at asymptotic times (t→ ±∞).

Feynman diagrams lack bound state poles because the free asymptotic states have no overlap
with bound states. A perturbative expansion for bound states must start from an initial
(approximate) bound state which has a finite overlap with the exact state. The initial
wave function is then necessarily non-polynomial in α. Some of its power corrections may
be absorbed into the initial wave function, and vice versa. Choosing different initial states
amounts to a reordering of the perturbative expansion, leaving the all orders sum unaffected.
Physical judgment is required in the choice of an optimal expansion.

Instantaneous (∆t = 0) interactions in gauge theories

Positronium (at rest) is well approximated by its |e+e−〉 Fock state. Hadron spectroscopy
suggests to similarly develop a perturbative expansion around the valence (qq̄ or qqq) Fock
state, which can be bound only by an instantaneous interaction. However, relativistic the-
ories with a local action generally do not have instantaneous potentials. Interactions are
transmitted by constituents whose speed is limited by the velocity of light2.

Gauge theories are an exception: Their action is local but the gauge may be fixed non-
locally. The absence of ∂0A

0 and ∇ ·A terms in the QED and QCD actions implies that
the A0 and AL fields do not propagate. Their values are determined by the choice of gauge.
Two common gauges which conserve space translation and rotation symmetry are

∇ ·AL(t,x) = 0 (Coulomb gauge)

A0(t,x) = 0 (Temporal gauge) (1)

Canonical quantization

Field theories may be quantized by defining a conjugate field πα for each field ϕα in the
action S, and imposing equal-time commutation relations between them,

πα(t,x) ≡ δS(ϕ, ∂ϕ)

δ[∂0ϕα(t,x)]
[ϕα(t,x), πβ(t,y)]± = iδαβδ

3(x− y) (2)

2 I am considering states defined at an instant of ordinary time t. The constituents of light-front states

(defined at equal x+ = t + z) can be causally connected even when spatially separated.
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The conjugate field of A0 vanishes since the action is independent of ∂0A
0. Hence quantiza-

tion in Coulomb gauge requires constraints [7, 8]. Temporal gauge avoids this complication
(A0 = ∂0A

0 = 0), while quantization of the space components of the gauge field is straight-
forward [9, 10]. The electric field E = −∂0A is conjugate to −A.

Time-independent gauge transformations

The temporal gauge condition A0 = 0 allows time-independent gauge transformations, which
are generated by Gauss’ operator G(x) = δS/δA0. To ensure that physical states are
invariant under such transformations one imposes the constraint

G(x) |phys〉 ≡ δSQED
δA0(x)

|phys〉 =
[
∇ ·EL(x)− e ψ†ψ(x)

]
|phys〉 = 0 (3)

Note that G(x) = 0 is not an operator equation of motion in temporal gauge. The constraint
(3) determines ∇ ·EL(x) in terms of the charge distribution in the state. For the vacuum
EL(x) |0〉 = 0, whereas for an e−e+ Fock state |e−(t,x1)e+(t,x2)〉 ≡ ψ̄α(t,x1)ψβ(t,x2) |0〉,

EL(t,x)
∣∣e−(t,x1)e+(t,x2)

〉
= − e

4π
∇x

( 1

|x− x1|
− 1

|x− x2|

) ∣∣e−(t,x1)e+(t,x2)
〉

(4)

is the classical, instantaneous dipole electric field generated by the electron and positron.

Temporal gauge is suitable for bound states due to the classical nature of its EL field. In
Coulomb gauge Gauss’ law defines the field operator A0 in terms of ψ†ψ. Then A0 creates
fermion pairs in the vacuum, which appears inconsistent with the dominance of valence Fock
states in QCD. The physics of Coulomb and temporal gauge must be the same, but is more
transparent in temporal gauge due to the absence of quantization constraints.

The Bound Fock expansion

Bound states may be calculated perturbatively, starting from any state which has an overlap
with the exact state. Valence Fock states are bound by the instantaneous electric field EL,
with no mixing of Fock states. The QED Hamiltonian in temporal gauge is

HQED(t) =

∫
dx
[

1
2
E2 + 1

4
F ijF ij + ψ†(−iα ·∇− eα ·A+mγ0)ψ

]
(5)

where α ≡ γ0γ and E2 = E2
L+E2

T has both the instantaneous longitudinal and propagating
transverse electric field. From (3) the EL contribution is

HQED
V ≡ 1

2

∫
dxE2

L(x) = 1
2

∫
dxdy

e2

4π|x− y|
[
ψ†ψ(x)

][
ψ†ψ(y)

]
(6)

This gives the Coulomb potential −α/|x1 − x2| for the |e−(t,x1)e+(t,x2)〉 Fock state.

