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1 SCALAR FIELDS IN MINKOWSKI SPACE 1

1 Scalar Fields in Minkowski Space

In theoretical physics it has proved fruitful to use the Principle of Least Action to find laws of
nature. In its first applications it was phrased so that nature minimizes (“Least”) some quantity
S (“Action”). However, in some applications one could just as well choose the opposite sign
in definition of S, so that one is “extremizing” (minimizing or maximizing) S. In practice the
law of nature is derived by requiring that a small variation of the physical configuration from
the one nature has chosen (or will choose) will not change S to 1st order of the variation, i.e.,
δS = 0. This does not guarantee that S is at its minimum or maximum, we could be at an
inflection point or a saddle point. These could be distinguished by studying the second order
variation of S; but we will not consider the possible role of it here; and we take the meaning of
Least Action just to be that δS = 0 to 1st order. Thus it would be more accurately called the
Principle of Stationary Action.

For a field theory in Minkowski space the action takes the form

S =

∫ t2

t1

Ldt =

∫
Ld4x , where L =

∫
Ld3x . (1.1)

where L is the Lagrange function and L, the Lagrangian (density), is a scalar function of the
fields and their spacetime derivatives, and we use Cartesian spacetime coordinates. The Principle
of Least Action states that: For fixed initial (t = t1) and final (t = t2) field configurations (see
Fig. 1), the fields evolve so as to extremize (or at least to choose a stationary state of) the action
S. Thus the principle is related to a boundary value problem: situation at initial and final times
is given and we want to find out how Nature chooses to evolve from the initial to the final state.

We consider a theory of N scalar fields ϕI , I = 1, . . . , N . The Lagrangian of the theory is
thus

L = L(ϕ1, . . . , ϕN , ∂µϕ1, . . . , ∂µϕN ) . (1.2)

We can divide the Lagrangian into two parts, a part that depends only on the fields, and a
part that depends also on the derivatives. The first part is called the potential term or the field
potential V (ϕ1, . . . , ϕN ), and the second part is called the kinetic term. The simplest case for
the latter is the canonical kinetic term

1
2∂µϕI∂

µϕI . (1.3)

We restrict our study to the case with a canonical kinetic term, so that

L(ϕ1, . . . , ϕN , ∂µϕ1, . . . , ∂µϕN ) = −1
2∂µϕI∂

µϕI − V (ϕ1, . . . , ϕN ) (1.4)

(implied summation over both µ and I in ∂µϕI∂
µϕI ; and ∂µϕ1 etc. on the left really means

∂0ϕ1, . . . , ∂3ϕ1 etc. The negative sign is a convention—it does not affect physics.

Figure 1: Initial and final field configurations.
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Figure 2: The 3-boundary ∂Σ to the integration 4-volume Σ (one space dimension suppressed). Due to
the Minkowski geometry, the normal vector to timelike surfaces points inward. (For a lightlike surface
the normal vector would be parallel to the surface, since a lightlike vector is normal to itself, being a null
vector.)

Let us now vary the fields

ϕI → ϕI + δϕI ⇒ ∂µϕI → ∂µϕI + ∂µ(δϕI) (1.5)

around the configuration nature must have chosen (stationary point of the action in the field
configuration space), keeping ϕI(t1, ~x) and ϕI(t2, ~x) fixed. The variation of S (to first order in
δϕI) is then

δS =

∫
d4x

[
∂L
∂ϕI

δϕI +
∂L

∂(∂µϕI)
∂µ(δϕI)

]
= 0 (1.6)

for all variations δϕI . Integrating the second term by parts, this becomes

δS =

∫
d4x∂µ

[
∂L

∂(∂µϕI)
δϕI

]
+

∫
d4x

{
∂L
∂ϕI

− ∂µ
[

∂L
∂(∂µϕI)

]}
δϕI = 0 , (1.7)

The first integral is a 4-volume integral of a divergence, and it can be converted by Gauss
theorem to a 3-surface integral over the boundary of the volume (see Fig. 2)∫

Σ
d4x∂µ

[
∂L

∂(∂µϕI)
δϕI

]
=

∫
∂Σ
d3σ nµ

∂L
∂(∂µϕI)

δϕI , (1.8)

where nµ is the unit normal to the boundary. The boundary consists of the initial and final
time slices, where δϕI vanishes by assumption (“for fixed initial and final field configurations”),
but also of spatial boundaries of the volume we are considering. We have to assume that the
variations ϕI vanish also at these spatial boundaries. We can either say that we move these
boundaries so far away that they are outside our region of interest, or to just include this
condition in the initial formulation of the Principle: “for fixed boundary conditions”. When
we move to curved spacetime (Sec. 3) a distinction between temporal and spatial boundaries
becomes artificial anyway.

Since the variations δϕI vanish at ∂Σ, (1.8) gives 0 for the first integral in (1.7) and the
condition δS = 0 for all variations δϕI gives the Euler–Lagrange equations

∂L
∂ϕI

− ∂µ
[

∂L
∂(∂µϕI)

]
= 0 , (1.9)

where
∂L
∂ϕI

= −VI and
∂L

∂(∂µϕI)
= −∂µϕI (1.10)
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and we use the short-hand notation

VI ≡
∂V

∂ϕI
. (1.11)

This gives us the field equations
∂µ∂

µϕI − VI = 0 . (1.12)

The Lagrangian (1.4) depends on the spacetime location (or, on coordinates) only through
its dependence on ϕI and ∂µϕI , not directly. This means that the action S is invariant under
a homogenous translation of the field configuration in space and time. According to Noether’s
theorem, such invariances lead to conserved currents.

Let us derive the resulting conservation law directly. Shift the whole field configuration by
an infinitesimal translation aν = const. This means that at spacetime point P the new values of
the fields ϕ′I and their gradients ∂µϕ

′
I are what they used to be at another point P ′, such that

xν(P ′) = xν(P )− aν . (1.13)

Thus

ϕ′I(P ) = ϕI(P
′) = ϕI(P )− aν∂νϕI(P ) ≡ ϕI(P ) + δϕI(P )

∂µϕ
′
I(P ) = ∂µϕI(P

′) = ∂µϕI(P )− aν∂ν∂µϕI(P ) ≡ ∂µϕI(P ) + δ(∂µϕI(P ))

L′(P ) = L(P ′) = L(P )− aν∂νL(P ) ≡ L(P ) + δL(P ) . (1.14)

Since the Lagrangian L depends only on ϕI and ∂µϕI , we can write

δL =
∂L
∂ϕI

δϕI +
∂L

∂(∂µϕI)
δ(∂µϕI)

= −aν
[
∂L
∂ϕI

∂νϕI +
∂L

∂(∂µϕI)
∂ν∂µϕI

]
= −aν∂µ

[
∂L

∂(∂µϕI)
∂νϕI

]
, (1.15)

where we used Eq. (1.9). Thus we have that

δL = −aν∂νL ≡ −aν∂µ(δµνL) = −aν∂µ
[

∂L
∂(∂µϕI)

∂νϕI

]
. (1.16)

Since this holds for all (infinitesimal) aν , we have the conservation law

∂µT
µ
ν = 0 , (1.17)

where

Tµν ≡ δµνL −
∂L

∂(∂µϕI)
∂νϕI , (1.18)

is called the energy tensor. It’s contravariant components are

Tµν ≡ ηµνL − ∂L
∂(∂µϕI)

∂νϕI

= ηµν
[
−1

2∂ρϕI∂
ρϕI − V (ϕI)

]
+ ∂µϕI∂

νϕI . (1.19)

In particular (exercise),

ρ ≡ T 00 = 1
2

∑
I

ϕ̇2
I + 1

2

∑
I

(∇ϕI)2 + V (ϕI)

p ≡ 1
3T

i
i = 1

2

∑
I

ϕ̇2
I − 1

6

∑
I

(∇ϕI)2 − V (ϕI) . (1.20)
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2 Curved Spacetime

When the spacetime is curved, the metric becomes a dynamical variable, and we need a law of
nature for it also. Consider first the case of empty spacetime, i.e., there are no fields or other
forms of matter or energy. Then the metric is the only variable and the action principle should
be based on some scalar quantity obtained from the metric and its derivatives taking the role of
the Lagrangian density.

2.1 Hilbert Action

The simplest candidate for the spacetime curvature action is the Hilbert action

SH =

∫
R
√
−gd4x , (2.1)

where R ≡ gµνRµν is the scalar curvature, Rµν is the Ricci curvature tensor and gµν is the
inverse metric. Since we are now using an arbitrary coordinate system in a curved spacetime,
the correct normalization of the volume element in the integral requires the

√
−g factor, where

g ≡ det [gµν ] is the determinant of the metric. Since the time coordinate can be chosen arbitrarily,
the action principle is formulated by specifying some spacetime region Σ and fixing quantities on
its boundary ∂Σ, instead of initial and final times. The action principle then states that inside
this spacetime region nature chooses the metric so that it corresponds to a stationary point of
the action. When we then vary the metric around this stationary configuration we should find
that δSH = 0.

For notational convenience we choose to vary the inverse metric gµν , instead of gµν . Varying
gµν → gµν + δgµν , we have

δSH =

∫
d4x
√
−ggµνδRµν +

∫
d4x
√
−gRµνδgµν +

∫
d4xRδ

√
−g . (2.2)

Consider first δRµν . The Riemann and Ricci tensors are given by

Rρµλν = ∂λΓρνµ + ΓρλσΓσνµ − (λ↔ ν)

Rµν = Rλµλν . (2.3)

In GR the connection is the Christoffel connection, so δΓρνµ can be expressed in terms of δgµν ,
but consider first an arbitrary torsion-free (Γρνµ = Γρµν) connection and variation

Γρνµ → Γρνµ + δΓρνµ ⇒ δRρµλν = ∂λ
(
δΓρνµ

)
+ δΓρλσΓσνµ + ΓρλσδΓ

σ
νµ − (λ↔ ν) . (2.4)

Since δΓρνµ is a difference between two connections, it is a tensor field, and we can define its
covariant derivative (in terms of the unvaried connection Γρνµ)

∇λ
(
δΓρνµ

)
= ∂λ

(
δΓρνµ

)
+ ΓρλσδΓ

σ
νµ − ΓσλνδΓ

ρ
σµ − ΓσλµδΓ

ρ
νσ (2.5)

and we see that
δRρµλν = ∇λ

(
δΓρνµ

)
− (λ↔ ν) . (2.6)

This gives the Palatini identity

δRµν = δRλµλν = ∇λ(δΓλνµ)−∇ν(δΓλλµ) (2.7)

and the first term in (2.2) is

δS1 ≡
∫
d4x
√
−ggµνδRµν =

∫
d4x
√
−ggµν

[
∇λ(δΓλνµ)−∇ν(δΓλλµ)

]
. (2.8)
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We now assume that the connection is the Christoffel (Levi–Civita) connection

Γσµν ≡ 1
2g
σρ (∂µgνρ + ∂νgµρ − ∂ρgµν) , (2.9)

for which we have two important results, metric compatibility (of the connection)

∇λgµν = 0 , (2.10)

and the general relativistic version of the Stokes theorem,∫
Σ
∇µvµ

√
−gd4x =

∫
∂Σ
nµv

µ
√
|γ|d3x , (2.11)

where ∂Σ is the boundary of the spacetime region Σ and γ is the determinant of the induced
metric of the boundary.

Using metric compatibility, we can convert the integrand in (2.8) to a total derivative, so
that we can use the Stokes theorem to convert

δS1 =

∫
d4x
√
−g∇σ

(
gµνδΓσνµ − gµσδΓλλµ

)
=

∫
∂Σ
nσ

(
gµνδΓσνµ − gµσδΓλλµ

)√
|γ|d3x = 0

(2.12)
into a boundary integral, which vanishes, assuming the variation δΓσνµ vanishes at the boundary.1

For the last term in (2.2) we derived in the GR course that

δ
√
−g = −1

2

√
−ggµνδgµν . (2.13)

Altogether the requirement that the variation gives δSH = 0 for arbitrary δgµν leads to the
condition

1√
−g

δSH
δgµν

= Rµν − 1
2gµνR ≡ Gµν = 0 , (2.14)

which is the vacuum Einstein equation.
In case the spacetime contains some forms of matter or energy, we need to add them to the

action:
S = SH + Smatter . (2.15)

The requirement that δS = 0 becomes δSH = −δSmatter and (2.14) is replaced by

Rµν − 1
2gµνR ≡ Gµν = − 1√

−g
δSmatter

δgµν
≡ 8πGTµν . (2.16)

Derivation of Friedmann equations. We review here the derivation of the (flat universe) Fried-
mann equations as practice for the modified Friedmann equations in f(R) gravity (Sec. 2.2). From Part
1 of these lecture notes we have for the flat RW metric gµν = a2ηµν :

Γ0
00 = H Γ0

0k = 0 Γ0
ij = Hδij

Γi00 = 0 Γi0j = Hδij Γikl = 0

R00 = −3H′ R0i = 0 Rij = (H′ + 2H2)δij

R0
0 = 3a−2H′ R0

i = Ri0 = 0 Rij = a−2(H′ + 2H2)δij

R = 6a−2(H′ +H2) ,

(2.17)

1This variation is (exercise) δΓλνµ = − 1
2

[
gρµ∇ν(δgρλ) + gρν∇µ(δgρλ)− gµαgνβ∇λ(δgαβ)

]
. Thus we need to

assume a version of the action principle, where the boundary conditions fix both the metric and its derivatives.
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and for the energy tensor

Tµν = (ρ+ p)uµuν + pgµν where uµ = a(−1,~0) . (2.18)

This gives the Einstein equations

R00 − 1
2g00R = 3H2 = 8πGT00 = 8πGρa2

R11 − 1
2g11R = −2H′ −H2 = 8πGT11 = 8πGpa2 (2.19)

(the 22 and 33 components of (3.9) give the same as the above 11 component and the off-diagonal com-
ponents give 0 = 0). We shall later refer to the first one and the sum of the two:

3H2 = 8πGρa2

2H2 − 2H′ = 8πG(ρ+ p)a2 (2.20)

2.2 f(R) Gravity

Note: I put this section here, since it is a generalization of the previous section. Otherwise it
does not logically belong here, since the next section continues with scalar fields in standard GR
– as does the remaining part of these lecture notes until Sec. 15. We return to modified gravity
in Sec. 16.

