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ABSTRACT: The effect size is a standardized, scale-free
measure of the relative size of the effect of an interven-
tion, and it has important and practical implications for
clinicians in the speech and hearing field who are
interested in estimating the effects of interventions. This
article develops a conceptual interpretation of the effect
size, makes explicit assumptions for its proper use in
estimating the size of the effect of behavioral-based
stuttering interventions, and explains how to compute the
most commonly used effect sizes and their confidence
intervals. The focus is on effect sizes for experimental
studies on behavioral-based stuttering interventions that
produce outcomes measured on a continuous scale. Also
explained is how to synthesize these effect sizes across
multiple studies to arrive at an average effect size and its
confidence interval through a process called meta-
analysis. Key assumptions that underlie the use of meta-
analysis are explored, as are techniques for assessing
whether the average effect size is representative of the
multiple effect sizes from which it was derived. The
article concludes with a summary of main points and
enumerates additional resources for speech and hearing
clinicians and practitioners to access and learn more
about practical applications of effect sizes and their
synthesis through meta-analysis.

KEY WORDS: systematic review, meta-analysis, effect
size

I

Calculating and Synthesizing
Effect Sizes

Herbert M. Turner, III
University of Pennsylvania, Philadelphia

Robert M. Bernard
Concordia University, Montreal, Quebec, Canada

t is assumed that at this stage in the system-
atic review on behavioral-based stuttering
interventions, the authors have formulated the

problem; implemented a thorough and comprehensive
search; selected studies according to a set of inclusion

criteria that were developed a priori; and coded these
studies for subject characteristics, outcome characteristics,
and even the characteristics of the studies themselves.
Table 1 shows the results from coding outcomes for the
James (1976) study that was included in the review. This
study randomly assigned people who stutter (PWS) to a
time-out (TO) intervention group and to a control group
in which PWS did not receive the TO or any other
intervention. This study design is called a randomized
controlled trial (RCT). When implemented with a suffi-
cient number of participants and with fidelity, an RCT
produces unbiased estimates of an intervention’s effect
(Campbell & Stanley, 1963; Boruch, 1997; Mosteller &
Boruch, 2002; Shadish, Cook, & Campbell, 2002). To
assess the impact of TO, two outcomes were measured:
percentage of stuttered words (%STW) and syllables per
minutes (SPM). Table 1 shows the mean, standard
deviation, and sample size for each group and outcome
measure.

The data in Table 1 convey an intriguing picture of the
relationship between the TO intervention and the outcomes.
For the %STW outcome, the TO group scored, on average,
more than two percentage points higher than the control
group. Conversely, for the SPM outcome, the TO group
spoke 22 more SPM, on average, than the control group.
On the basis of these results, what can a clinician and
practitioner conclude about the effect of TO on speech
patterns for PWS?

To answer this question, the next logical step in the
review process is to compute an effect size for each
outcome in the James (1976) study and other studies that
were included in the review. An effect size, as the name
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implies, enables the clinician and practitioner to estimate
the effect of the behavioral-based stuttering intervention
on the speech outcome. Eventually, clinicians and practi-
tioners will want to estimate the average effect size for all
behavioral-based stuttering interventions across all studies
included in the review. The estimation process is called
meta-analysis (Glass, McGaw, & Smith, 1981). In this
article, the effect size is first explored from a conceptual
and applied perspective rather than from a statistically
theoretical one. However, basic formulas from introduc-
tory statistics and some technical language are necessary
to explain the underlying logic of effect size estimation
and to maintain the statistical integrity of this estimation
process.

To this end, we begin with a conceptual interpretation of
the effect size and basic but important assumptions that
underlie this interpretation. Making plain these assumptions
is important because violations of them can lead to
misinterpretation of the effect size (Kline, 2004; Shavelson,
1996). Second, we explain how to compute the most
commonly used effect sizes for study outcomes measured
on a continuous scale. There are, of course, commonly used
effect sizes for study outcomes measured on nominal
scales. However, we restrict our explanation of effect sizes
to study outcomes measured on a continuous scale in order
to align the explanation with the type of outcomes reported
in the studies included in the systematic review of behav-
iorally based stuttering interventions. Readers with an
interest in effect sizes for outcomes measured on categori-
cal scales are referred to Kline (2004) and Lipsey and
Wilson (2001) as excellent sources. Third, we explain the
process of meta-analysis and, specifically, how to aggregate
effect sizes across studies to arrive at an average effect
size. Meta-analysis is a critical stage of the systematic
review process because the average effect size that is
produced by a meta-analysis is interpreted as the average
size of the intervention effect. We also explain how to
compute the margin of error (or standard error) for this
average intervention effect. We conclude by examining
techniques for assessing whether a single average effect
size is representative of the multiple effect sizes from
which it was derived. We also summarize key ideas
presented in this article and refer the reader to additional
resources for understanding, estimating, and synthesizing
effect sizes.

A CONCEPTUAL OVERVIEW
OF AN EFFECT SIZE

The use of the effect size has grown significantly during
the past three decades (Hunt, 1997; Hunter & Schmidt,
2004). Even before this growth, social scientists who were
interested in estimating the effect of interventions viewed
the effect size as a simple-to-calculate and useful represen-
tation of an intervention’s effect (Cooper & Hedges, 1994;
Light & Pillemer, 1984; Wolf, 1986). Today, the use of the
effect size is generally accepted among social scientists to
the point that its use is endorsed by the American Psycho-
logical Association (APA) (Kline, 2004).

What is an effect size? Cohen (1988) defined an effect
size as the degree to which the phenomenon is present in
the population. Kline (2004) defined the effect size as the
magnitude of the impact of the intervention on the out-
come. Said differently, an effect size is an index for
describing the magnitude of an intervention’s effect. The
effect size is recognized by researchers in a variety of
disciplines as a simple and straightforward way to quantify
the effects of an intervention relative to some benchmark
comparison (Coe, 2002).

Figure 1 illustrates how the proper use and interpretation
of the effect size is predicated on two basic but important
assumptions. One assumption is that the frequency by
which the outcome occurs is measured on a continuous
scale and is normally distributed. An effect size estimate
based on this assumption is technically called a parametric
effect size because its estimation is based on the assump-
tion of an outcome measure that is normally distributed
(Glass et al., 1981; Shavelson, 1996).

Another assumption, also illustrated in Figure 1, is that
the variance around the mean for the intervention group
(U

I
) and for the control group (U

C
) is the same for each

group. Therefore, when computing an effect size, homoge-
neity of group variances is assumed (Keppel & Wickens,
2004; Shavelson, 1996). Hereafter, when computing effect
sizes, it is assumed that these two assumptions have been
met. Approaches for addressing violations of these assump-
tions will be discussed later in the section on potential
complications in computing effect sizes.