A Positronium valence state is (in the rest frame) defined by a c-number wave function Φαβ,∣∣e−e+, t
〉
≡
∫
dx1dx2 ψ̄α(t,x1)Φαβ(x1 − x2)ψβ(t,x2) |0〉 (7)
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When the O (e) interaction term eα ·A in HQED (5) is neglected, i.e., at lowest order in
the perturbative expansion, the eigenstate condition H |e−e+, t〉 = M |e−e+, t〉 gives a bound
state equation for Φαβ. In the non-relativistic limit this reduces to the Schrödinger equation,
where the binding energy Eb = −1

4
mα2 is defined by M = 2m+ Eb.

At the next order of the perturbative expansion one takes into account one eα·A interaction
in H. This creates a Fock state with a transverse photon |e−e+γ〉, as well as a state with
a single (virtual) photon |γ〉. Neglecting Fock states with more photons and e+e− pairs
gives a coupled equation which brings a correction of O (mα4) to Eb. Higher Fock states
similarly appear at higher orders of the perturbative expansion. The potential energy HV

(6) contributes to each Fock state, suggesting the name “Bound Fock expansion”.

Temporal gauge in QCD

The QED bound state approach may be applied to QCD. The temporal gauge constraint
on physical states corresponding to (3) is now,

∇ · Ea
L(x) |phys〉 = g

[
− fabcAibEi

c + ψ†T aψ(x)
]
|phys〉 (8)

In solving the QED constraint (3) for the classical electric fieldEL (4) we implicitly assumed,
on physical grounds, that EL(x → ∞) = 0. In QCD this assumption is not compelling.
Color singlet states cannot generate a color octet gluon field Ea

L(x) at any position x. While
each color component of the state (say, a red-antired qq̄ state of a meson) can be bound by
an Ea

L field, we must have Ea
L(x) = 0 after the sum over quark colors. An external observer

cannot detect color singlet hadrons through their classical gluon field. A non-vanishing
boundary condition for the Ea

L field introduces a scale Λ.

Space translation and rotation symmetry restricts the homogeneous solutions of the gauge
constraint (8). The only possibility is

Ea
L(x) |phys〉 = −∇x

∫
dy
[
κx · y +

g

4π|x− y|

]
Ea(y) |phys〉

Ea(y) ≡ −fabcAibEi
c(y) + ψ†T aψ(y) (9)

The κx · y term is a homogeneous solution of (8) when κ 6= κ(x), since it vanishes in
∇x ·Ea

L(x). The contribution of Ea
L to the QCD Hamiltonian is

HV ≡ 1
2

∫
dx
(
Ea
L

)2
=

∫
dydz

{
y · z

[
1
2
κ2
∫
dx+ gκ

]
+ 1

2

αs
|y − z|

}
Ea(y)Ea(z) (10)

The O (κ2) term is proportional to the volume of space,
∫
dx. Hence the homogeneous

solution contributes a constant energy density throughout space. This infinite energy may
be subtracted only provided it is the same for all Fock states of all bound states. The
normalization κ of any Fock state can thus be determined in terms of a universal scale Λ,
which is related to the magnitude of the constant energy density.
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The meson potential

As an example, we may consider the instantaneous potential of a color singlet qq̄ Fock state.
With an implicit sum over the quark colors A,

HV ψ̄
α
A(t,x1)ψβA(t,x2) |0〉 = V (|x1 − x2|)ψ̄αA(t,x1)ψβA(t,x2) |0〉

V (|x1 − x2|) = Λ2|x1 − x2| − CF
αs

|x1 − x2|
(11)

The homogeneous contribution in (9) gives a linear confining potential for mesons. The
potential has the same form as the Cornell potential for quarkonia [3, 4], and applies also
to relativistic, light quark states. The spatially constant energy density is

EΛ =
Λ4

2g2CF
(12)

Analogous confining potentials are found for color singlet qqq, qq̄g and gg Fock states [1].

Remarks

Bound states must, at each order of the perturbative expansion, have exact symmetries such
as Poincaré covariance. There are few studies of how equal-time bound states transform
under boosts. It is common to assume that the states Lorentz contract as in classical
relativity, and to depict them as ellipses. The transformation is actually more subtle, even
for Positronia of lowest order [11].

The confining potential in (11) is of O (α0
s). Neglecting the O (αs) term in the potential gives

QCD states bound only by confinment. For quark masses m � Λ the mesons are strongly
bound, yet have only the valence |qq̄〉 Fock state shown in (11). They lie on nearly linear
Regge trajectories and overlap states with meson pairs, much as depicted by dual diagrams.
More details are given in [1]. Many aspects remain to be explored, including unitarity and
chiral symmetry breaking.
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