A popular class of modified gravity theories is f(R) gravity. In f(R) gravity one replaces
the scalar curvature R in the Hilbert action with some scalar function f(R) of it:

S =

∫
f(R)

√
−g d4x . (2.21)

Varying gµν → gµν + δgµν ,

δS =

∫
d4x
√
−gF (R)gµνδRµν+

∫
d4x
√
−gF (R)Rµνδg

µν− 1
2

∫
d4x
√
−gf(R)gµνδg

µν , (2.22)

where

F (R) ≡ df(R)

dR
. (2.23)

In the Palatini identity (2.7),

δRµν = ∇λ(δΓλνµ)−∇ν(δΓλλµ) , (2.24)

we have
δΓλνµ = −1

2

[
gρµ∇ν(δgρλ) + gρν∇µ(δgρλ)− gµαgνβ∇λ(δgαβ)

]
, (2.25)

for the Christoffel connection. Using metric compatibility, ∇λgµν = 0, and the Stokes theorem,
with boundary terms vanishing, to move gµν and ∇λ around, we get (exercise)

δS =

∫
d4x
√
−gδgµν

[
−∇µ∇νF (R) + gµν∇λ∇λF (R) + F (R)Rµν − gµν 1

2f(R)
]
. (2.26)

Requiring δS = 0 for all variations δgµν of the (inverse) metric, we obtain the modified Einstein
equation for vacuum,

F (R)Rµν − 1
2gµνf(R) = (∇µ∇ν − gµν�)F (R) . (2.27)
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In standard GR, f(R) = R and F (R) ≡ 1, so this becomes Rµν − 1
2gµνR = 0, the (unmodified)

Einstein equation for vacuum. The energy tensor is obtained as before from the matter/field
part of the action, so the full field equation of f(R) gravity is

F (R)Rµν − 1
2gµνf(R) = (∇µ∇ν − gµν�)F (R) + 8πGTµν . (2.28)

Since R contains second derivatives of the metric, (2.28) will contain fourth derivatives of the
metric.

The trace of (2.28) is

F (R)R− 2f(R) = −3�F (R) + 8πGT , (2.29)

where the trace of the energy-momentum tensor is T ≡ gµνTµν = −ρ+ 3p.
In GR, the Ricci tensor vanishes in vacuum (defined here as Tµν = 0). If f(R) = αR2, then

F (R)R − 2f(R) = 0 and there exists a vacuum solution Rµν = Λgµν , where Λ = const . Now
also R = 4Λ and F (R) are constants, so that ∇µ∇νF = 0 and �F = 0, and (2.28) is satisfied.
We know from GR that this is the de Sitter space. This theory is very different from GR, so it
is not a viable modified gravity theory as such. However, if instead f(R) = R+αR2, this theory
becomes GR in the limit of small curvature αR2 � R, but in the limit of large curvature, which
we expect to encounter in the very early universe, the αR2 part will dominate, and the theory
has a solution that approaches de Sitter in the early universe (R2 inflation).

(This is f(R) gravity of the metric formalism. There is another variant of f(R) gravity, the
Palatini formalism, see Sec. 18.)

Tools. Basic tools for operating on, e.g., the action variation integral δS are metric compatibility

∇λgµν = 0 , (2.30)

which means that the metric commutes with covariant derivative, so that one can move gµν and gµν in
and out of ∇λ, e.g,

gµν∇λ (gνσAσρ) = gµνg
νσ∇λAσρ = ∇λAµρ , (2.31)

and the Stokes theorem (2.11) together with the Leibniz rule for the covariant derivative, ∇µ(AαβBγδε) =
∇µ(Aαβ)Bγδε +Aαβ∇µ(Bγδε), which can be used for partial integration, e.g.,∫

Σ

Aµαβ∇µB
αβ√−g d4x =

∫
∂Σ

nµA
µ
αβB

αβ
√
|γ|d3x−

∫
Σ

Bαβ∇µAµαβ
√
−g d4x , (2.32)

where the boundary integral will vanish if it contains a variation that we assume to vanish at the boundary.

Flat FRW Universe in f(R) gravity. Following the example in Sec. 3 we now want to derive
the modified Friedmann equations we get when (2.28) is applied to gµν = a2ηµν . We can still use (2.17)
and (2.18). To keep the notation compact, we write just f and F for f(R) and F (R). Since f and F
are scalars, ∇µF = ∂µF , so we have ∇0F = F ′ and ∇iF = 0 (FRW is homogeneous). For the second
covariant derivatives we get (exercise)

∇0∇0F = ∂0∂0F − Γ0
00∂0F = F ′′ −HF ′

∇i∇jF = ∂i∂jF − Γ0
ij∂0F = −HδijF ′

�F = g00∇0∇0F + gij∇i∇jF = −a−2(F ′′ + 2HF ′) (2.33)

Thus the 00 and 11 components of (2.28) become (exercise)

−3H′F + 1
2a

2f + 3HF ′ = 8πGρa2

(H′ + 2H2)F − 1
2a

2f −HF ′ − F ′′ = 8πGpa2 . (2.34)
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It is easier to compare these to (2.20) when we use 1
2a

2R = 3H′ + 3H2 to replace −3H′F = − 1
2a

2FR +
3H2F , so the first equation and the sum of the two become

3FH2 = 8πGρa2 + 1
2a

2(FR− f)− 3HF ′

(2H2 − 2H′)F = 8πG(ρ+ p)a2 − 2HF ′ + F ′′ . (2.35)

These are the modified Friedmann equations for f(R) gravity. It is easy to see that for f = R ⇒ F = 1
these become (2.20).

In terms of cosmic time t (instead of conformal time η),

R = 6Ḣ + 12H2 (2.36)

and (2.35a) becomes (exercise)

3FH2 = 8πGρ+ 1
2 (FR− f)− 3HḞ . (2.37)

The energy continuity equation is the same as in GR:

ρ′ = −3H(ρ+ p) or ρ̇ = −3H(ρ+ p) . (2.38)

Cosmological constant. A trivial example of f(R) gravity is just adding a constant:

f(R) = R− 2Λ ⇒ F (R) = 1 . (2.39)

The field equation (2.28) becomes

Rµν − 1
2gµνR+ Λgµν = 8πGTµν (2.40)

and the modified Friedmann equation (2.37) becomes

3H2 = 8πGρ+ Λ . (2.41)

Starobinsky gravity. The simplest nontrivial f(R) gravity is the one with [1]

f(R) = R+ αR2 ⇒ F (R) = 1 + 2αR , (2.42)

where

α =
1

6M2
(2.43)

is a constant (and M is another constant, with dimension of mass). This can be motivated by quantum
corrections to gravity (with M presumably of similar order of magnitude as the Planck mass). Equation
(2.37) becomes (exercise)

H2 +
1

M2

(
2HḦ − Ḣ2 + 6H2Ḣ

)
=

8πG

3
ρ . (2.44)

Written for the scale factor a(t) this becomes(
ȧ

a

)2

+
1

M2

[
2
ȧ
...
a

a2
−
(
ä

a

)2

+ 2

(
ȧ

a

)2
ä

a
− 3

(
ȧ

a

)4
]

=
8πG

3
ρ (2.45)

(with ρ = 0 this becomes Eq. (4) in [1], when one sets K = k2 = 0 in it).
Starobinsky gravity accepts inflationary solutions (Starobinsky inflation, or R2 inflation), where H

is changing (decreasing) slowly and the dynamics is dominated by spacetime curvature (ρ is negligible
compared to the LHS of (2.44)). Approximating ρ = 0, (2.44) becomes

H2 = −H
2

M2

6Ḣ + 2
Ḧ

H
−

(
Ḣ

H

)2
 . (2.46)
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Try for a solution ([2], p. 257)
H(t) = 1

6M
2(t1 − t) , (2.47)

where t� t1 (both positive). Substituting in (2.46) gives

M2(t1 − t)2 = 1 +M2(t1 − t)2 , (2.48)

so (2.47) is not an exact solution, but is an approximate solution if

t1 − t� 1/M , (2.49)

or t1 � 1/M (as t� t1). The scale factor corresponding to (2.47) is

a(t) ∝ exp

[
M2

12
(2t1 − t)t

]
. (2.50)

As t grows to become no longer � t1, the approximation (2.47) becomes worse and inflation ends.
We shall return to Starobinsky inflation in Sec. 19.1.

A large R means high curvature, so forms of f(R) that deviate from R significantly for
large values of R, like (2.42), modify gravity at high-curvature conditions; in cosmology this
corresponds to the early universe. (Note that R does not contain all aspects of spacetime
curvature, since in GR R = 0 in vacuum, like we may have near a black hole.) If we want to
explain the acceleration of the late-time universe with f(R) gravity instead of dark energy, we
need a form of f(R) that deviates from R at small values of R. The first thing that comes to
mind is then

f(R) = R− α

Rn
(n > 0) . (2.51)

However, these theories violate local constraints on gravity that we have from experiments in
the solar system. The Euclid Theory Working Group (Amendola et al. [3]) lists four types of
viable f(R) models2 (i.e., models that can at the same time satisfy current experimental limits
and provide late-time acceleration without dark energy):

f(R) = R− µRc
(
R

Rc

)p
(0 < p < 1, µ,Rc > 0) (Amendola et al.[4]) (2.52)

f(R) = R− µRc
(R/Rc)

2n

(R/Rc)2n + 1
(n, µ,Rc > 0) (Hu and Sawicki[5]) (2.53)

f(R) = R− µRc

[
1−

(
1 +

R2

R2
c

)−n]
(n, µ,Rc > 0) (Starobinsky[6]) (2.54)

f(R) = R− µRc tanh(R/Rc) (µ,Rc > 0) (Tsujikawa[7]) (2.55)

As one sees from the above example the field equations in f(R) gravity become high (fourth)
order differential equations. (Equation (2.45) is just third order, but the second modified Fried-
mann equation is fourth order.) These are quite cumbersome to work with.

To make the equations easier to work with, one can introduce a conformal transformation

g̃µν = ω2gµν , where ω2 = F (R). (2.56)

The conformal metric g̃µν will then satisfy the usual Einstein equation but with the scalar field
ω appearing in the energy tensor. I will return to this in Sections 15 and 16. For now, this is an
additional motivation for the study of cosmological perturbation theory with scalar fields that
will follow.

2These may not look like plausible models to you. Some reviewer (I wish I could locate the reference) said
about dark energy vs. modified gravity that “the more you study one the more convinced you become that the
other is the way to go”. Anyway, the way to proceed in cosmology is to make more accurate observations to
improve the constraints on modified gravity, and these models serve as tools for this work.
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3 Scalar Fields in Curved Spacetime

In curved spacetime the Lagrangian (1.4) is replaced by

Lϕ = −1
2g
µν∇µϕI∇νϕI − V (ϕ1, . . . , ϕN ) = −1

2∂ρϕI∂
ρϕI − V (ϕ1, . . . , ϕN ) . (3.1)

and the action (1.1) by

Sϕ =

∫
Lϕ
√
−gd4x , (3.2)

where
g ≡ det [gµν ] . (3.3)

In Eq. (3.1), ∇µϕI = ∂µϕI , since ϕI are scalar fields, but for the derivation of the Euler-Lagrange
equation, where one needs to use the Stokes theorem (2.11), it is more clear to write it as the
covariant derivative.