Conceptually, then, an effect size is an index that is used
to describe the magnitude of an intervention’s relative

X
I

n
I

X
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n
C

Table 1. Effect size data for a study included in the stuttering interventions review.

Time-out group Control group

Study Comparison Outcome

James, 1976 Time-out vs. Control %stuttered words (%STW) 7.40 6.66 9 11.95 6.58 9

James, 1976 Time-out vs. Control Syllables per minute (SPM) 117.00 50.20 9 94.80 15.50 9

Note. For the time-out group, X
I
 is the mean,        is the standard deviation, and n

I
  is the sample size. For the control group, X

C
 is the

mean,       is the standard deviation, and n
C
 is the sample size.
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effect. Coe (2002) asserted, and we concur, that an effect
size is readily understood and applicable to many measured
outcomes in the behavioral sciences. This applicability
extends with like force to the scientific investigations of
speech, hearing, and communicative disorders. Equally
important is that the effect size places the emphasis where
it belongs—on the size of the intervention’s effect rather
than on its statistical significance. The problem with
relying on statistical significance alone when interpreting
the effect size is that statistical significance intermingles
the effect size and sample size. How to disentangle effect
size and sample size using confidence intervals will be
discussed later on in the section on computing the margin
of error for an effect size (Chalmers, Hedges, & Cooper,
2002; Kline, 2004; Light & Pillemer, 1984). How important
is the use of effect sizes in the psychological and behav-
ioral sciences? So much so that the American Statistical
Association and the APA have recommended it as an
important metric for conveying the quantitative relationship
between an intervention and target outcomes (APA, 2001;
American Statistical Association, 1992; Kline, 2004).

THE LOGIC OF EFFECT SIZE ESTIMATION

Types of Effect Sizes

There are many different types of effect sizes to choose
from and books that describe them (Lipsey & Wilson,
2001; Rosenthal, 1984; Wolf, 1986; Hunter & Schmidt,
1982). There are also many different ways to calculate
them (Hedges, Shymansky, & Woodworth, 1989; Light &
Pillemer, 1984; Rosenthal, 1984). One way to organize the
different types is to think of effect sizes as consisting of
two broad families of indices. One family consists of the
standardized mean difference, or d index, family. The d
index, or standardized mean difference, is used to estimate
the relative effect of an intervention for measure outcomes
on a continuous scale. The other family consists of
measures of association, or r family (Kline, 2004;
Rosenthal, 1984). The r  family is used to estimate the
correlation between the intervention and the outcome. In
practice, for studies that measure outcomes on a continuous

scale, researchers often use the standardized mean differ-
ence and correlation coefficient because their standard error
formulas and other useful statistical properties have been
assessed and are well established in statistical theory
(Kline, 2004; Lipsey & Wilson, 2001).

The focus of this section, and this article, is on comput-
ing the standardized mean difference within the d index
family. This is because all of the studies included in the
systematic review on behavioral-based stuttering interven-
tions use an RCT design, lend themselves to a causal
interpretation, and measure outcomes on a continuous scale
(Boruch, 1997; Campbell & Stanley, 1963; Mosteller &
Boruch, 2002; Shadish et al., 2002). Readers who are
interested in computing effects in the r  family are referred
to Hunter and Schmidt (2004), Kline (2004), and Lipsey
and Wilson (2001).

Estimating the Standardized Mean Difference

Recall that an effect size is defined as the degree to which
the phenomenon is present in the population (Cohen, 1988).
Arithmetically, the effect size (δ

i
) is the ratio of the

difference of the means of intervention and control groups
(µ

I
 – µ

C
) on an outcome divided by the standard deviation

(σ∗). Thus, the formula for the standardized mean differ-
ence in the population is as follows:

As Formula 1 shows, the effect size (δ) is expressed in
standard deviation units because the divisor is the standard
deviation (Cooper, 1998; Kline, 2004). However, it is only
in rare circumstances that researchers have sufficient
resources to study a population. Rather, researchers usually
have sufficient resources to conduct an intervention study
on a sample drawn from a population. Thus, in practice,
the standardized mean difference in the population, δ, is
estimated from sample data with the d index. The numera-

tor of the d index (X
I
 – X

C
) estimates the mean difference

between the intervention and control groups in the popula-
tion. The denominator (s*) estimates the standard deviation
in the population. Using sample data, the following formula
is used to compute the d index (and estimator of δ in the
population):

Hereafter, the standardized mean difference is referred to
more generally as the d index.

Formula 2 plainly shows that the d index is the ratio of
the difference between the sample mean for the intervention
group and the sample mean for the control (or comparison)
group, divided by the sample standard deviation. The
standard deviation converts the mean difference in the

numerator (X
I
 – X

C
) into standard deviation units. Further-

more, the d index is an estimate of not one but two
population parameters: the mean difference and the standard

Figure 1. Large effect size (ES) for intervention and control
groups.
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deviation (Hedges & Olkin, 1985; Shavelson, 1996; Wolf,
1986). Effect sizes most commonly used in the behavioral
sciences are Glass’s ∆, Cohen’s d, and Hedges’s g. The
main difference between Glass’s ∆ and Cohen’s d is the
standard deviation used in the denominator. Glass’s ∆ uses
the standard deviation of the control group to standardize
the mean difference between the intervention and control
groups, as shown in Formula 3:

Cohen’s d uses the weighted average of the standard
deviations of both groups to standardize the mean differ-
ence between the intervention and control groups, as shown
in Formula 4.

The main difference between Cohen’s d and Hedges’s g
is that the latter is multiplied by a correction factor for
small samples.

Formula 5 shows that Hedges’s g is actually Cohen’s d—
which uses the pooled standard deviations of both groups
in the denominator—with a correction factor for use with
small sample sizes. For example, to compute Cohen’s d,
using the data from the James (1976) study (see Table 1):

This d index in the form of Glass’s ∆ says that the TO
intervention caused a 1.43 SD increase in SPM. In other
words, PWS in the intervention group spoke more SPM
than did those in the control group. Notice that the result is
reported in standard deviation units because the mean
difference between the two groups was divided by the
control group standard deviation. However, the standard
deviation for the control group is three times smaller than
that for the TO group. When the standard deviations for
both groups are combined through Cohen’s d, the effect
size becomes:

This d index in the form of Cohen’s d says that the TO
intervention caused a 0.60 SD increase in SPM. Notice that
Glass’s ∆ is more than twice the size of Cohen’s d because
of the smaller standard deviation used to standardized
Glass’s ∆. Notice also that causal language is used to
describe the effect of the TO intervention. Attaching a
causal interpretation to the effect size is not because of
anything inherent in the effect size itself. Rather, the causal
interpretation of the effect is possible because study
participants were randomly assigned to the TO and control
groups (Boruch, 1997; Campbell & Stanley, 1963; Fried-
man, Furberg, & Demets, 1998; Mosteller & Boruch, 2002).