We get the general relativistic theory with scalar field sources minimally coupled to gravity
by varying the action

S =
1

16πG
SH + Sϕ =

1

16πG

∫
R
√
−gd4x+

∫
Lϕ
√
−gd4x , (3.4)

where Lϕ is the Lagrangian (3.1). By varying with respect to the scalar fields, we get the
Euler-Lagrange equation

∂Lϕ
∂ϕI

−∇µ
[

∂Lϕ
∂(∇µϕI)

]
= 0 , (3.5)

where
∂Lϕ
∂ϕI

= −VI and
∂Lϕ

∂(∇µϕI)
= −∇µϕI . (3.6)

This gives us the field equations
�ϕI − VI = 0 , (3.7)

where

�ϕI ≡ ∇µ∇µϕI = gµν∇µ∇νϕI =
1√
−g

∂µ
(√
−g∂µϕI

)
. (3.8)

By varying with respect to the inverse metric we get the Einstein equations

Rµν − 1
2gµνR = 8πGTµν , (3.9)

where

Tµν ≡ −2
1√
−g

δSϕ
δgµν

. (3.10)

From (3.1)
δLϕ
δgµν

= −1
2∇µϕI∇νϕI = −1

2∂µϕI∂νϕI (3.11)

so (using also Eq. 2.13)

δSϕ =

∫
δLϕ
√
−gd4x+

∫
Lϕδ
√
−gd4x =

∫
d4x
√
−g
(
−1

2∂µϕI∂νϕI −
1
2Lϕgµν

)
δgµν , (3.12)

so that

Tµν ≡ −2
1√
−g

δSϕ
δgµν

= ∂µϕI∂νϕI + gµνLϕ

= ∂µϕI∂νϕI − 1
2gµν∂ρϕI∂

ρϕI − gµνV (ϕI) , (3.13)
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or
Tµν = ∂µϕI∂νϕI − 1

2δ
µ
ν ∂ρϕI∂

ρϕI − δµνV (ϕI) , (3.14)

which is the general relativistic version of (1.19), i.e., ηµν replaced by gµν .
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4 Background Universe

Let us now apply the equations from Sec. 3 to our flat FRW background universe, with the
metric

ds2 = a2(η)(−dη2 + dx2 + dy2 + dz2) ⇒
√
−g = a4 . (4.1)

In the background universe the scalar fields are homogeneous,

ϕ̄I = ϕ̄I(η) . (4.2)

The background field equations are (exercise)

ϕ̄′′I + 2Hϕ̄′I = −a2 ∂V

∂ϕI
, (4.3)

and the background energy tensor is (exercise)

T̄ 0
0 = −1

2a
−2
∑
I

(ϕ̄′I)
2 − V (ϕ̄1, . . . , ϕ̄N ) = −ρ̄

T̄ 0
i = T̄ i0 = 0

T̄ ij = δij

[
1
2a
−2
∑
I

(ϕ̄′I)
2 − V (ϕ̄1, . . . , ϕ̄N )

]
= δij p̄ . (4.4)

From this we have that

ρ̄+ p̄ = a−2
∑
I

(ϕ̄′I)
2 (4.5)

ρ̄− p̄ = 2V (4.6)

and the Friedmann equations are

H2 =
8πG

3
ρ̄a2 =

8πG

3

[
1
2

∑
I

(ϕ̄′I)
2 + a2V

]

H′ = −4πG

3
(ρ̄+ 3p̄) = −8πG

3

[∑
I

(ϕ̄′I)
2 − a2V

]
. (4.7)

Different combinations of the Friedmann equations give

−2H′ −H2 = 8πGp̄a2 = 8πG

[
1
2

∑
I

(ϕ̄′I)
2 − a2V

]
(4.8)

−H′ +H2 = 4πG(ρ̄+ p̄)a2 = 4πG
∑
I

(ϕ̄′I)
2 (4.9)

H′ + 2H2 = 4πG(ρ̄− p̄)a2 = 8πGa2V . (4.10)

In terms of ordinary cosmic time t, (4.3) and (4.7) become

¨̄ϕI + 3H ˙̄ϕI = −VI

H2 =
8πG

3
ρ̄ =

8πG

3

[
1
2

∑
I

( ˙̄ϕI)
2 + V

]
Ḣ = −4πG(ρ̄+ p̄) = −4πG

∑
I

˙̄ϕ2
I . (4.11)
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5 Perturbed Universe

The metric of the perturbed universe is

gµν = ḡµν + δgµν = a2(ηµν + hµν)

= a2

[
−1− 2A −Bi
−Bi (1− 2D)δij + 2Eij

]
gµν = a−2

[
−1 + 2A −Bi
−Bi (1 + 2D)δij − 2Eij

]
. (5.1)

From this, the metric determinant is (all products except the diagonal one are at least second
order small)

g ≈ −a8(1 + 2A)(1− 2D + 2E11)(1− 2D + 2E22)(1− 2D + 2E33)

≈ −a8 [1 + 2A− 6D + 2(E11 + E22 + E33)] = −a8(1 + 2A− 6D) , (5.2)

since Eij is traceless. From this,

√
−g = a4(1 +A− 3D) . (5.3)

In this perturbed metric, the field equations (3.7) become (exercise) 3

ϕ′′I + 2Hϕ′I −∇2ϕI −
(
A′ + 3D′ −Bi,i

)
ϕ′I = −a2(1 + 2A)

∂V

∂ϕI
. (5.4)

Divide now the fields into a background and a perturbation part,

ϕI = ϕ̄I(η) + δϕI(η, ~x) . (5.5)

The potential becomes

V (ϕ1, . . . , ϕN ) = V (ϕ̄1 + δϕ1, . . . , ϕ̄N + δϕN ) = V (ϕ̄1, . . . , ϕ̄N ) +
∂V

∂ϕI
δϕI , (5.6)

and its derivatives become

VI ≡
∂V

∂ϕI
=

∂V

∂ϕI
(ϕ̄1 + δϕ1, . . . , ϕ̄N + δϕN )

=
∂V

∂ϕI
(ϕ̄1, . . . , ϕ̄N ) +

∑
J

∂2V

∂ϕI∂ϕJ
δϕJ

≡ V̄I +
∑
J

V̄IJδϕJ . (5.7)

Dividing Eq. (5.4) into a background and a perturbation part (exercise), we get Eq. (4.3)
and the field perturbation equation

δϕ′′I + 2Hδϕ′I −∇2δϕI + a2VIJδϕJ = −2a2VIA+ ϕ′I(A
′ + 3D′ −Bi,i) , (5.8)

where we have now quit putting overbars on the background quantities (here VIJ , VI , and ϕ′).
Here −Bi,i = −∇ · ~B = ∇2B (note the signs!), so the vector part of ~B does not contribute. For

3In Sec. 3 we had the covariant derivative ∇µ and other curved spacetime machinery. Here we unravel all that
into ordinary functions of coordinates and ordinary partial derivatives, so that, e.g., ∇2 =

∑
i ∂i∂i. We usually

don’t write the
∑

since summation over repeated indices, e.g., i or I, is implied.
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symmetry reasons, the scalar fields couple only to scalar metric perturbations, and therefore we
shall just discuss those from here on.

Inserting (5.5) into (3.14) we get the background part of the energy tensor (4.4) and its
perturbation (exercise)

δT 0
0 = −

∑
I

{
a−2

[
ϕ′Iδϕ

′
I − (ϕ′I)

2A
]

+ VIδϕI
}

= −δρ

δT 0
i = −a−2

∑
I

ϕ′I∂i(δϕI)

δT i0 = +a−2
∑
I

[
ϕ′I∂i(δϕI)− (ϕ′I)

2Bi
]

δT ij = δij
∑
I

{
a−2

[
ϕ′Iδϕ

′
I − (ϕ′I)

2A
]
− VIδϕI

}
= δijδp . (5.9)

We see that scalar fields have no anisotropic stress, and therefore the two Bardeen potentials are
equal, Φ = Ψ. (Note also that the shift vector Bi appears in δT i0, whereas in the fluid description
it appeared in δT 0

i . This is because we now base the Tµν perturbation on the gradient ∂νϕI ,
which is a covariant vector; whereas in the fluid description we used the contravariant vector
uµ.)

We can now write the Einstein equations. (Exercise: Take δGµν from Appendix A of part
1 of these notes, assuming scalar perturbations.)

1
2a

2δG0
0 = 3H(HA+D′)−∇2(ψ −HB)

= −4πG
∑
I

{[
ϕ′Iδϕ

′
I − (ϕ′I)

2A
]

+ a2VIδϕI
}

(5.10)

−1
2a

2δG0
i =

(
ψ′ +HA

)
,i

= 4πG
∑
I

ϕ′I∂i(δϕI) (5.11)

+1
2a

2δGi0 =
[
ψ′ +HA+ (−H′ +H2)B

]
,i

= 4πG
∑
I

[
ϕ′I∂i(δϕI) + (ϕ′I)

2B,i
]

(5.12)

1
2a

2δGij =
[
(2H′ +H2)A+HA′ + ψ′′ + 2Hψ′ + 1

2∇
2D
]
δij − 1

2D,ij
= 4πGδij

∑
I

{[
ϕ′Iδϕ

′
I − (ϕ′I)

2A
]
− a2VIδϕI

}
, (5.13)

where ψ ≡ D + 1
3∇

2E and

D ≡ A− ψ + 2H(B − E′) + (B − E′)′ = 0 (5.14)

since the rhs of Eq. (5.13) has no off-diagonal part.4 Both sides of Eqs. (5.11,5.12) are gradients,
and from Eqs. (5.11,5.12,5.13) we get

ψ′ +HA = 4πG
∑
I

ϕ′IδϕI (5.15)

ψ′ +HA+ (−H′ +H2)B = 4πG
∑
I

[
ϕ′IδϕI + (ϕ′I)

2B
]

(5.16)

(2H′ +H2)A+HA′ + ψ′′ + 2Hψ′ = 4πG
∑
I

{[
ϕ′Iδϕ

′
I − (ϕ′I)

2A
]
− a2VIδϕI

}
. (5.17)

4We use similar arguments as when we derived the Einstein equations for perturbations with fluid sources in
Part 1. The nondiagonal part of D,ij does not vanish, unless D = 0. In Fourier space D,ij becomes −kikjD~k and
for each Fourier mode we can orient the coordinate system so that at least two of the ki are nonzero.
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The difference between Eqs. (5.16) and (5.15) is just the background equation (4.9), so they are
not independent perturbation equations.

Since the ϕI are scalar fields, they gauge transform as

δ̃ϕI = δϕI − ϕ̄′Iξ0 . (5.18)

6 Spatially Flat Gauge

There are different strategies for solving the scalar field perturbation equations. One strategy
is to use the Einstein equations to eliminate the metric perturbations from Eq. (5.8), to get a
differential equation just for δϕI .

To accomplish this, we go to the spatially flat gauge, denoted by the sub/superscript Q and
defined by

ψQ = 0 . (6.1)

Thus DQ = −1
3∇

2EQ. Since the metric perturbation ψ transforms as

ψ̃ = ψ +Hξ0 . (6.2)

we get to the spatially flat gauge by the gauge transformation

ξ0 = −H−1ψ . (6.3)

The field perturbation in the spatially flat gauge is usually denoted by Q and called the
Sasaki or Mukhanov variable:

QI ≡ δϕQI = δϕI +
ϕ̄′I
H
ψ . (6.4)

(We could also say that the Sasaki–Mukhanov variable is the gauge-invariant quantity defined
by the rhs of (6.4).) In the spatially flat gauge the field equations read

Q′′I + 2HQ′I −∇2QI + a2VIJQJ = −2a2VIAQ + ϕ′I(A
′
Q + 3D′Q +∇2BQ)

= −2a2VIAQ + ϕ′IA
′
Q − ϕ′I∇2(E′Q −BQ) . (6.5)

The second Einstein equation (5.15) is now

HAQ = 4πG
∑
I

ϕ′IQI ⇒ AQ = 4πGH−1
∑
I

ϕ′IQI , (6.6)

which allows us to eliminate AQ from Eq. (6.5) in favor of field perturbations QI .
The remaining metric perturbations are the combination ∇2(E′Q − BQ). We first note that

the Bardeen potentials are now

Φ = Ψ = ψ −H(B − E′) = H(E′Q −BQ) , (6.7)

so that the last term in Eq. (6.5) is

−ϕ′I∇2(E′Q −BQ) = −H−1ϕ′I∇2Φ , (6.8)

where
∇2Φ = 4πGa2δρC (6.9)

from the Einstein constraint equation. The remaining metric perturbations have now been
replaced by an energy density perturbation, but in a different gauge, the comoving gauge!
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Thus we now need express the comoving gauge density perturbation δρC in terms of spatially
flat gauge quantities.

The comoving gauge was defined earlier by the requirement vC = BC = 0. The concept of
“velocity” is perhaps not appropriate for scalar fields, although we could formally define it as

vi = − δT 0
i

ρ+ p
, (6.10)

so we define comoving gauge by

δT 0
i = 0 and B = 0 . (6.11)

From this follows that ∑
I

ϕ′I∂i(δϕ
C
I ) = 0 (6.12)

and for the single-field case
δϕC = 0 (6.13)

(at least when ϕ′ 6= 0). Since δT 0
i and B transform as

δ̃T
0

i = δT 0
i − (T 0

0 − 1
3T

k
k )ξ0

,i = δT 0
i + (ρ+ p)ξ0

,i

B̃ = B + ξ′ + ξ0 , (6.14)

we get to comoving gauge by

ξ0
,i = − δT 0

i

ρ+ p
=

∂i(ϕ
′
IδϕI)∑

(ϕ′I)
2

⇒ ξ0 =
ϕ′IδϕI∑

(ϕ′I)
2

(6.15)

and
ξ′ = −B − ξ0 . (6.16)

For the comoving gauge density perturbation we get (exercise)

δρC = δρ− ρ′ξ0

= a−2
∑
I

[
ϕ′I(δϕ

′
I − ϕ′IA)− (ϕ′′I −Hϕ′I)δϕI

]
= a−2

∑
I

[
ϕ′I(δϕ

′
I − ϕ′IA) +

(
3Hϕ′I + a2 ∂V

∂ϕI

)
δϕI

]
⇒ ∇2Φ = 4πG

∑
I

[
ϕ′I(δϕ

′
I − ϕ′IA)− (ϕ′′I −Hϕ′I)δϕI

]
, (6.17)

where δϕI and A are in arbitrary gauge. In particular, in the spatially flat gauge

∇2Φ = 4πG
∑
I

[
ϕ′I(Q

′
I − ϕ′IAQ)− (ϕ′′I −Hϕ′I)QI

]
. (6.18)

We can now use Eq. (6.6) (and the background Eq. 4.9) to eliminate AQ from Eq. (6.18) (ex-
ercise),

∇2Φ = 4πGa2δρC = 4πG
∑
I

ϕ′I

(
Q′I +

H′

H
QI −

ϕ′′I
ϕ′I
QI

)
(6.19)
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and to write Eq. (6.5) as a differential equation involving just the field perturbations QI (ex-
ercise):

Q′′I + 2HQ′I −∇2QI +
∑
J

[
a2VIJ −

8πG

a2

(
a2

H
ϕ′Iϕ

′
J

)′]
QJ = 0 . (6.20)