In practice, Cohen’s d is used more often than Glass’s ∆.
However, when the combined sample sizes for the interven-
tion and control groups are less than or equal to 20 (n ≤
20), Cohen’s d is an upwardly biased estimator of the
effect size in the population (δ) (Hedges & Olkin, 1985;
Hedges et al., 1989). In other words, Cohen’s d tends to
overestimate an intervention’s effect in small samples. To
correct for the upward bias in Cohen’s d, use Hedges’s g
(by applying Formula 5) as follows:

The effect size estimated using Hedges’s g (0.57) is
smaller than the effect size that was estimated using
Cohen’s d because Hedges’s g corrects for the upward bias
that arises in Cohen’s d when estimated in small samples.
In practice, Hedges’s g can be used in both large and small
samples to avoid having to switch between Hedges’s g and
Cohen’s d when a systematic review includes some studies
that have small samples and others that have large samples
(Chalmers & Altman, 1995). It has been demonstrated that
Hedges’s g converges to Cohen’s d in large samples where
n > 20 (Hedges & Olkin, 1985; Hunter & Schmidt, 2004;
Kline, 2004; Lipsey & Wilson, 2001). Like Cohen’s d,
Hedges’s g has the following properties:

• It indexes the difference between the mean of the
intervention group and the mean of the control group.

• It can be positive or negative.

• It is interpreted as a z score in standard deviation
units. However, it should be noted that individual
effect sizes are not part of the z score distribution
(i.e., they will not sum to zero).

Recommendations for
Clinicians and Practitioners

An effect size, as the name implies, conveys an estimate of
the relative effect of an intervention. Use of the effect size
has grown significantly during the past three decades.

Clinicians and practitioners who are interested in what
works in speech and communication disorders should
consider the APA Task Force’s endorsement of the effect
size and incorporate its use into their clinical work and
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practice. When the variances between the groups compared
are substantially different (i.e., heterogeneous), Glass’s ∆
should be used because it uses the control group standard
deviation only to standardize the mean difference between
two groups. Standard tests of homogeneity of variance can
be used to determine this. When the variances of the
groups are similar (i.e., homogenous), then either Cohen’s d
or Hedges’s g should be used. It has been demonstrated
that in small samples, Hedges’s g is a better estimate of an
intervention’s effect in the population; it is as good an
estimate as Cohen’s d in large sample sizes. Therefore,
Hedges’s g is recommended for use in systematic reviews
that include studies with both large and small samples or
for use in clinical practice to compute effect sizes for
groups in which the combined sample size is less than or
equal to 20. Whichever effect size is used, the key point to
remember is that an effect size is an estimate of an
intervention’s relative effect in the population from which
the sample was drawn. For clinicians and practitioners who
are interested in such, the effect size is available for use in
a variety of practical settings.

COMPUTING MARGINS OF
ERROR FOR EFFECT SIZES

Beyond Statistical Significance Testing

When computing Hedges’s g for group comparisons such as
the TO versus control comparison reported in the James
(1976) study, the effect size may show a difference between
the groups on the outcome of interest. This difference,
however, could result from drawing the particular sample
(for the intervention and control groups) from a population.
In other words, the difference between the two groups that
was observed in the sample may not exist in the population.
How can one know whether a difference that was observed
in a sample exists also in the population? To reduce the
likelihood of reaching the wrong conclusion about an effect
size in a population based on a sample, researchers have
historically relied on “statistical significance” testing (Hunt,
1997; Keppel & Wickens, 2004; Kline, 2004). Statistical
significance testing is defined as the likelihood that the
observed difference between two groups cannot be attributed
to chance (Hunt, 1997; Shavelson, 1996).

By convention, researchers usually set α = 0.05 when
testing a hypothesis about an intervention effect because α
= 0.05 is the probability that the observed difference being
due to chance alone is equal to or less than 5%. When an
RCT shows that the probability of a group difference is
less than .05, the result is said to be statistically signifi-
cant. That is, the observed mean difference is not due to
chance alone.

Social science researchers such as Hunter and Schmidt
(2004) and Kline (2004) have thoroughly documented
limitations of “significance tests” to rule out chance results.
Other social science researchers like Thompson (1999) have
argued persuasively for a complete ban of the use of
significance tests. Although banning statistical significance

tests could be viewed as extreme, there is growing consen-
sus that a fundamental weakness of significance tests is
that strict observance of the p value confounds effect size
with sample size (Coe, 2000; Kline, 2004; Shavelson,
1996). For example, it is possible to obtain a statistically
significant result when the effect size is large in a small
sample or when the effect size is small in a large sample.
Furthermore, use of the statistical significance alone tells
the clinician and practitioner nothing about the magnitude
of the effect size, nor does it tell the interpreter about the
effect size’s precision as an estimator of the intervention’s
effect in the population (Coe, 2000; Kline, 2004; Rothstein,
Sutton, & Borenstein, 2005; Shadish et al., 2002).

To overcome the limitations of the statistical significance
test, the recommended approach is to report the d index
with an estimate of its likely margin of error (Cooper,
1998; Cooper & Hedges, 1994; Lipsey & Wilson, 2001). A
d index that is calculated from a large sample is likely to
be a more accurate estimate of the true intervention effect,
δ, in the population than is a d index that is calculated
from a small sample. To quantify this margin of error,
researchers calculate something called a confidence interval,
which, ironically, contains the same information as a
significance test and more (Hunter & Schmidt, 2004; Kline,
2004; Thompson, 1999). In fact, calculating a 95% confi-
dence interval for an observed d index is equivalent to
calculating a 5% significance level in which p ≤ 5 means
that the d index is statistically significant (Shavelson,
1996). Why this is so and how to compute the margin of
error (or standard error) and confidence interval for the d
index is explored in the next section. For now, it is
sufficient to say that computing the margin of error (or
standard error) for the d index is equivalent to repeatedly
drawing samples of the same size, computing the d index,
and recording the range of results.

Although computing an effect size, its margin of error
(or standard error), and its 95% confidence interval would
seem tedious to do for multiple studies, there are a number
of software packages, both free and commercial, that are
available to reduce this tediousness.