We see that the evolution of the different scalar field perturbations QI are coupled by the
second derivatives of the potential VIJ and the background evolution

(
a2H−1ϕ′Iϕ

′
J

)′
.5 In terms

of ordinary cosmic time t, Eq. (6.20) becomes (exercise)

Q̈I + 3HQ̇I −
1

a2
∇2QI +

∑
J

[
VIJ −

8πG

a3

d

dt

(
a3

H
ϕ̇I ϕ̇J

)]
QJ = 0 . (6.21)

7 Single Field

7.1 Background

For the case of a single field, Eq. (4.4) becomes

ρ = 1
2a
−2(ϕ′)2 + V and p = 1

2a
−2(ϕ′)2 − V , (7.1)

so that

ρ+ p = a−2(ϕ′)2 ρ− p = 2V w ≡ p

ρ
=

(ϕ′)2 − 2a2V

(ϕ′)2 + 2a2V
(7.2)

and the Friedmann equations are

H2 =
8πG

3
ρa2 =

4πG

3

[
(ϕ′)2 + 2a2V

]
(7.3)

H′ = −4πG

3
(ρ+ 3p)a2 = −8πG

3

[
(ϕ′)2 − a2V

]
. (7.4)

The background field equation is

ϕ′′ + 2Hϕ′ + a2Vϕ = 0 , (7.5)

where Vϕ ≡ dV/dϕ. Derivating (7.1) and using (7.5), we have

ρ′ = −3Ha−2(ϕ′)2 and p′ = −3Ha−2(ϕ′)2 − 2ϕ′Vϕ (7.6)

and

c2
s ≡

p′

ρ′
=

3Hϕ′ + 2a2Vϕ
3Hϕ′

. (7.7)

5The background evolution part (the second term inside the square brackets) came from the metric perturba-
tions. In Cosmology II we ignored the metric perturbations in this context, saying that in a suitable gauge (e.g.,
the spatially flat gauge) their effect is negligible during inflation. We will see later (Secs. 7.5 and 9.3) that this
contribution is of 1st order in slow-roll parameters and (in Sec. 7.7) that, for single-field inflation, to calculate the
primordial power spectrum to 1st order in slow-roll parameters it is enough to use the field perturbation equation
to 0th order in slow-roll parameters.
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7.2 Field perturbation equation

For a single scalar field, we have just one degree of freedom (for each Fourier mode ~k). For
that degree of freedom, we can take the metric perturbation Φ, or the field perturbation in the
spatially flat gauge Q. For both approaches we get a second order differential equation, in the
latter case

Q′′~k + 2HQ′~k + k2Q~k + a2VϕϕQ~k =
8πG

a2

[
a2

H
(ϕ′)2

]′
Q~k . (7.8)

If we know the background solution, we can solve the evolution of the field perturbations starting
from initial values Q~k and Q′~k

specified at some initial time η = ηinit. The field perturbations
then determine all other perturbation quantities.

However, just like in the fluid case, it is useful to introduce the comoving curvature pertur-
bation R. It has a simpler behavior at superhorizon scales, which helps us understand what is
going on.

7.3 Comoving curvature perturbation

The comoving curvature perturbation is defined

R ≡ −ψC = −ψ −Hξ0 , (7.9)

where now, from Eq. (6.15)

ξ0 =
δϕ

ϕ′
, (7.10)

so that we have

R = −ψ − H
ϕ′
δϕ = −H

ϕ′
Q . (7.11)

Derivating this gives

R′ = −H
ϕ′

(
Q′ +

H′

H
Q− ϕ′′

ϕ′
Q

)
. (7.12)

Comparing to Eq. (6.19) we can write this as

R′ = − Ha
2

(ϕ′)2
δρC = − H

ρ+ p
δρC (7.13)

= − H
4πG(ϕ′)2

∇2Φ = − 2

3H
ρ

ρ+ p
∇2Φ . (7.14)

In Fourier space

H−1R′~k =
2

3

ρ

ρ+ p

(
k

H

)2

Φ , (7.15)

showing that R~k = const. at superhorizon (k � H) scales. During inflation ρ + p � ρ; in
Sec. 7.4 we show that 1 + w = (ρ + p)/ρ is first order in slow-roll parameters. However, for
cosmologically relevant scales k/H will typically shrink to something like e−50, which is much
smaller.

We can compare Eq. (7.13) to the equation from the first part of the course,

H−1R′ = − δpC

ρ+ p
− 2

3

w

1 + w
∇2Π = − δpC

ρ+ p
(7.16)

(since now Π = 0).
In the single-field case δρC = δpC , since δρ − δp = 2Vϕδϕ and δϕC = 0. Comoving time

slices are the ϕ = const hypersurfaces.
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Total entropy perturbation (we do not use this for anything in these lectures). We have defined
the total entropy perturbation

S ≡ H
(
δp

p′
− δρ

ρ′

)
(7.17)

⇒ δp = c2s [δρ− 3(ρ+ p)S] , (7.18)

where c2s ≡ p′/ρ′. In the single-field case S is proportional to δρC , and therefore it is negligible at
superhorizon scales (since δρC is), compared to quantities like R and Φ.

In the single-field case

S =
c2s − 1

3c2s

δρC

ρ+ p
=

2a2Vϕ
3(ϕ′)2(3Hϕ′ + 2a2Vϕ)

a2δρC =
a2Vϕ

6πG(ϕ′)2(3Hϕ′ + 2a2Vϕ)
∇2Φ , (7.19)

so that

S~k = −2

9

ρ

ρ+ p

2a2Vϕ
3Hϕ′ + 2a2Vϕ

(
k

H

)2

Φ~k . (7.20)

7.4 Slow-Roll Inflation

This subsection is completely about the background solution. We use ordinary cosmic time t,
instead of the conformal time η, and write

V ′ ≡ dV

dϕ
. (7.21)

The exact background equations are

ϕ̈+ 3Hϕ̇+ V ′ = 0 and H2 =
8πG

3

(
1
2 ϕ̇

2 + V
)

=
1

3M2

(
1
2 ϕ̇

2 + V
)
, (7.22)

where

M ≡ 1√
8πG

(7.23)

is the reduced Planck mass.
In the slow-roll approximation we assume that

ϕ̇2 � V and |ϕ̈| � |3Hϕ̇| , (7.24)

and replace Eq. (7.22) by the slow-roll equations

3Hϕ̇+ V ′ = 0 ⇒ V ′ = −3Hϕ̇ ⇒ ϕ̇ = − V
′

3H

H2 =
1

3M2
V ⇒ V = 3M2H2 ⇒ 3H2 =

V

M2
, (7.25)

and from these

H−1ϕ̇ = −M2V
′

V
. (7.26)

To be consistent, we must now completely forget Eqs. (7.22), and use just Eqs. (7.25) in their
place.

The important thing about the slow-roll approximation is that everything now depends on
ϕ, through V (ϕ) and its derivatives; we can not specify ϕ and ϕ̇ separately. Derivating the
slow-roll equations, we get (exercise)

Ḣ = −(V ′)2

6V
and ϕ̈ =

M2

3

V ′′V ′

V
− M2

6

(V ′)3

V 2
. (7.27)
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We define the slow-roll parameters

ε ≡ εV ≡
M2

2

(
V ′

V

)2

η ≡ ηV ≡ M2V
′′

V
ξ ≡ ξV ≡ M4V

′′′V ′

V 2
. (7.28)

(We do not usually write the subscript V .6) Using the slow-roll equations we obtain the following
results (exercise)

H−2Ḣ = −ε(
H−1ϕ̇

)2
= 2M2ε

H−2ϕ̈ = H−1ϕ̇(ε− η)

H−1ε̇ = −2εη + 4ε2

H−1η̇ = 2εη − ξ (7.31)

and

ρ = (1 + 1
3ε)V

p = (−1 + 1
3ε)V

w ≡ p

ρ
≈ −1 + 2

3ε ⇒ 1 + w ≈ 2
3ε

c2
s ≡

ṗ

ρ̇
≈ −1− 2

3ε+ 2
3η . (7.32)

During inflation, the slow-roll parameters ε and η are typically small, and ξ even smaller:
typically ξ is ”second-order small” compared to ε and η. When we say that we calculate to a
given order in slow-roll parameters, we refer to ε and η as being first order, and ξ as second order.
We see that the time variation of ε and η is also second-order small in slow-roll parameters.

7.5 Evolution through Horizon Exit

7.5.1 Preliminaries

We want to calculate how field perturbations evolve in slow-roll inflation, starting from when
the perturbations are well inside the horizon, and ending when they are well outside the horizon.

The field perturbation equation is

H−2Q̈~k + 3H−1Q̇~k +

(
k

aH

)2

Q~k =

[
8πG

a3H2

d

dt

(
a3

H
ϕ̇2

)
−H−2V ′′

]
Q~k . (7.33)

In the slow-roll approximation the right hand side is (exercise)[
6ε− 3η + 6ε2 − 4εη

]
Q~k . (7.34)

6The subscript V is to emphasize that these are the potential slow-roll parameters, defined through V (ϕ), to
distinguish them from the Hamilton-Jacobi slow-roll parameters, defined as

εH ≡ 2M2

[
H ′(ϕ)

H(ϕ)

]2
and ηH ≡ 2M2H

′′(ϕ)

H(ϕ)
, (7.29)

where ′ denotes derivation with respect to ϕ. One can show that

εH = −d lnH

d ln a
= − Ḣ

H2
and ηH = −d lnH ′

d ln a
(7.30)

and we will actually use εH in Sec. 7.7.2. These two kinds of slow-roll parameters are equal to first order in each
other but differ in second order. The subscript V also serves to distinguish ηV from the conformal time η, so we
use it when there may be a danger of confusion. If there is no subscript we mean εV , ηV , and ξV .
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Here the −3η came from the V ′′ term, and the 6ε+ 6ε2 − 4εη from the first term, which came
from the rhs of Eq. (6.5), i.e., the metric perturbation part. Thus we see that in the spatially
flat gauge, metric perturbations affect the field perturbation equation at the first-order level in
slow-roll parameters. If we calculated just to 0th order in slow-roll parameters, we could ignore
the metric perturbations in this gauge.

We calculate to first order in slow-roll parameters, so that the field perturbation equation is

H−2Q̈~k + 3H−1Q̇~k +

(
k

aH

)2

Q~k = [6ε− 3η]Q~k , (7.35)

or, in conformal time
Q′′ + 2HQ′ + k2Q = H2 (6ε− 3ηV )Q , (7.36)

where we can take ε and ηV to be constant (since their time variation is of second order in
slow-roll parameters). We use the subscript V in the slow-roll parameter ηV so as not to confuse
it with the conformal time η. Defining

u ≡ aQ , (7.37)

Eq. (7.36) becomes

u′′ +

(
k2 − a′′

a

)
u = H2(6ε− 3ηV )u . (7.38)

7.5.2 Background

First we need to solve the background problem, i.e., how do a and H evolve. From

H =
a′

a
= aH = ȧ (7.39)

we find (exercise)

a′′

a
= H2

(
1 +
H′

H2

)
and

H′

H2
= 1 +

Ḣ

H2
. (7.40)

Using the slow-roll relations (7.31) we have thus that

H′

H2
= 1− ε (7.41)

and
a′′

a
= H2(2− ε) . (7.42)

Integrating (7.41), we get

dH
H2

= (1− ε)dη ⇒ H =
−1

(1− ε)η
=

1

a

da

dη
. (7.43)

Integrating again,

da

a
= − 1

1− ε
dη

η
⇒ ln a = − 1

1− ε
ln |η|+ const. ⇒ a ∝ (−η)−

1
1−ε . (7.44)

Note that here η is negative; as time goes on η → 0 and a→∞ (if slow-roll inflation continued
forever).
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7.5.3 Hankel and Bessel functions

The Hankel functions

H(1)
ν (x) ≡ Jν(x) + iNν(x) and H(2)

ν (x) ≡ Jν(x)− iNν(x) , (7.45)

where the Jν and Nν are Bessel and Neumann functions, are solutions of the Bessel equation

x2 d
2

dx2
Z(x) + x

d

dx
Z(x) +

[
x2 − ν2

]
Z(x) = 0. (7.46)

For real x, Jν(x) and Nν(x) are real, and H
(2)
ν (x) = H

(1)
ν (x)∗. Their asymptotic behavior is

H(1)
ν (x) ∼

√
2

πx
e
i
[
x−(ν+

1
2 )π

2

]
for x→∞ (7.47)

H(1)
ν (x) ∼ −i(ν − 1)!

π

(
2

x

)ν
=

√
2

π
e−i

π
2 2ν−

3
2

Γ(ν)

Γ(3
2)
x−ν for x→ 0 . (7.48)

The latter form will be useful for us, since we’ll have ν close to 3
2 .

The solutions of

x2 d
2

dx2
Z(x) + x

d

dx
Z(x) +

[
k2x2 − ν2

]
Z(x) = 0 (7.49)

are
H(1)
ν (kx) and H(2)

ν (kx) (7.50)

and for negative x, the solutions are

H(1)
ν (−kx) and H(2)

ν (−kx) . (7.51)

7.5.4 The perturbation equation

Using (7.42), Eq. (7.38) becomes

u′′ +
[
k2 −H2(2 + 5ε− 3ηV )

]
u = 0 , (7.52)

and using

H2 =
1

(1− ε)2η2
≈ 1 + 2ε

η2
(7.53)

we get, to 1st order in slow-roll parameters,

u′′ +

[
k2 − 1

η2
(2 + 9ε− 3ηV )

]
u = 0 . (7.54)

This equation is closely related to the Bessel equation. To see this, write it as

u′′ +

[
k2 − 1

η2
(ν2 − 1

4)

]
u = 0 . (7.55)

where

ν2 = 9
4 + 9ε− 3ηV ⇒ ν = 3

2

√
1 + 4ε− 4

3ηV ≈
3
2 + 3ε− ηV . (7.56)

Define now a new function s so that

u ≡ (−η)1/2s . (7.57)
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Eq. (7.55) becomes (exercise)

η2s′′ + ηs′ +
[
k2η2 − ν2

]
s = 0 , (7.58)

which we recognize as the Bessel equation (7.49). The solutions are thus

s(η) ≡ (−η)−1/2u(η) ≡ (−η)−1/2aQ~k(η) = C
1~k
H(1)
ν (−kη) + C

2~k
H(2)
ν (−kη) , (7.59)

or
Q~k = C~ka

−1√−ηHν(−kη) . (7.60)

Early times correspond to x = −kη →∞ and late times to x = −kη → 0. Thus we have for
early times

Q~k = C~k

√
2

π

1

a
√
k
e−ikη (7.61)

and at late times

Q~k = C~ka
−1√−η

√
2

π
2ν−3/2 Γ(ν)

Γ(3
2)

(−kη)−ν (7.62)

where we dropped the constant phase factors exp[−i(ν+1/2)π/2] (early) and exp(−iπ/2) (late),
since they do not matter in what follows. (One phase factor can be included in the constant C~k,
but since this constant is supposed to be the same in both limits, there is in reality an extra
phase difference exp[i(ν − 1/2)π/2] between the late and early times, which we did not bother
to write in. At early times the phase is rotating rapidly, anyway.) From (7.56),

ν = 3
2 + 3ε− ηV . (7.63)

From (7.44),

a−1 ∝ (−η)1/(1−ε) ≈ (−η)1+ε ⇒ a−1√−η ∝ (−η)3/2+ε (7.64)

so we have at late times
Q~k ∝ (−η)3/2+ε−ν = (−η)ηV −2ε , (7.65)

i.e., Q~k becomes almost constant; that is, it becomes constant to 0th order in slow-roll parame-
ters.

7.6 Generation of Scalar Perturbations

Subhorizon scales during inflation are microscopic7 and therefore quantum effects are important.
Thus we should study the behavior of scalar fields using quantum field theory. Consider first
the quantum field theory of a scalar field in Minkowski space.

7.6.1 Vacuum fluctuations in Minkowski space

The field equation for a massive free (i.e. V (ϕ) = 1
2m

2ϕ2) real scalar field in Minkowski space is

ϕ̈−∇2ϕ+m2ϕ = 0 , (7.66)

or
ϕ̈~k + E2

kϕ~k = 0 , (7.67)

7We later give an upper limit to the inflation energy scale, i.e., V at the time cosmological scales exited the
horizon, V 1/4 < 6.8 × 1016 GeV. From H2 = V/3M2 we have H < 1.0 × 1015 GeV or for the Hubble length
H−1 > 1.9× 10−31 m. This is a lower limit to the horizon size, but it is not expected to be very many orders of
magnitude larger.
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where E2
k = k2 + m2, for Fourier components. We recognize (7.67) as the equation for a har-

monic oscillator. Thus each Fourier component of the field behaves as an independent harmonic
oscillator. For convenience, we consider the system enclosed in a finite cubic box with volume
V = L3 (not to be confused with the field potential), allowing us to do Fourier sums over a
discrete set of wave numbers (momenta) ~k, instead of Fourier integrals.

In the quantum mechanical treatment of the harmonic oscillator one introduces the creation
and annihilation operators, which raise and lower the energy state of the system. We can do
the same here.

Now we have a different pair of creation and annihilation operators â†~k
, â~k for each Fourier

mode ~k. We denote the ground state of the system by |0〉, and call it the vacuum. Particles are
quanta of the oscillations of the field. The vacuum is a state with no particles. Operating on
the vacuum with the creation operator â†~k

, we add one quantum with momentum ~k and energy
Ek to the system, i.e., we create one particle. We denote this state with one particle, whose
momentum is ~k by |1~k〉. Thus

â†~k
|0〉 = |1~k〉 . (7.68)

This particle has a well-defined momentum ~k, and therefore it is completely unlocalized (Heisen-
berg’s uncertainty principle). The annihilation operator acting on the vacuum gives zero, i.e.,
not the vacuum state but the zero element of Hilbert space (the space of all quantum states),

â~k|0〉 = 0 . (7.69)

We denote the Hermitian conjugate of the vacuum state by 〈0|. Thus

〈0|â~k = 〈1~k| and 〈0|â†~k = 0 . (7.70)

The commutation relations of the creation and annihilation operators are

[â†~k
, â†~k′

] = [â~k, â~k′ ] = 0, [â~k, â
†
~k′

] = δ~k~k′ . (7.71)

When going from classical physics to quantum physics, classical observables are replaced by
operators. One can then calculate expectation values for these observables using the operators.
Here the classical observable

ϕ(t, ~x) =
∑

ϕ~k(t)e
i~k·~x (7.72)

is replaced by the field operator

ϕ̂(t, ~x) =
∑

ϕ̂~k(t)e
i~k·~x (7.73)

where8

ϕ̂~k(t) = wk(t)â~k + w∗k(t)â
†
−~k

(7.74)

and

wk(t) = V −1/2 1√
2Ek

e−iEkt (7.75)

is the mode function, a normalized solution of the field equation (7.67). We are using the Heisen-
berg picture, i.e. we have time-dependent operators; the quantum states are time-independent.

Classically the ground state would be one where ϕ = const = 0, but we know from the
quantum mechanics of a harmonic oscillator, that there are oscillations even in the ground

8We skip the detailed derivation of the field operator, which belongs to a course of quantum field theory.
See e.g. Peskin & Schroeder, section 2.3 (note different normalizations of operators and states, related to doing
Fourier integrals rather than sums and convenience in relation to Lorentz invariance). Our discussion here is
rather incomplete, since we do not derive the normalization of the mode function, which is actually the most
important part of the result (7.79).
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state. Likewise, there are fluctuations of the scalar field, vacuum fluctuations, even in the
vacuum state.

We shall now calculate the power spectrum of these vacuum fluctuations. The power spectrum
is defined as the expectation value

Pϕ(k) = V
k3

2π2
〈|ϕ~k|

2〉 (7.76)

and it gives the variance of ϕ(~x) as

〈ϕ(~x)2〉 =

∫ ∞
0

dk

k
Pϕ(k) . (7.77)

For the vacuum state |0〉 the expectation value of |ϕ~k|
2 is

〈0|ϕ̂~kϕ̂
†
~k
|0〉 =

|wk|2〈0|â~kâ
†
~k
|0〉+ w2

k〈0|â~kâ−~k|0〉+ (w∗k)
2〈0|â†

−~k
â†~k
|0〉+ |wk|2〈0|â†−~kâ−~k|0〉

= |wk|2〈1~k|1~k〉 = |wk|2 (7.78)

since all but the first term give 0, and our states are normalized so that 〈1~k|1~k′〉 = δ~k~k′ . From
Eq. (7.75) we have that |wk|2 = 1/(2V Ek). Our main result is that

Pϕ(k) = V
k3

2π2
|wk|2 (7.79)

for vacuum fluctuations, which we shall now apply to inflation, where the mode functions wk(t)
are different.

7.6.2 Vacuum fluctuations during inflation

During inflation the field equation (for inflaton perturbations) is, Eq. (7.33). There are oscilla-
tions only in the perturbation Q; the background ϕ is homogeneous and evolving slowly in time.
For the particle point of view, the background solution represents the vacuum,9 i.e., particles
are quanta of oscillations around that value.

We found that the two independent solutions for Q~k(η) are

wk(η) = C~ka
−1√−ηH(1)

ν (−kη) (7.80)

and its complex conjugate w∗k(η), where the time dependence is in a = a(η) ∝ (−η)−1/(1−εV ).
When the scale k is well inside the horizon, k � H ∼ 1/(−η),

wk(η) ≈ C~k

√
2

π

1

a
√
k
e−ikη (7.81)

oscillates rapidly compared to the Hubble time. If we consider distance and time scales much
smaller than the Hubble scale, we can ignore the expansion of the universe, and write η = t/a.
Things should then behave like in Minkowski space and we can equate the above solution with
the Minkowski mode function,

C~k

√
2

π

1

a
√
k
e−ikt/a = (aL)−3/2 1√

2Ek
e−iEkt (7.82)

9This is not the vacuum state in the sense of being the ground state of the system. The true ground state has
ϕ at the minimum of the potential. However there are no particles related to the background evolution ϕ(t).
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(we write a3V = (aL)3 for the reference volume, so that V represents the comoving volume).
From this we identify Ek = k/a (there is no mass here since were are in the large k limit) and

C~k = L−3/2

√
π

4
, (7.83)

so that the correctly normalized mode function during inflation is

wk(η) = L−3/2

√
π

4
a−1√−ηHν(−kη) , (7.84)

which we can now apply at all times during slow-roll inflation.
The field operator for the scalar field perturbations during inflation is

Q̂~k(η) = wk(η)â~k + w∗k(η)â†
−~k
, (7.85)

and the power spectrum of the scalar field fluctuations is

PQ(k) = L3 k
3

2π2
|wk|2 . (7.86)

Well before horizon exit, k � H, observed during timescales much less than the Hubble
time, the field operator Q̂~k(η) becomes the Minkowski space field operator and we have standard
vacuum fluctuations in ϕ.

Well after horizon exit, the mode function becomes almost constant in time,

wk(η) = L−3/2 1√
2

2ν−3/2 Γ(ν)

Γ(3
2)

1

a

√
−η(−kη)−ν ∝ (−η)ηV −2ε , (7.87)

(use a ∝ (−η)−1−ε and ν = 3
2 + 3ε− ηV ) the fluctuations “freeze”. They are now at large scales,

and can be treated classically. The power spectrum of Q fluctuations becomes

PQ(η, k) =
22ν−3

(2π)2

[
Γ(ν)

Γ(3
2)

]2

(−aη)−2(−kη)3−2ν (7.88)

=
26ε−2ηV

(2π)2

[
Γ(3

2 + 3ε− ηV )

Γ(3
2)

]2

(−aη)−2(−kη)2ηV −6ε .

We see that the scale dependence of the power spectrum is

PQ ∝ k2ηV −6ε ≡ kns ⇒ ns = 2ηV − 6ε . (7.89)

Even at late times, this power spectrum has a weak time dependence ∝ (−η)2ηV −4ε, and
more importantly, our approximation that the slow-roll parameters stay constant will only hold
for a number of e-foldings � 1/(slow-roll params). Thus we want to switch to other variables
after horizon exit.

7.7 The Primordial Power Spectrum

We learned in Sec. 7.3 that the comoving curvature perturbation stays constant at superhorizon
scales, and that

R = −H
ϕ̇
Q , (7.90)
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from which follows

PR(η, k) =

(
H

ϕ̇

)2

PQ(η, k) . (7.91)

Thus we have at late times (when k � H)

PR(η, k) =
22ν−3

(2π)2

[
Γ(ν)

Γ(3
2)

]2(
H

−aηϕ̇

)2

(−kη)3−2ν (7.92)

The scale dependence is k3−2ν and the time dependence is given by(
H

aϕ̇

)2

(−η)1−2ν . (7.93)

Exercise: Show that this is indeed constant in time in the slow-roll approximation (calculate
to 1st order in slow-roll parameters).

Since the factor (7.93) stays constant, we can choose to evaluate it for each k at the time
when the scale k exits the horizon, when k = aH, although Eq. (7.92) does not give the power
spectrum yet at that time (it still has the full Hankel function then, not the late time limit),
only later.

From (7.43),

H = aH =
−1

(1− ε)η
(7.94)

we have

−aη =
1

(1− ε)H
and − kη =

k

(1− ε)aH
(7.95)

so that (7.92) becomes

PR(η, k) = 22ν−3

[
Γ(ν)

Γ(3
2)

]2

(1− ε)2ν−1

(
H

2π

)2(H
ϕ̇

)2( k

aH

)3−2ν

, (7.96)

which we now evaluate for each k at the time of its horizon exit, k = aH = H to arrive at the
final result

PR(k) =

22ν−3

(
Γ(ν)

Γ(3
2)

)2

(1− ε)2ν−1

(
H

2π

)2(H
ϕ̇

)2

k=aH

. (7.97)

This is the primordial perturbation spectrum. Expression (7.97) has now explicitly no time
dependence, since by definition, it is to be evaluated for each scale at the time of horizon exit
(k = aH). Independent of the slow-roll approximation, PR(k) stays constant in time for as long
as the scales k in question are well outside the horizon. (Note that it does not hold yet at the
time of horizon exit of the given scale.)

We can now assume that Eq. (7.97) has been derived separately at each different k, so that
for each k the slow-roll parameters were approximated to be constant at that value they had
when k = aH. Thus Eq. (7.97) is valid for all scales for which the slow-roll approximation was
valid around horizon exit, even though the slow-roll parameters may have changed significantly
while this whole range of scales exited.