Recommendations for
Clinicians and Practitioners

The APA Task Force on Statistical Significance recom-
mends that effect sizes, as well as other estimates of
intervention effects, be reported with their confidence
intervals. Speech and hearing clinicians and practitioners
should adhere to this recommendation when assessing the
effects of an intervention because in doing so it recognizes
that the effect size is an estimate from sample data, the
estimate contains sampling error, and a confidence interval
distinguishes between an effect size and sample size
(Clarke, 2002). Although computation of confidence
intervals may appear tedious and complicated to compute
for clinicians and practitioners in the speech and hearing
field, there are a number of excellent computer software
packages to aid in the process. Standard statistical software
packages such as STATA (www.stata.com), SAS
(www.sas.com), and SPSS (www.spss.com) can be used to
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(

easily compute effect sizes and their confidence interval.
However, these software programs (STATA and SAS
especially) are geared toward persons with a computer
programming orientation. For clinicians and practitioners
with a different orientation, there are user-friendly software
packages such as CMA 2.0 (www.cma.com), RevMan 5.0
(www.cochrane.com), and Metawin (www.metawin.com)
that offer as many options as standard statistical software
packages and are easier to use (Borenstein, 2005;
Borenstein & Rothstein, 1999). See Appendix A for a list
of web sites that are rich resources for clinicians and
practitioners to learn more about computing effect sizes,
margins of error, and confidence intervals.

ESTIMATING THE EFFECT
OF STUTTERING INTERVENTIONS

Estimating Intervention
Effects Using Ryan (1995)

In this section, effect size concepts and formulas that were
presented earlier are applied to outcomes that were coded
in the stuttering review. One concern the reader may have
at this point is the tediousness of computing Hedges’s g
and its confidence interval for all of the comparisons in all
studies in the stuttering review. As mentioned earlier, there
are a number of free and commercial software packages
that can be used to implement these computations. These
packages are listed in Appendix B.

Table 2 depicts outcome data for the Ryan (1995) study,
which is one of the 12 RCTs included in the stuttering
review. The first three columns specify the study author,
group comparisons, and outcomes. The means (X), standard
deviations (s), and sample sizes (n) that are needed to
compute effect sizes are presented in columns 4 through 9.
The remaining columns contain the d index (g

H
) and its

standard error (SE
g
). Table 2 shows that the Ryan RCT

compared a group of study participants who received a
gradual increase in length and complexity of utterance
(GILCU) intervention to a group of study participants who
received a delayed auditory feedback (DAF) intervention.

The Ryan (1995) study differs from the James (1976)
study in that the former study was designed to test whether

GILCU was more effective than DAF (i.e., the DAF group
was a comparison rather than a control group) whereas the
latter study was designed to test whether the TO interven-
tion had an effect (i.e., the TO intervention group was
compared to a control group who did not receive any
intervention). Thus, for the Ryan study, the GILCU group
was designated as the intervention group and the DAF
group was designated as the control group because, in this
example, the interest is in how effective the GILCU
intervention was relative to the DAF intervention. There are
multiple lines of data for the same comparison in this study
because the same groups were compared on multiple
outcomes, which were as follows:

• SW/M – stuttering words per minute

• WS/M – words spoken per minute

Notice that Table 2 shows that the combined sample
sizes for the Ryan study are small (n ≤ 20). Therefore,
Hedges’s g was used to compute the effect sizes. Applying
Formula 5 to calculate Hedges’s g for the SW/M outcome
results in:

        = 0.30

This effect size says that the GILCU intervention
increased the number of spoken words per minute by 0.30
SD. The use of the causal language is approximate because
the Ryan study was, as stated earlier, an RCT (Boruch,
1997; Campbell & Stanley, 1963). What would have been
the result if Cohen’s d, rather than Hedges’s g, had been
used? As stated earlier, Cohen’s d is really Hedges’s g but
without the small sample correction. To compute Cohen’s d,
we have:

As expected, Cohen’s d is slightly larger than Hedges’s g
because the former is upwardly biased in small samples.

Table 2. Outcome data coded for a subset of studies from the stuttering review.

GILCU group DAF group Effect size estimate

Study Comparisons Outcomes X
I

n
I

X
C

n
C

g
H

SE
g

Ryan, 1995 DAF vs. GILCU SW/M 0.7 0.7 6 0.5 0.5 5 0.30 0.56

Ryan, 1995 DAF vs. GILCU WS/M 137.5 35.3 6 133.4 17.4 5 0.13 0.55

Note. DAF = delayed auditory feedback; GILCU = gradual increase in length and complexity; X
I
 = GILCU group mean; S

I
 = GILCU group

standard deviation; n
I
 = GILCU group sample size; X

C
 = DAF group mean; S

C
 = DAF group standard deviation; n

C
 = DAF group sample

size; SW/M = stuttering words per minute; WS/M = words spoken per minute.

S
I
2 S

C
2

(5 – 1)*(0.5)2 + (6– 1)*(0.7)2

5 + 6 – 2

0.7 – 0.5 3

4(5 + 6) – 9)g
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 =                                   • 1–

(5 – 1)*(0.5)2 + (6– 1)*(0.7)2

5 + 6 – 2
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d
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 =                                    = 0.32
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Calculating The Margin
of Error in Effect Sizes

As stated earlier, values of Cohen’s d and Hedges’s g are
estimates of an unknown effect size in the population (δ).
For instance, the Hedges’s g just computed will, theoreti-
cally, change with repeated samples of the same size drawn
from the population if the Ryan study could be replicated.
The standard error produces the range of values that would
result from this process of repeated sampling. For example,
to compute the standard for the Hedges’s g of 0.30, the
following formula (Formula 6) is used:

The next step is to construct the lower and upper limits
of approximate 95% confidence interval by setting α = .05
and z = 1.96 such that:

Lower limit = Hedges g
(U)

 = Hedges g
(U)

 – Z
(1 – .05)

SE
Hedges’s g

 = 0.32 – 1.96 • 0.56 = –0.78

Upper limit = Hedges g
(U)

 = Hedges g
(U)

 – Z
(1 – .05)

SE
Hedges’s g

 = 0.32 + 1.96 • 0.56 = 1.42

This result says that our sample estimate of the effect of
GILCU on study participants is 0.30 SD, but the effect of
GILCU on study participants in the population (from which
the sample was drawn) has a range (95% CI = –0.78,
1.42). This means that if repeated samples of the same size
could be drawn for the Ryan study, these samples would
contain observed values of Hedges’s g that range from a
low of –0.78 SD to a high of 1.42 SD. In practice, the
primary concern is whether the confidence interval includes
an effect size of 0.00 SD because even though a positive
(or negative) effect size was observed in the sample, in the
population, this effect size could be zero. In other words, if
the confidence interval includes zero, the observed
Hedges’s g of 0.30 is not statistically significant because
the observed value of 0.30 could be due to chance,
meaning that the effect size is really 0.00 SD. In other
words, the intervention has no effect.

One complication that arises quite frequently in practice
is how to compute an effect size when study results
reported are in formats other than means, standard devia-
tions, and sample sizes. For example, in some studies,
authors will present results from an analysis of variance
(ANOVA) or an analysis of covariance (ANCOVA) using F

ratios or sums of squares, or both. Furthermore, it is almost
inevitable that a study included in a review will have
missing values on the data needed to compute an effect
size (e.g., the means, standard deviations, or sample sizes).
The next section of this article addresses how to deal with
these complications.