To 1st order in slow-roll parameters (see Sec. 7.7.1), Eq. (7.97) has the same scale dependence
as (7.88),

ns ≡
d lnPR
d ln k

= 3− 2ν = 2η − 6ε , (7.98)

but we can now actually calculate the scale dependence to 2nd order in slow-roll parameters (see
Sec. 7.7.2).
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7.7.1 Spectral index to first order in slow roll

In Cosmology II we did the preceding calculation for the evolution of perturbations through the
horizon to 0th order in slow-roll, i.e., setting ν = 3

2 in Eq. (7.55), and got the result

PR(k) =

[(
H

2π

)2(H
ϕ̇

)2
]
k=aH

=
1

24π2

1

M2

V

ε

∣∣∣∣
k=aH

. (7.99)

To calculate the spectral index 10

ns ≡
d lnPR
d ln k

, (7.100)

we first note that
d ln k

dt
=

d ln(aH)

dt
=
ȧ

a
+
Ḣ

H
= (1− ε)H , (7.101)

where we used Ḣ = −εH2 (in the slow-roll approximation) in the last step. Thus

d

d ln k
=

1

1− ε
1

H

d

dt
=

1

1− ε
ϕ̇

H

d

dϕ
= − M2

1− ε
V ′

V

d

dϕ
(7.102)

≈ 1

H

d

dt
= −M2V

′

V

d

dϕ
. (7.103)

and

d lnPR
d ln k

=
1

PR
dPR
d ln k

=
ε

V

d

d ln k

(
V

ε

)
=

1

V

dV

d ln k
− 1

ε

dε

d ln k
(7.104)

≈ −M2 V
′

V 2

dV

dϕ
− 1

ε
H−1ε̇ = −2ε− (−2η + 4ε) = −6ε+ 2η . (7.105)

7.7.2 Spectral index to second order in slow roll

If the 0th order power spectrum was enough to calculate its spectral index to 1st order, then
the 1st order spectrum (7.97) should be enough to calculate the spectral index to 2nd order in
slow-roll parameters.11 From (7.97),

d lnPR
d ln k

=
d

d ln k
ln

22ν−3

(
Γ(ν)

Γ(3
2)

)2

(1− ε)2ν−1

+
d

d ln k
ln

[(
H

2π

)2(H
ϕ̇

)2
]
. (7.106)

In the first term we must account for the change of ν and ε as different scales k exit. In the
calculation we need to derivate the Γ function. The digamma function is defined

ψ(x) ≡ d ln Γ(x)

dx

and we will need the numerical value ψ(3
2) = ψ(1

2) + 2 = −γ − 2 ln 2 + 2, where γ =
0.577 215 664 901 . . . is the Euler–Mascheroni constant. Calculation gives (exercise)

d

d ln k
ln

22ν−3

(
Γ(ν)

Γ(3
2)

)2

(1− ε)2ν−1

 ≈ (2− ln 2− γ)
(
−16εη + 24ε2 + 2ξ

)
+ 4εη − 8ε2 ,

(7.107)

10In the literature, especially when discussing observational results, it is common to define the spectral index
of scalar perturbations as ns ≡ 1 + d lnP/d ln k, for historical reasons. So take care when comparing different
sources.

11This is because the spectral index is a derivative with respect to scale and because of the connection with
horizon exit this is essentially a derivative with respect to time, and as we saw in Eq. (7.31) during slow roll these
derivatives are typically one order higher in slow-roll parameters.
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where 2− ln 2− γ ≈ 0.729637.
For the second term, the calculation of Sec. 7.7.1 is not enough, since we want to calculate

it now to second order in slow-roll parameters. In particular, we need a higher order result for
H−1ε̇, since although Eq. (7.31d) that we used was 2nd order, it was used as (1/ε)H−1ε̇, which
is 1st order.

How do we calculate to higher order in slow-roll? The slow-roll equations of Sec. 7.4, which
we may call first-order slow-roll equations are not enough. Go back to the exact background
equations (7.22),

ϕ̈+ 3Hϕ̇+ V ′ = 0 and H2 =
1

3M2

(
1
2 ϕ̇

2 + V
)
. (7.108)

To get the first-order slow-roll equations, we dropped the terms ϕ̈ and 1
2 ϕ̇

2. To get second-order
slow-roll equations, we do not drop these terms, but we replace them by their first-order slow-roll
approximations from Eq. (7.31),

ϕ̈ ≈ Hϕ̇(ε− η) and 1
2 ϕ̇

2 ≈M2H2ε (7.109)

to arrive at the 2nd order slow-roll equations

(3 + ε− η)Hϕ̇+ V ′ = 0 ⇒ Hϕ̇ = − V ′

3 + ε− η
(7.110)

H2 =
1

3M2

(
M2H2ε+ V

)
⇒ H2 =

V

(3− ε)M2
,

from which we can derive various second-order slow-roll results (exercise):

εH ≡ −
Ḣ

H2
≈ ε− 4

3ε
2 + 2

3εη(
H−1ϕ̇

)2
= 2M2 (3− ε)2

(3 + ε− η)2
ε ≈ 2M2(1− 4

3ε+ 2
3η)ε ≈ 2M2εH

H−1ε̇ ≈ 4ε2 − 2εη − 8
3ε

3 + 8
3ε

2η − 2
3εη

2

H−1ε̇H ≈ (1− 8
3ε+ 2

3η)H−1ε̇+ 2
3εH

−1η̇

≈ ε
(
4ε− 2η − 40

3 ε
2 + 36

3 εη − 2η2 − 2
3ξ
)

(7.111)

We can now attack the second term in Eq. (7.106):

d

d ln k
ln

[(
H

2π

)2(H
ϕ̇

)2
]

=
d

d ln k
ln

(
H2

εH

)
=

2

H

dH

d ln k
− 1

εH

dεH

d ln k
. (7.112)

Here
d ln k

dt
=

d ln(aH)

dt
=

ȧ

a
+
Ḣ

H
= H

(
1 +

Ḣ

H2

)
= H (1− εH) (7.113)

so that (7.112) becomes (exercise)

− 2εH
1− εH

− 1

εH(1− εH)
H−1ε̇H ≈ (−2ε+ 2

3ε
2 − 4

3εη)− (4ε− 2η − 4ε2 + 14
3 εη −

2
3η

2 − 2
3ξ)

= −6ε+ 2η + 14
3 ε

2 − 6εη + 2
3η

2 + 2
3ξ . (7.114)

Adding (7.107)+(7.114) we finally get

ns = −6ε+ 2η − 10
3 ε

2 − 2εη + 2
3η

2 + 2
3ξ + (2− ln 2− γ)(24ε2 − 16εη + 2ξ) . (7.115)
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According to the Planck 2018 results (assuming adiabatic scalar perturbations and negligible tensor
perturbations), the observed value for the spectral index is [13]

ns + 1 = 0.965± 0.004 ⇒ ns = −0.035± 0.004 . (7.116)

We expect this to be dominated by the first-order contribution, and the order of magnitude of the second-
order contribution would be expected to be the square of the first-order contribution, i.e., O(10−3). The
exact numbers and the relations between the slow-roll parameters depend on the inflation model. For
example, if we suppose for simplicity that η = ξ = 0, so that ns = −6ε − 10

3 ε
2 + (2 − ln 2 − γ)24ε2 =

−6ε+ 14.178ε2, the value ns = −0.035 would correspond to ε = 0.005916, so that the 1st and 2nd order
terms would be ns = −0.035496 + 0.000496. In this case the second order contribution is clearly beyond
the reach of Planck. On the other hand, in some inflation models there may be significant cancellation
between the first order contributions −6ε and +2η, so that the slow-roll parameters would be larger and
the second-order contribution could be more significant.

8 Curvature Perturbation

In the case of N scalar fields, the curvature perturbation is

R ≡ −ψC = −ψ −Hξ0 , (8.1)

where, from Eq. (6.15)

ξ0 =

∑
ϕ′IδϕI∑
(ϕ′I)

2
=

~ϕ ′ · ~δϕ
~ϕ ′ · ~ϕ ′

, (8.2)

so that we have

R = −ψ −H
∑
ϕ′IδϕI∑
(ϕ′I)

2
= −H

∑
ϕ′IQI∑
(ϕ′I)

2
= − H

(ρ+ p)a2

∑
ϕ′IQI

= 4πG
H

H′ −H2

∑
ϕ′IQI = 4πG

H
H′ −H2

~ϕ ′ · ~Q . (8.3)

The derivation of the time evolution R′ is not as simple as in the single-field case . . . 12

9 Slow-Roll Inflation

The exact background equations for many-field inflation, (4.11), are

ϕ̈I + 3Hϕ̇I = −VI

H2 =
8πG

3
ρ̄ =

8πG

3

[
1
2

∑
I

(ϕ̇I)
2 + V

]
.

We assume that |ϕ̈I | � |3Hϕ̇I | and
∑

I(ϕ̇I)
2 � V ; and make the slow-roll approximation,

where (4.11) are replaced with the slow-roll equations

3Hϕ̇I + VI = 0 ⇒ VI = −3Hϕ̇I ⇒ ϕ̇I = − VI
3H

(9.1)

for all fields ϕI , and

H2 =
1

3M2
V ⇒ V = 3M2H2 ⇒ 3H2 =

V

M2
. (9.2)

12We give it, Eq. (10.49), for the case N = 2 in Sec. 10.5.



9 SLOW-ROLL INFLATION 31

From these

H−1ϕ̇I = H−1ϕ′I = −M2VI
V
, (9.3)

or, written in vector form

H−1 ~̇ϕ = H−1~ϕ′ = −M
2

V
∇V . (9.4)

That is, in the slow-roll solution, the background field evolves down along the gradient of the
potential.

Derivating the slow-roll equations, we get (exercise)

Ḣ = −
∑
V 2
I

6V
= −∇V · ∇V

6V
(9.5)

and

ϕ̈I =
M2

3

∑
VIJVJ
V

− M2

6

VI
∑
V 2
J

V 2
, (9.6)

in vector form,

~̈ϕ =
M2

3

∇∇V · ∇V
V

− M2

6

(∇V )2

V 2
∇V . (9.7)

In (9.6), the second term is parallel to ~̇ϕ, but the first term may not be.

9.1 Slow-Roll Parameters

We define the slow-roll parameters

εIJ ≡
M2

2

VIVJ
V 2

ηIJ ≡ M2VIJ
V

(9.8)

and

ε ≡ tr [εIJ ] =
∑

εII =
M2

2

(∇V )2

V 2
. (9.9)

Note that the matrices εIJ and ηIJ are symmetric.
Using the slow-roll equations we obtain the following results (exercise)

H−2Ḣ = −ε (9.10)

and (
H−1ϕ̇I

)2
= 2M2εII (no sum)

H−2ϕ̈I = εH−1ϕ̇I −
∑
J

ηIJH
−1ϕ̇J

H−1ε̇IJ = 4εεIJ −
∑
K

(εIKηJK + ηIKεJK)

H−1ε̇ = 4ε2 − 2
∑
IK

εIKηIK (9.11)

(compare to (7.31)).
During inflation, the slow-roll parameters εIJ and ηIJ are typically small and their time

variation is second-order small (in slow-roll parameters). We shall define the ξ parameters only
after we have performed a rotation in field space into adiabatic and entropy field perturbations,
end therefore we do not give η̇ equations before (10.68).
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9.2 Background Expansion Law

Because the equation (9.10) is the same as in single-field inflation, we obtain the same (see
(7.41)–(7.44)) expansion law (but note that now ε is from (9.9)).

H′

H2
= 1− ε ⇒ H =

−1

(1− ε)η
⇒ a ∝ (−η)−1/(1−ε) , (9.12)

and
a′′

a
= H2(2− ε) . (9.13)

(These are valid for as long as ε can be approximated as constant.)

9.3 Evolution of Perturbations

From Eq. (6.20), the perturbation equation is

H−2Q′′I + 2H−1Q′I +

(
k

H

)2

QI = H−2
∑
J

[
8πG

a2

(
a2

H
ϕ′Iϕ

′
J

)′
− a2VIJ

]
QJ , (9.14)

or

H−2Q̈I + 3H−1Q̇I +

(
k

aH

)2

QI = H−2
∑
J

[
8πG

a3

d

dt

(
a3

H
ϕ̇I ϕ̇J

)
− VIJ

]
QJ . (9.15)

Using the slow-roll equations, the rhs is (exercise)[
6εIJ − 3ηIJ + 6εεIJ −

∑
K

(2εIKηJK + 2ηIKεJK)

]
QJ ≈ (6εIJ − 3ηIJ)QJ (9.16)

(compare to (7.34); we again calculate to 1st order in slow-roll parameters).
Defining

uI ≡ aQI , (9.17)

Eq. (9.14) becomes (compare to (7.38))

u′′I +

(
k2 − a′′

a

)
uI = H2

∑
J

(6εIJ − 3ηIJ)uJ . (9.18)

Using (9.13), this becomes

u′′I + k2uI = H2(2− ε)uI +H2
∑
J

(6εIJ − 3ηIJ)uJ = H2 [(2− ε)δIJ + (6εIJ − 3ηIJ)]uJ .