Potential Complications
in Estimating the d index

Nonnormal distributions and unreliable outcome mea-
sures. Two important complications to consider when
computing an effect size are nonnormal distributions and
measurement reliability of the outcomes of interest. Recall
that one of the assumptions for using the d index is that
the distributions for two groups are normal (see Figure 1).
When this is not the case, a nonparametric effect size must
be used (Kline, 2004). However, use of the nonparametric
effect size is beyond the scope of this article; the reader
should see Kline (2004) and Hunter and Schmidt (2004),
which provide in-depth treatments of the topic. However, in
large samples, the d index is fairly robust to departures from
normality in distributions (Kline, 2004; Shavelson, 1996).
When the outcome is measured unreliably, the d index tends
to be smaller than it otherwise would have been if the
outcome had been measured reliably (Campbell & Stanley,
1963; Cook & Campbell, 1979; Shadish et al., 2002).

Which d index to use? The formulas for computing the
d index are suitable for most situations. There are some
complications that often arise during the review. The first
is the choice of which standard deviation to use in the
denominator of the d index. Table 3 illustrates how this
choice can impact the effect size.

Table 3 shows that the sample sizes in the Ryan study
are by definition small (n ≤ 20). This suggests that, all
other things being equal, Hedges’s g is the most appropri-
ate effect size to use because of the small sample sizes.
However, it is also important to consider how the standard
deviations for each group compare before deciding on
which effect size to use. For the SW/M outcome (Table 3,
row 1), the sample sizes and standard deviations for the
two groups are roughly equal, although it appears that the
GILCU intervention also increased the average variability in
the GILCU group. Still, there is not much difference
between the three types of effect sizes, and because the
sample sizes are small, the use of Hedges’s g (g

H
) is most

appropriate. Similar decision logic can be applied to the data
on the second outcome in the Ryan study, which is WS/M.
For the third outcome in the Ryan study, the intervention has
increased the variability in SW/M such that the variance of
the intervention group is almost five times that of the
control group. In this case, use of Glass’s ∆ would produce
a much larger effect size because its smaller denominator
increases the size of the intervention effect.

Different formats for effect size data. It is not unusual
for a review to include studies that report outcomes on a
continuous scale but in nonconventional formats.
Nonconventional formats are defined as outcome data that
are reported in formats other than means, standard

(6) SE
g
 = SE

d
 • j =    +    +            • (1 –                ) =

1    1      d
cohen

2                3

n
I
    n

C
  2(n

I
 + n

C
)       4(n

I
 + n

C
) – 9

+    +            •  1 –                  =(1    1     –0.322                3

5    6    2(6 + 6)         4(6 + 6) – 9
)

0.61 • 0.91 = 0.56
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deviations, and sample sizes. Examples of nonconventional
data formats, from which effect sizes can be derived for
posttest data on unmatched groups, is as follows:

• Means, sample size, and t value (or two-group F
ratio)

• Sample size and t value (or two-group F ratio)

• Means, sample size, and p value

• Sample size and t value (or two-group F ratio)

For these data, one can apply the derivation formulas to
compute Hedges’s g or Cohen’s d. Although these deriva-
tions can be done manually or by using a calculator, the
derivation formulas are usually implemented using com-
puter software. To learn more about these formulas and
their use, refer to Borenstein (2005), Hunter and Schmidt
(2004), Kline (2004), and Lipsey and Wilson (2001).

Missing values on outcome data for effect sizes. It is
also not unusual for an analyst to encounter studies with
missing values on the outcome data that were used for
effect size computations. Referring to Table 3 again, if
Ryan had only reported means and had not reported the
standard deviations for the outcomes, it would be impos-
sible to compute the effect size. In another study included
in the stuttering review but not shown in Table 3, the
author reported means and samples sizes but not the
standard deviations, and another study author reported F
ratios and p values rather than the means, standard devia-
tions, and sample sizes. Under these circumstances, and
others like them, there are four options for computing
effect sizes:

Contact study authors. Contact the study authors and
request the missing data. This option is the best among the
four proposed, but successful implementation depends on,
among other things, how recently the study was reported.
Authors of older studies are more difficult to locate and
contact than are authors of more recent studies. Further-
more, even if the authors can be contacted, there is no
guarantee as to whether they have the original data or, if
they have the data, whether they are willing to release it.

Set the effect size to zero. When study authors cannot be
contacted or are unwilling to release the requested data,
then the value of the effect size, for which there are
missing values that prohibit its calculation, can be set to
zero. Setting the missing effect size equal to zero is viewed
as establishing a conservative estimate of the missing effect
size value. Researchers are often uncomfortable with such a
conservative estimate because it results in an effect size

that theoretically could be smaller or larger than it would
have been if the effect size could have been computed from
the available data. Because it also reduces sample variance,
this approach should be used sparingly.

Use multiple imputation. A more sophisticated (and
complicated) approach is to use multiple imputation to
impute the missing effect sizes using the nonmissing effect
sizes in the review. Multiple imputation is the process of
replacing missing effect sizes with the average of effect
sizes drawn from a random distribution of imputed effect
sizes derived from the observed effect sizes (Allison,
2001). Multiple imputation is recommended over mean
imputation (where the mean value of the nonmissing effect
sizes is substituted for the missing effect sizes) and other
types of imputation because multiple imputation produces
better estimates of the true effect size (Allison, 2001;
Pigott, 2001). The use of multiple imputation is beyond the
scope of this article, but the reader is referred to Allison
and Pigott to learn more about the theory behind and
implementation of multiple imputation.

Omit the study. When the first three options are unap-
pealing or cannot be implemented, then the last option is to
omit the study from meta-analysis. When this option is
exercised, it reduces the number of studies in the meta-
analysis by S – M, where S is the total number of studies
included in the review and M is the number of studies
excluded from the meta-analysis because of missing values
on the outcome data used to compute effect sizes.

Recommendations for
Estimating Effect Sizes in Practice

Use Hedges’s g when feasible. When the frequency of an
outcome for the intervention and control groups is normally
distributed on an outcome that is measured on a continuous
scale, and the variances of the two groups are similar,
Hedges’s g or Cohen’s d should be used to estimate
intervention effects. Furthermore, when the systematic
review consists of large and small sample studies, Hedges’s
g should be used because it corrects for the small sample
bias in Cohen’s d and converges to Cohen’s d in large
samples. In situations where the variance of the interven-
tion group is altered by the treatment to the point that there
is a large disparity between this variance and that of the
control group, then Glass’s ∆ should be used. However, use
of Glass’s ∆ should be weighed against other factors such
as whether the disparity in the variances between the two

Table 3. Effect sizes for the DAF vs. GILCU comparison on three outcomes in one study.

Intervention group Control group Effect sizes

Study Outcome X
I

S
I
2 n

I
X

C
S

C
2 n

I
Glass’s ∆ Cohen’s d Hedges’s g

Ryan, 1995 SW/M 0.70 0.70 6 0.50 0.50 5 0.29 0.32 0.30

Ryan, 1995 WS/M 137.50 35.30 6 133.40 17.40 5 0.12 0.14 0.13

Ryan, 1995 SW/M FU 0.60 0.30 6 1.10 1.70 5 1.67 0.43 0.40
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groups is a valid consideration as part of the intervention
effect. If so, then Hedge’s g is a better index because it
pools the variance of both intervention and control groups.
In cases where the assumption of normality is violated,
nonparametric effect sizes must be used (Kline, 2004).

Use means, standard deviations, and sample sizes when
feasible. It is not unusual for study authors to report
outcome data in formats other than means, standard
deviations, and sample sizes. Fortunately, the formulas for
deriving effect sizes from various data formats are well
established and can be implemented using computer
software. Still, when possible, it is better to compute effect
sizes from means, standard deviations, and sample sizes
even when it requires the extra effort of contacting study
authors. When missing values cannot be obtained by
contacting study authors, one recommended approach is to
set the effect size for the group comparison equal to zero.
A better but more complicated approach is to use multiple
imputation to impute the missing effect size values using
the nonmissing effect size values.

Report confidence intervals when feasible. The effect
size should be reported with its confidence interval because
it is an estimate of a difference in the population based on
a sample (APA, 2001; American Statistical Association,
1992). The confidence interval displays the amount of error
in this estimate. In practical terms, this confidence interval
displays the range of plausible intervention effects (or
effect sizes) in the population from which the intervention
and comparison groups were selected.

SYNTHESIZING THE d INDEX ACROSS
STUTTERING INTERVENTION STUDIES

Steps for Synthesizing the d Index

Having computed effect sizes for all comparisons reported
in included studies, the next step in the systematic review
process is to estimate the average effect size. The average
effect size is estimated by statistically synthesizing the
effect sizes across the studies. This process is called meta-
analysis (Cooper & Hedges, 1994; Glass et al., 1982; Hunt,
1997). Meta-analysis can be defined as the statistical
synthesis of the data from separate but comparable studies
leading to a quantitative summary of pooled results (Last
[2001] in Chalmers et al., 2002). The focus of this section
is on how to conduct a bare-bones meta-analysis. A bare-
bones meta-analysis is the first stage of a complete meta-
analysis and is called bare bones because it controls only
for variability in effect sizes due to the sampling of
subjects within each study (i.e., sampling error) (Hunter &
Schmidt, 2004). Advanced stages of a meta-analysis are
designed to control for variability in effect sizes due to
other factors like subgroup or study characteristics. These
stages are beyond the scope of this article but are discussed
extensively in Hunter and Schmidt, Kline (2004), and
Lipsey and Wilson (2001). The main steps for a bare-bones
meta-analysis are as follows:

1. Average effect sizes within studies (if necessary).

2. Average effect sizes across studies.

3. Assess observed variability in effect sizes pooled
across studies.

4. Interpret overall average effect size.

Implementation of each step is discussed next.

Averaging Effect Sizes Within Studies

Table 4 shows the six included studies for the stuttering
systematic review along with their comparisons, outcomes,
group means, standard deviations, and sample sizes. Four
of the six studies each have a combined sample size
(intervention and control group) of less than 20 study
participants. For this reason, Hedges’s g was used to
estimate the effect sizes (Table 4). Formulas 5 and 6 were
used to compute the effect sizes and their standard errors,
respectively. Table 4 also shows that some studies report
multiple outcomes for a single comparison, such as
Boudreau (1973) and Waterloo (1988), whereas other
studies, such as Öst (1976) and Harris (2002), report a
single outcome for a single comparison. Studies of the
latter can be included as in the meta-analysis. Studies of
the former cannot because the same participants who are in
the intervention and control groups for one outcome are the
same people who are in the intervention and control group
for another outcome. Including the same comparison on
multiple outcomes in the meta-analysis violates the assump-
tion of statistical independence and renders the standard
errors and confidence intervals inaccurate (Cooper, 1998;
Cooper & Hedges, 1994; Hunter & Schmidt, 2004; Kline,
2004; Lipsey & Wilson, 2001).

To avoid violating the assumption of independence of
effect sizes, reviewers will implement one of the following
three approaches:

• Randomly select one effect size.

• Select one effect size based on theory or a logically
defensible rationale.

• Compute a simple average of the effect sizes.

Reviewers in practice usually implement the third
approach and compute an average of the effect sizes (and
their standard errors) unless the outcome measures are so
conceptually different that it is inappropriate. For example,
the simple average of the four effect sizes computed for the
Boudreau (1973) study is the sum of the four effect sizes
divided by that number of effect sizes (n = 4), resulting in
an average Hedges’s g of 0.57. The disadvantage of this
approach is that it becomes more difficult to code study
features (e.g., setting, grade) later on because now the
effect size represents an average of two conditions that may
have different study characteristics.

A simple average of the four standard errors for the four
effect sizes results in an average standard error of 0.55.
The results from averaging the effect sizes and standard
errors for the other studies for which multiple effect sizes
were computed (e.g., James, 1976; Waterloo, 1988) are
presented in Table 5. Note that studies with one outcome
and hence one effect size were not averaged. Fortunately,
meta-analysis software such as CMA 2.0 will compute the
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average for you (see Appendix B). With one effect size per
study, the next step is to pool the effect sizes to arrive at
the average effect size across the five studies.

Averaging Effect Sizes Across Studies

Although a simple average was appropriate for combining
multiple effect sizes within studies, a weighted average is
used to pool effect sizes across studies. An effect size from
a study with a larger sample, like the Jones (2005) study,
with 47 participants, provides a more precise effect size
estimate (i.e., a lower standard error of 0.31 and, hence, a
smaller confidence interval) than a study with a small
sample, like the Öst (1976) study, with only 10 participants
(and a higher standard error of 0.57 and, hence, a larger
confidence interval). To weight each effect size, simply
square the standard error to get the variance and then
compute its inverse or reciprocal (i.e., place one over the
squared standard error) as follows:

Table 6 shows the included studies with their effect
sizes, the inverse variance weight for Hedges’s g
(IVW

Hedges’s g
), and the effect sizes weighted by the

IVW
Hedges’s g

.