(9.19)
Using

H2 =
1

(1− ε)2(−η)2
≈ 1 + 2ε

η2
(9.20)

our slow-roll perturbation evolution equation becomes (compare to (7.54))

u′′I +

(
k2 − 2

η2

)
uI =

3

η2
(εδIJ + 2εIJ − ηIJ)uJ ≡

3

η2
MIJuJ . (9.21)

We work in the approximation where the slow-roll parameters, i.e., the matrix MIJ , are
assumed constant, which will be valid only for a limited time; our aim is to calculate what
happens around horizon exit.
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The off-diagonal components of the matrix MIJ couple the evolution of the different field
perturbations uI . However, we can perform a rotation in field space to diagonalize M , since it
is real and symmetric, to arrive at independently evolving field perturbations vJ . Let us call the
rotation matrix UIJ , so that

uI =
∑

UIJvJ and UTMU = diag (λ1, . . . , λN ) , (9.22)

where the λI are the eigenvalues of the matrix M . They are 1st order in slow-roll parameters.
Since U is a rotation matrix,

UTU = 1 or
∑
I

UIJUIK = δJK . (9.23)

Eq. (9.21) becomes

v′′J +

(
k2 − 2

η2

)
vJ =

3

η2
λJvJ

⇒ v′′J +

[
k2 − 1

η2
(ν2
J − 1

4)

]
vJ = 0 , (9.24)

where

νJ ≡
√

9
4 + 3λJ ≈ 3

2 + λJ . (9.25)

This is the same equation as (7.55), so we have already solved it. The mode functions are

wJ(η) = L−3/2

√
π

4
a−1√−ηHνJ (−kη)

→ L−3/22νJ−3/2 Γ(νJ)

Γ(3
2)

1

a

1√
2k

(−kη)−1−λJ . (9.26)

Our approximation that slow-roll parameters stay constant will only hold for a number of
e-foldings � 1/(slow-roll parameters). Thus we want to switch to other variables after horizon
exit. One of these will be the comoving curvature perturbation R. From (8.3), (9.12), and (9.4),

R = 4πG
H

H′ −H2
~ϕ ′ · ~Q ≈ − 1

2M2ε
H−1~ϕ ′ · ~Q ≈ 1

2εV
∇V · ~Q . (9.27)

Thus R is given by the perturbation component that is in the direction of the background field
evolution ~ϕ ′, which is, in the slow-roll approximation, in the direction of the potential gradient.
This is, in general, not in the direction of any of the eigenvectors of the matrix M , so we need
to perform another rotation in field space.

We rotate from the original field space coordinate basis, where

~Q =


Q1

Q2

·
·
QN

 (9.28)

to a new basis for the field perturbations, so that

~Q =


Qσ
Qs1
·
·

Qs(N−1)

 = ST


Q1

Q2

·
·
QN

 , (9.29)
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where

Qσ ≡
~ϕ ′ · ~Q
|~ϕ ′|

(9.30)

is the component in direction of the background field evolution. The rotation matrix S will,
in general, be a function of time, since ~ϕ ′ may change direction along the background trajec-
tory (the background trajectory in field space may be curved.) We call Qσ the adiabatic field
perturbation, and the N − 1 orthogonal perturbations QsI entropy field perturbations.

Since the rotation matrix is not constant over the field space, we do not rotate the values of
the background fields, but we rotate their time derivatives, defining σ̇ and ṡI by

σ̇
ṡ1

·
·

ṡN−1

 ≡ ST


ϕ̇1

ϕ̇2

·
·
ϕ̇N

 . (9.31)

That is, the rotation S is not a global rotation of coordinates of the field space, but a local
rotation of the vector basis for the field perturbation and time derivative vectors. Note that
ṡI = 0 by definition (that was the purpose of the rotation). See Sec. 10 for how σ and s can be
defined as coordinates in the field space.
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Figure 3: Left: Background trajectory in two-field inflation. Note: In the text we call the two fields ϕ1

and ϕ2, but in these figures they are denoted ϕ and χ. Right: The σ, s coordinate system. (These two
graphs correspond to opposite directions of the trajectory.)

10 Two Fields

10.1 Adiabatic and Entropy Field Coordinates

Consider now the case of two fields, ~ϕ = (ϕ1, ϕ2). The direction of the background solution is
given by ~̇ϕ. Its direction angle θ is given by

tan θ ≡ ϕ̇2

ϕ̇1
. (10.1)

We now define σ, called the adiabatic field coordinate, as the integrated path length along the
trajectory (≡ background solution) from some arbitrary starting point (only changes in σ matter),
and s, called the entropy field coordinate, as the orthogonal distance from the trajectory. See
Fig. 3. Thus for the background solution

s = ṡ = s̈ = 0 (10.2)

by definition.
This defines a coordinate system σ, s in field space, specific to a particular background

solution. If the trajectory is curved, this is a curved coordinate system, and is valid only in
the vicinity of the trajectory, since further out the s coordinate lines cross. We shall use this
coordinate system on the trajectory only, and do not introduce the full machinery of curved
coordinate systems; but it is important to keep this in mind to avoid mistakes.

Consider now the background solution ϕ1 ≡ ϕ̄1(t), ϕ2 ≡ ϕ̄2(t) in terms of the new variables
σ, s, θ. The new coordinates σ, s are given by a rotation by θ from the old coordinates ϕ1, ϕ2,
so that (

σ̇
ṡ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ϕ̇1

ϕ̇2

)
= ST

(
ϕ̇1

ϕ̇2

)
, (10.3)

where

S ≡
(

cos θ − sin θ
sin θ cos θ

)
. (10.4)

Thus
σ̇ = ϕ̇1 cos θ + ϕ̇2 sin θ . (10.5)

The inverse rotation is(
ϕ̇1

ϕ̇2

)
= S

(
σ̇
ṡ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
σ̇
ṡ

)
. (10.6)
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Figure 4: Left: σ̇. Right: The ϕ1,ϕ2 (ϕ,χ) basis and the σ,s basis.

Since ṡ = 0, we have

ϕ̇1 = σ̇ cos θ and ϕ̇2 = σ̇ sin θ ⇒ σ̇2 = ϕ̇2
1 + ϕ̇2

2 (10.7)

and (same as (10.1))
ϕ̇1 sin θ = ϕ̇2 cos θ . (10.8)

The second derivatives are

ϕ̈1 = σ̈ cos θ − σ̇θ̇ sin θ and ϕ̈2 = σ̈ sin θ + σ̇θ̇ cos θ . (10.9)

The potential V (ϕ1, ϕ2) exists everywhere in the (ϕ1, ϕ2) field space. We can express its
gradient either in the ϕ1,ϕ2 basis or in the σ,s basis (see Fig. 4.) We have(

Vσ
Vs

)
= ST

(
V1

V2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
V1

V2

)
(10.10)

and (
V1

V2

)
= S

(
Vσ
Vs

)
=

(
cos θ − sin θ
sin θ cos θ

)(
Vσ
Vs

)
. (10.11)

The time derivative of V along the trajectory is

V̇ = V1ϕ̇1 + V2ϕ̇2 = Vσσ̇ . (10.12)

We can similarly rotate the second derivatives VIJ :

[VI′J ′ ] ≡ ST [VIJ ]S or VI′J ′ ≡ SKI′SLJ ′VKL (10.13)

or (
Vσσ Vσs
Vσs Vss

)
≡
(

cos θ sin θ
− sin θ cos θ

)(
V11 V12

V12 V22

)(
cos θ − sin θ
sin θ cos θ

)
(10.14)

giving

Vσσ ≡ cos2 θV11 + 2 cos θ sin θV12 + sin2 θV22 (10.15)

Vss ≡ sin2 θV11 − 2 cos θ sin θV12 + cos2 θV22

Vσs ≡ − sin θ cos θV11 + (cos2 θ − sin2 θ)V12 + cos θ sin θV22 .
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We take these equations as the definitions of Vσσ, Vss, and Vσs. Since they were obtained
by rotation, this means that they are not partial derivatives, but instead they are covariant
derivatives in the σ,s coordinates.

Likewise, third derivatives are rotated by

VI′J ′K′ ≡ SLI′SMJ ′SNK′VLMN , (10.16)

giving (exercise)

Vσσσ ≡ cos3 θV111 + 3 cos2 θ sin θV112 + 3 cos θ sin2 θV122 + sin3 θV222

Vσσs ≡ − cos2 θ sin θV111 + (cos3 θ − 2 cos θ sin2 θ)V112 + (2 cos2 θ sin θ − sin3 θ)V122 + sin2 θ cos θV222

Vσss ≡ cos θ sin2 θV111 + (−2 cos2 θ sin θ + sin3 θ)V112 + (cos3 θ − 2 sin2 θ cos θ)V122 + sin θ cos2 θV222

Vsss ≡ − sin3 θV111 + 3 sin2 θ cos θV112 − 3 sin θ cos2 V122 + cos3 θV222 (10.17)

Derivating Eq. (10.5) again,

σ̈ = ϕ̈1 cos θ − ϕ̇1θ̇ sin θ + ϕ̈2 sin θ + ϕ̇2θ̇ cos θ = ϕ̈1 cos θ + ϕ̈2 sin θ , (10.18)

where we used Eq. (10.8).

10.2 Exact Background Solution

Multiplying the ϕI background field equations

ϕ̈1 + 3Hϕ̇1 + V1 = 0 (10.19)

ϕ̈2 + 3Hϕ̇2 + V2 = 0 , (10.20)

with cos θ and sin θ and using (10.9) and (10.18) we get the background field equation for the
adiabatic field coordinate:

σ̈ + 3Hσ̇ + Vσ = 0 . (10.21)

Multiplying with − sin θ and cos θ we get (exercise)

Vs = −θ̇σ̇ or θ̇ = −Vs
σ̇
. (10.22)

The corresponding equation for the background entropy field coordinate was trivial, s̈ = 0.
Instead, the role of the other dynamical quantity for the background is taken by θ. Derivating
Eq. (10.22a) we get the θ̈ equation. Here one has to be careful with using the σ,s basis, since it
is changing along the trajectory. Thus V̇s 6= Vssṡ+ Vσsσ̇ = Vσsσ̇. To avoid working in a curved
coordinate system, one can go back to the original Cartesian ϕ1,ϕ2 basis for the calculation:
write Vs = −V1 sin θ + V2 cos θ, derivate this, and pick the σ, s quantities from the result. This
gives (exercise)

V̇s = Vσsσ̇ − θ̇Vσ (10.23)

and we can now derivate (10.22) using (10.23) and (10.21) to get (exercise)

θ̈ − 3Hθ̇ + Vσs − 2
Vσ
σ̇
θ̇ = 0 . (10.24)

If the background trajectory is straight (θ̇ = 0), then Vs = Vσs = 0 along the trajectory.
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Figure 5: The field perturbation δ~ϕ divided into the δσ and δs components.

10.3 Perturbations

(Note that in Secs. 10.3–10.5 we work with the exact background equations, not the slow-roll
equations.)

The field perturbations are rotated likewise into the adiabatic field perturbation δσ and the
entropy field perturbation δs (see Fig. 5). Thus(

δσ
δs

)
= ST

(
δϕ1

δϕ2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
δϕ1

δϕ2

)
(10.25)

and (
δϕ1

δϕ2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
δσ
δs

)
. (10.26)

The perturbation in the potential is

δV = V1δϕ1 + V2δϕ2 = Vσδσ + Vsδs . (10.27)

Since the rotation angle θ changes with time, we do not get the time derivatives ˙δσ, δ̈σ, δ̇s,
and δ̈s by rotating ˙δϕI and ¨δϕI . Instead, we must derivate (10.25), giving

˙δσ = cos θ( ˙δϕ1 + θ̇δϕ2) + sin θ( ˙δϕ2 − θ̇δϕ1)

δ̇s = − sin θ( ˙δϕ1 + θ̇δϕ2) + cos θ( ˙δϕ2 − θ̇δϕ1)

δ̈σ = cos θ ¨δϕ1 − 2θ̇ sin θ ˙δϕ1 −
(
θ̈ sin θ + θ̇2 cos θ

)
δϕ1

+ sin θ ¨δϕ2 + 2θ̇ cos θ ˙δϕ2 +
(
θ̈ cos θ − θ̇2 sin θ

)
δϕ2

δ̈s = − sin θ ¨δϕ1 − 2θ̇ cos θ ˙δϕ1 −
(
θ̈ cos θ − θ̇2 sin θ

)
δϕ1

+ cos θ ¨δϕ2 − 2θ̇ sin θ ˙δϕ2 −
(
θ̈ sin θ + θ̇2 cos θ

)
δϕ2 . (10.28)
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Or, derivating (10.26) one gets ˙δϕ1, ¨δϕ1, ˙δϕ2, ¨δϕ2 in terms of ˙δσ, δ̈σ, δ̇s, and δ̈s,

˙δϕ1 = cos θ( ˙δσ − θ̇δs)− sin θ(δ̇s+ θ̇δσ)

˙δϕ2 = sin θ( ˙δσ − θ̇δs) + cos θ(δ̇s+ θ̇δσ)

¨δϕ1 = cos θδ̈σ − 2θ̇ sin θ ˙δσ −
(
θ̈ sin θ + θ̇2 cos θ

)
δσ

− sin θδ̈s− 2θ̇ cos θδ̇s−
(
θ̈ cos θ − θ̇2 sin θ

)
δs

¨δϕ2 = sin θδ̈σ + 2θ̇ cos θ ˙δσ +
(
θ̈ cos θ − θ̇2 sin θ

)
δσ

+ cos θδ̈s− 2θ̇ sin θδ̇s−
(
θ̈ sin θ + θ̇2 cos θ

)
δs . (10.29)

Actually, it is not necessary to derivate (10.26); one gets (10.29) simply by changing the sign of
θ in (10.28), since these correspond to opposite rotations. One can write (10.29) as(

˙δϕ1
˙δϕ2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
˙δσ − θ̇δs
δ̇s+ θ̇δσ

)
(
δ̈ϕ1

δ̈ϕ2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
δ̈σ − θ̇2δσ − 2θ̇δ̇s− θ̈δs
δ̈s− θ̇2δs+ 2θ̇ ˙δσ + θ̈δσ

)
, (10.30)

from which one can identify the σ and s components of ~̇δϕ and ~̈δϕ.
Multiplying by the background ϕ̇1 and ϕ̇2 we get

ϕ̇1
˙δϕ1 + ϕ̇2

˙δϕ2 = σ̇( ˙δσ − θ̇δs) = σ̇ ˙δσ + Vsδs . (10.31)

The perturbation in the potential is

δV = V1δϕ1 + V2δϕ2 = Vσδσ + Vsδs . (10.32)

The field perturbation equation (5.8) written in vector form and using ordinary time is