The data in Table 6 are all that is needed to compute the
average effect size. To compute the average effect size,
sum the five weighted effect sizes and divide by the sum
of the IVW. These two quantities are reported in the last
two columns of the last row in Table 6. More formally, the
formula for the average effect size is:

In Formula 8, “i” is the number of study effect sizes; for
this meta-analysis, the numerator and denominator in
Formula 8 are summed across five studies. Substituting the
values from the last row under the last two columns from
Table 6 yields:

This result says that on average, the stuttering interven-
tions caused more than a three quarters standard deviation
improvement in the speech pattern of PWS. Furthermore,
this effect, though quite large, is an estimate from a sample
of studies and therefore its standard error should be used to
compute an upper and lower confidence interval. The
standard error can be easily computed using the sum of the
inverse variance weights as follows:

Table 4. Effect size data for studies included in the stuttering interventions review.

Intervention group Control group Effect size estimate

Study Comparison Outcome X
I

n X
C

n g
Hedges

SE
g

Boudreau, 1973 Desen vs. Ctrl %SS 6.38 9.21 12 11.75 8.06 4 0.57 0.55

Boudreau, 1973 Desen vs. Ctrl %SW RA 11.25 13.19 12 17.00 9.45 4 0.44 0.55

Boudreau, 1973 Desen vs. Ctrl %SW SS A 9.13 7.26 12 16.00 8.87 4 0.85 0.57

Boudreau, 1973 Desen vs. Ctrl %SWSS AC 11.63 6.91 12 28.75 16.21 4 1.67 0.62

Öst, 1976 Desen vs. Ctrl %NFL SS 9.30 8.40 5 12.80 16.80 5 0.24 0.57

James, 1976 Time-out vs. Ctrl %SS 7.40 6.66 9 11.95 6.58 9 0.65 0.46

James, 1976 Time-out vs. Ctrl SPM 117.00 50.20 9 94.80 15.50 9 0.57 0.46

Waterloo, 1988 Reg. Breath vs. Ctrl %SW Read 6.80 6.80 16 18.50 8.40 15 1.50 0.40

Waterloo, 1988 Reg. Breath vs. Ctrl %SW SS 4.50 5.70 16 17.90 6.70 15 2.10 0.44

Waterloo, 1988 Reg. Breath vs. Ctrl %SW Pho 5.80 5.80 16 20.10 8.00 15 2.00 0.43

Harris, 2002 Lidcombe vs. Ctrl %SS 3.50 2.80 8 5.80 3.60 11 0.67 0.46

Jones, 2005 Lidcombe vs. Ctrl %SS 1.50 1.40 27 3.90 3.50 20 0.94 0.31

Note. Desen = desensitization intervention group, Ctrl = control group, Reg. Breath = regulated breathing intervention group, %SS =
percentage of stuttered syllables, %SW = percentage of stuttered words, %NFL = percentage of nonfluency, SPM = stuttered words per
minute.

S
I
2 S

C
2

     1            1          1

(SE
Hedges’s g

)
2       

(0.574)2       0.33
(7)      IVW

Hedges’s g
 =              =           =       = 3.03

(8)    Hedges’s g* =
Σ
n

i=1    Hedges’s g(i)•IVWHedges’s g(i)

          IVWHedges’s g(i)Σ
n

i=1

 27.22

 31.83
Hedges’s g* =        = .86
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The 95% confidence interval for the average effect size
of 0.86 with a standard error of 0.18 is:

(10)  Hedges’s g × ±1.96(SE
Hedges’s g*

) = 0.86 ± 1.96(0.18) =

         0.86 ± 0.35 = [1.20,0.51]

The conclusion is that stuttering interventions reported in
the review resulted in an improvement in speech patterns of
PWS in the sample by approximately 0.86 SD. However,
when this improvement is generalized to the sample from
which study participants were drawn, this improvement could
be as high as 1.20 SD or as low as 0.51 SD. Despite this
variability (or error) in the estimate, the conclusion from this
bare-bones meta-analysis is that one can be 95% confident
that the effect of stuttering interventions is positive.

Assessing Observed Variability in
Effect Sizes Pooled Across Studies

The results of the bare-bones meta-analysis can also be
displayed graphically through a forest plot. A forest plot

allows reviewers to separate the forest (the average effect
and its standard error) from the trees (the study effect sizes
and their standard errors) (Rothstein et al., 2005). The
forest plot also allows reviewers to assess how representa-
tive the average effect size is of the study effect sizes
because each study effect size and its 95% confidence
interval is displayed relative to the average effect size and
its 95% confidence interval. Any of the meta-analysis
software mentioned earlier can be used to produce these
plots. Figure 2 presents a forest plot of the effect size data
from the stuttering review just discussed (Table 6).

The forest plot illustrates how the study effect sizes vary
relative to the average effect size of 0.86 SD. All of the
studies have positive point estimates (squares in Figure 2)
signifying that the behavioral intervention for stutterers is
positive. However, these point estimates vary in their
precision as the confidence intervals are wider for some
estimates than for others (bars in Figure 2; more on this in
the next section on interpreting effect sizes). The effect size
for the Öst (1976) study is much smaller than the average
effect size, but the effect size for the Waterloo (1988) study
is much larger. The variability in these effect sizes begs the
question: Is the average effect size representative of the
study effect sizes from which it was derived?

This is an important clinical question because an
estimated average treatment effect size that is not

Table 5. Average effect sizes and standard errors for studies included in the stuttering interventions review.

Intervention group Control group Effect size estimate
# of Outcomes

Study Comparison per study Outcome n n   Hedges’s g SE
g

Boudreau, 1973 Desen vs. Ctrl 4 Averaged 12 4 0.88 0.57

Öst, 1976 Desen vs. Ctrl 1 %NFL SS 5 5 0.24 0.57

James, 1976 Time-out vs. Ctrl 2 Averaged 9 9 0.04 0.46

Waterloo, 1988 Reg. Breath vs. Ctrl 3 Averaged 16 15 1.87 0.42

Harris, 2002 Lidcombe vs. Ctrl 1 %SS 8 11 0.67 0.46

Jones, 2005 Lidcombe vs. Ctrl 1 %SS 27 20 0.94 0.31

Table 6. Weighted effect sizes for studies included in the stuttering interventions review.

Intervention Control Weighted effect size
group group estimates

Hedges’s g ×
Study Comparison Outcome n n Hedges’s g W

Hedges’s
 

g
W

Hedges’s
 

g

Boudreau, 1973 Desen vs. Ctrl Averaged 12 4 0.88 3.04 0.57
Öst, 1976 Desen vs. Ctrl %NFL SS 5 5 0.24 3.04 0.57
James, 1976 Time-out vs. Ctrl Averaged 9 9 0.04 4.72 0.46
Waterloo, 1988 Reg. Breath vs. Ctrl Averaged 16 15 1.87 5.56 0.42
Harris, 2002 Lidcombe vs. Ctrl %SS 8 11 0.67 4.79 0.46
Jones, 2005 Lidcombe vs. Ctrl %SS 27 20 0.94 10.69 0.31

The Summation (Σ) 77 64 31.83 27.22

        1                1

   WHedges’s g(i)     31.83Σ
n

i=1

(9)      SE
g
 =                        =         = 0.18
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representative of the study effect sizes from which it was
derived could raise expectations for the behavioral interven-
tion to have a certain level of impact that cannot be
delivered because the study effect sizes varied so widely.

The Q and I2 statistics are used to empirically assess the
amount of variability in effect sizes beyond what is
expected from sampling error (Higgins, Thompson, Deeks,
& Altman, 2003). The Q statistic tests the null hypothesis
that the effect sizes in the meta-analysis are estimating the
same effect size in the population. Figure 2 shows that a Q
statistic of 10.22 is not statistically significant (p = 0.69).
This means that the variability in the effect sizes, as
depicted in Figure 2, is what is expected given sampling
error. However, the Q statistic is not reliable when it is
computed based on a small number of studies, as is the
case in this meta-analysis. This is one reason that the I2

statistic should be interpreted along with the Q statistic.
The I2 statistic represents the amount of observed variation
in effect sizes that is attributable to factors other than
sampling error. The note under Figure 2 shows that I2 =
51.08%, which means that approximately half of the
observed variation is due to sampling error and the other
half is due to other possibly unknown factors. When
interpreting, the following guidelines for values of I2 may
be helpful (Higgins et al., 2003):

• 25% or less indicates small amounts of heterogeneity.

• 50% indicates moderate amounts of heterogeneity.

• 75% or more indicates large amount of heterogeneity.

Taken together, the results from this review say that
there is 95% confidence that behavioral stuttering interven-
tions have a positive effect. Furthermore, the effect is at
least a half a standard deviation and could be larger, up to
just more than 1.0 SD. However, this average effect was
derived from a set of effect sizes that were moderately

heterogeneous, meaning that the average effect could be
larger, smaller, or stay the same if there are more studies
that investigate these other factors. Still, given the size of
the effect and its confidence intervals, there is enough
evidence to be confident that this effect size would be
positive even after such an investigation.

Recommendations for Synthesizing
and Interpreting Effect Sizes in Practice

In practice, it is important to consider four elements in
synthesizing effect sizes into a composite mean that can be
interpreted as a general effect in the population.

• First, how within-group effects are treated is impor-
tant and care should be taken in the approach that is
used to combine several effect sizes within a given
study. Effect sizes must be independent, that is, they
must each contain different study participants. If there
are multiple treatments and one control, for instance,
the control participants cannot be used twice to form
two effect sizes. One common way of solving this
problem is to form a simple average of the two
treatment effect sizes.

• Second, we need to average the effect sizes across the
distribution of studies. This cannot be a simple
average because of the effects of differential sample
size. This special mean is called a weighted mean and
takes into consideration the relative impact of large
versus small samples.

• The third element is to find the standard error of the
mean and use it to calculate the upper and lower
bounds of the 95th percent confidence interval. This
interval can be used to test the null hypothesis that
effect size = 0. The confidence interval also describes
the limits within which the true mean lies.

Figure 2. Overall effect for behavioral stuttering intervention: Treatment vs. control.

Note. Heterogeneity statistics for a fixed model: Q = 8.49, df = 5, p = .13, I2 = 41.07.
aDesensitization; bpercentage of stuttered words; cTimeout from speaking; dpercentage of stuttered syllables;
emetronome-conditioned speech retraining; fpercentage of nonfluency; gregulated breathing; hLidcombe
program.
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• The fourth aspect of importance is the variability that
surrounds the average effect size. The Q statistic
describes this variability and can be tested to deter-
mine if the effect sizes in the distribution are homo-
geneous (i.e., are likely to correctly describe the
average effect in the population) or heterogeneous
(i.e., are unlikely to correctly describe the average
effect size in the population). If homogeneity of effect
size cannot be achieved, strong statements about the
effect of the independent variable on the dependent
variable in the population are not warranted. In this
case, the researcher may want to explore the effects of
moderator variables in an attempt to achieve homoge-
neity of effect size. The I2 statistic is useful as a
supplement to Q in interpreting the variability
surrounding the mean effect size.

SUMMARY

The effect size is a standardized, scale-free estimate of the
relative size of the effect of an intervention in the popula-
tion. Accurate interpretation of the effect size rests on the
assumption that the intervention and control groups are
normally distributed on an outcome variable and that these
groups have the same standard deviations (i.e., homogeneity
of variances). In research that uses an RCT and the
outcomes measured on a continuous scale, the d index in
general and Hedges’s g is the effect size that is used most
often. Use of an effect size with its confidence interval
expresses the same information as a test of statistical
significance but places the emphasis on the size and
significance of the effect rather than on a sample size. For
this reason, when feasible, effect sizes should always be
reported with their confidence intervals. This applies to the
reporting of effect sizes in primary studies as well as in
meta-analysis and is consistent with recommendations by
the APA’s Task Force on Statistical Inference.

Use of effect sizes promotes scientific inquiry because
when a particular experimental study has been replicated,
the different effect size estimates from those studies can be
easily combined to produce an overall best estimate of the
size of the intervention effect. The process of synthesizing
results of experimental studies into an overall effect size is
called meta-analysis. Meta-analysis assigns greater weight
to larger sample studies (which are more precise) and lesser
weight to smaller sample studies (which are less precise) to
produce a weighted average effect size and its confidence
interval. Meta-analysis also includes examining variability
in effect sizes to determine whether the average effect size
is representative of the effect sizes from which it was
derived. When it is, clinicians should seriously consider the
use of the intervention in their practice.
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APPENDIX A: WEB SITES FOR EFFECT SIZE
CALCULATIONS AND META-ANALYSIS

The Cochrane Collaboration www.cochrane.org

The Campbell Collaboration www.campbellcollaboration.org

The What Works Clearinghouse www.w-w-c.org

University of Murcia
Meta-Analysis Unit www.um.es/facpsi/metaanalysis

The Centre for Reviews
and Dissemination (at York) www.york.ac.uk/inst/crd

The EPPI Centre http://eppi.ioe.ac.uk/EPPIWeb/
home.aspx

Resources for Meta-Analysis http://faculty.ucmerced.edu/
wshadish/Meta-
Analysis%20Links.htm

Additional Resources for Meta-Analysis at http://mason.gmu.edu/
~dwilsonb/ma.html

APPENDIX B: SOFTWARE FOR EFFECT SIZE
CALCULATIONS AND META-ANALYSIS

ES Effect Size Calculator www.assess.com

Comprehensive Meta Analysis
(CMA 2.0) www.biostat.com

Stata (8.2) www.stata.com

Review Manager (3.2) www.cochranecollaboration.org

MetaWin (2.0) www.metawinsoft.com
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