~̈δϕ+ 3H ~̇δϕ− 1

a2
∇2
x
~δϕ+∇ϕ∇ϕV · ~δϕ = −2∇ϕV A+ ~̇ϕ(Ȧ+ 3Ḋ +

1

a
∇2
xB) , (10.33)

where ∇x denotes gradient in coordinate space and ∇ϕ gradient in field space (components of
∇ϕ∇ϕV are VIJ). Picking the σ and s components of this vector equation (use 10.30) and using
background relations, one finds (exercise) the field equations for the adiabatic and entropy field
perturbations

δ̈σ + 3H ˙δσ +

(
− 1

a2
∇2 + Vσσ − θ̇2

)
δσ = −2VσA+ σ̇

(
Ȧ+ 3Ḋ +

1

a
∇2B

)
+ 2

d

dt

(
θ̇δs
)
− 2

Vσ
σ̇
θ̇δs

δ̈s+ 3Hδ̇s+

(
− 1

a2
∇2 + Vss − θ̇2

)
δs = −2

θ̇

σ̇

[
σ̇( ˙δσ − σ̇A)− σ̈δσ

]
. (10.34)

We note that, if the background trajectory is straight (θ̇ = 0), the adiabatic and entropy
perturbations decouple and the δσ equation is then exactly the earlier single-field equation. So
is the δs equation, except that, since ṡ = 0 and Vs = −θ̇σ̇ = 0 (we must lie at the bottom
of the potential in the s direction for there to be know sideways force, which would curve the
trajectory), the rhs, which contains the effect of the metric perturbations, disappears. We also
get, when θ̇ = 0, that only δσ contributes to δρ, δp, δq, and thus to Einstein equations and the
metric perturbations. And, as we just saw, δs does not then care about the metric perturbations.
Thus, indeed, δσ and δs are then completely decoupled; and σ, δσ behave exactly as the single-
field case (to 1st order in perturbation theory).
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What are the new features brought by a curved trajectory? On the lhs we note “angular
momentum” terms −θ̇2δσ and −θ̇2δs. The rhs now couple δs and δσ to each other, so that
as the trajectory curves, an adiabatic field perturbation can be converted (partially) into an
entropy field perturbation and vice versa. The rhs of the δs equation is proportional to the
single-field total entropy perturbation, which is proportional to δρC (see (7.19) and (10.41)).

10.4 Field Equations for the Adiabatic and Entropy Field Perturbations in
the Spatially Flat Gauge

Redo now Sec. 6 to eliminate the metric perturbations from the field perturbation equations.
The energy density, pressure, and “momentum” (define here δq, which appears in δT 0

i )
perturbations are

δρ = ϕ̇1
˙δϕ1 + ϕ̇2

˙δϕ2 − (ϕ̇2
1 + ϕ̇2

2)A+ δV = σ̇( ˙δσ − θ̇δs)− σ̇2A+ δV

δp = ϕ̇1
˙δϕ1 + ϕ̇2

˙δϕ2 − (ϕ̇2
1 + ϕ̇2

2)A− δV = σ̇( ˙δσ − θ̇δs)− σ̇2A− δV
δq = ϕ̇1δϕ1 + ϕ̇2δϕ2 = σ̇δσ . (10.35)

The last equation we see directly using vector notation, δq = ~̇ϕ · ~δϕ = σ̇δσ. This does not work

the same for ~̇ϕ · ~̇δϕ, since ˙δσ and δ̇s are not the (σ, s)-base components of ~̇δϕ, due to θ̇ 6= 0.
We can now write the Einstein equations for the perturbations. We shall need the second

Einstein equation
ψ̇ +HA = 4πGaδq = 4πGσ̇δσ . (10.36)

We are so far working in general (arbitrary) gauge. The first Einstein equation we shall not
need in general gauge, but later we shall use its gauge-invariant form

∇2Φ = 4πGa2δρC , (10.37)

where we already used Ψ = Φ, which holds for scalar field sources.
We can give the gauge transformations either in terms of the ordinary time coordinate,

t̃ = t+ ξ0
(t), or the conformal time coordinate, η̃ = η + ξ0

(η). These coordinate shifts are related

by ξ0
(t) = aξ0

(η). Below my ξ0 is ξ0
(t).

The comoving density perturbation is

δρC = δρ− ρ̇ξ0 , (10.38)

where

ξ0 =
ϕ̇1δϕ1 + ϕ̇2δϕ2

ϕ̇2
1 + ϕ̇2

2

=
σ̇δσ

σ̇2
=

δσ

σ̇
(10.39)

and

ρ̇ =
d

dt

(
1
2 ϕ̇

2
1 + 1

2 ϕ̇
2
2 + V

)
= ϕ̇1ϕ̈1 + ϕ̇2ϕ̈2 + V̇ = σ̇σ̈ + Vσσ̇ , (10.40)

so that
δρC = σ̇δσ̇ − σ̈δσ − σ̇2A+ 2Vsδs . (10.41)

Scalar fields gauge transform as

˜δϕ1 = δϕ1 − ϕ̇1ξ
0

˜δϕ2 = δϕ2 − ϕ̇2ξ
0 , (10.42)

from which we get

δ̃σ = δσ − σ̇ξ0

δ̃s = δs− ṡξ0 = δs , (10.43)
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i.e., δs is gauge invariant.
In the spatially flat gauge the δσ evolution equation becomes (exercise) (Hint: Equations

Ḣ = −4πGσ̇2, Vσ = −σ̈ − 3Hσ̇, and Vs = −θ̇σ̇ may be useful.)

¨δσQ + 3H ˙δσQ +

[
− 1

a2
∇2 + Vσσ − θ̇2 − 8πG

a3

d

dt

(
a3

H
σ̇2

)]
δσQ = 2

d

dt
(θ̇δs)− 2

(
Vσ
σ̇

+
Ḣ

H

)
θ̇δs .

(10.44)
The δs equation can be written as (exercise)

δ̈s+ 3Hδ̇s+

(
− 1

a2
∇2 + Vss + 3θ̇2

)
δs = − θ̇

σ̇

1

2πG

1

a2
∇2Φ , (10.45)

which is fully gauge invariant. The source term on its right-hand side is small for superhorizon
scales. The effective mass µs of the entropy field is given by µ2

s ≡ Vss + 3θ̇2.
From (10.37) etc.,

∇2Φ = 4πGa2

[
σ̇ ˙δσQ +

(
−σ̈ +

Ḣ

H
σ̇

)
δσQ + 2Vsδs

]
, (10.46)

so that in the spatially flat gauge (10.45) can be written (check this!)

δ̈s+3Hδ̇s+

(
− 1

a2
∇2 + Vss − θ̇2

)
δs = −2

d

dt
(θ̇δσQ)+2

(
Vσ
σ̇

+
Ḣ

H

)
θ̇δσQ+2VσsδσQ . (10.47)

From hereon we work in the spatially flat gauge and drop the gauge label Q.
We see that for a straight trajectory θ̇ = 0, the δσ equation is just the equation for the

single-field case (7.33), but for a curved trajectory, the entropy perturbation δs acts as a source
term. The rhs in (10.45) is small for superhorizon scales. This means that if there is no initial δs
at superhorizon scales, no (significant) δs is generated while the scales are superhorizon. Thus
adiabatic perturbations remain adiabatic at superhorizon scales.

10.5 Curvature and Entropy Perturbations

The comoving curvature perturbation is, from (8.3),

R = −H ϕ̇1δϕ1 + ϕ̇2δϕ2

ϕ̇2
1 + ϕ̇2

2

= −Hδσ

σ̇
. (10.48)

We obtain for it (exercise) an evolution equation

Ṙ =
H

Ḣ

1

a2
∇2Φ− 2H

θ̇

σ̇
δs . (10.49)

Thus R stays constant at superhorizon scales, if there are no entropy field perturbations, but
δs acts as a source term.

We define an analogous entropy perturbation

S ≡ H
δs

σ̇
. (10.50)

Thus, for superhorizon scales,
Ṙ = −2θ̇S (k � H) . (10.51)
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10.6 Slow-Roll Approximation

From Sec. 9 we have that

H2 =
V

3M2
(10.52)

and

H−1ϕ̇I = −M2VI
V
, (10.53)

Rotating gives

H−1σ̇ = −M2Vσ
V

(10.54)

H−1ṡ = −M2Vs
V

= 0 (10.55)

so
Vs = 0 . (10.56)

on the slow-roll trajectory. This is just the statement that the trajectory is always in the
direction of ∇V , so that there is no sideways component to ∇V . (One might now conclude,
from Eq. (10.22), that θ̇ = 0, but this would be a mistake—we must now use consistently the
slow-roll equations, and not mix them with the exact equations. See below for the slow-roll
equation for θ̇.)

This means that

ε ≡ ε11 + ε22 =
M2

2

(∇V )2

V 2
=
M2

2

V 2
σ

V 2
(10.57)

and we do not need to define εσs, εss or a separate εσσ. Instead we have the relations

ε11 = ε cos2 θ

ε22 = ε sin2 θ

ε12 = ε cos θ sin θ . (10.58)

But we do define

ησσ ≡M2Vσσ
V

ησs ≡M2Vσs
V

ηss ≡M2Vss
V

(10.59)

that we obtain from ηIJ by the same rotation as in (10.15):

ησσ ≡ cos2 θη11 + 2 cos θ sin θη12 + sin2 θη22 (10.60)

ηss ≡ sin2 θη11 − 2 cos θ sin θη12 + cos2 θη22

ησs ≡ − sin θ cos θη11 + (cos2 θ − sin2 θ)η12 + cos θ sin θη22 ,

from which we see that (trace of the η matrix)

ησσ + ηss = η11 + η22 . (10.61)

We get the opposite rotation by just changing the sign of θ:

η11 ≡ cos2 θησσ − 2 cos θ sin θησs + sin2 θηss (10.62)

η22 ≡ sin2 θησσ + 2 cos θ sin θησs + cos2 θηss

η12 ≡ + sin θ cos θησσ + (cos2 θ − sin2 θ)ησs − cos θ sin θηss .

No we can also define

ξσσσ ≡M4VσVσσσ
V 2

ξσσs ≡M4VσVσσs
V 2

ξσss ≡M4VσVσss
V 2

ξsss ≡M4VσVsss
V 2

. (10.63)
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Figure 6: The slow-roll trajectory (blue) and the exact solution (red). The black curves are contours of
V (~ϕ). The slow-roll trajectory follows the steepest gradient and is thus orthogonal to the contours. The
exact solution requires a sideways push from the potential to force it to bend and therefore “overshoots”.

From Eq. (9.11),

H−1ε̇ = 4ε2 − 2ε(cos θ2η11 + 2 cos θ sin θη12 + sin θ2η22) = 4ε2 − 2εησσ . (10.64)

Also from Eq. (9.11),

H−2ϕ̈1 = εH−1ϕ̇1 − η11H
−1ϕ̇1 − η12H

−1ϕ̇2

H−2ϕ̈2 = εH−1ϕ̇2 − η12H
−1ϕ̇1 − η22H

−1ϕ̇2 . (10.65)

Derivating σ̇ = ϕ̇1 cos θ + ϕ̇2 sin θ, the θ̇ part cancels, and we get (exercise)

H−2σ̈ = H−1σ̇(ε− ησσ) (10.66)

(compare to Eq. 7.31c), and derivating ṡ = −ϕ̇1 sin θ + ϕ̇2 cos θ = 0, we get (exercise) the
promised slow-roll equation for θ̇:

H−1θ̇ = −ησs ∝ −Vσs . (10.67)

Note that Vs = 0 does not imply Vσs = 0, since we are working in a curved coordinate system,
and in Vσs we have covariant derivatives.

It is instructive to contrast the exact equation (10.22) to the slow-roll equation (10.67): In
making the slow-roll approximation we eliminate dynamics from the problem by dropping the
acceleration terms ϕ̈I from the field equation. Then the question of the background solution
becomes one of V (ϕ1, ϕ2) topography: the trajectories are the paths of steepest descent, so
that there is no sideways component Vs to the gradient, and the curvature of the trajectory is
determined by the potential: Vσs measures how the potential will tilt sideways if you continue
straight in the current σ direction. In the exact solution, on the other hand, the field cannot
follow the path of steepest descent when that curves, since the “centrifugal effect” pushes it out
to where a sideways component Vs of the gradient provides the force needed to make the field
turn.

We can now calculate the time derivatives of the other first-order slow-roll parameters (ex-
ercise) :

H−1η̇σσ = 2εησσ − 2η2
σs − ξσσσ

H−1η̇σs = 2εησs + ησs(ησσ − ηss)− ξσσs
H−1η̇ss = 2εηss + 2η2

σs − ξσss . (10.68)
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10.7 Evolution through Horizon Exit

However, δσ and δs do not correspond to the independently through the horizon evolving field
components discussed in Sec. 9.3. These are obtained by a rotation with a different angle Θ.

For the independent perturbations v1 and v2 we obtained

~u = U~v , ~v = UT~u , (10.69)

where

~u =

(
aδϕ1

aδϕ2

)
=

(
aQ1

aQ2

)
(10.70)

and

U ≡
(

cos Θ − sin Θ
sin Θ cos Θ

)
(10.71)

is the rotation matrix that diagonalizes

M ≡
(
ε+ 2ε11 − η11 2ε12 − η12

2ε12 − η12 ε+ 2ε22 − η22

)
, (10.72)

i.e.,

UTMU =

(
λ1 0
0 λ2

)
. (10.73)

We can solve Θ from the condition that UTMU is diagonal, i.e.,

(UTMU)12 = (2ε22 − 2ε11 + η11 − η22) sin Θ cos Θ + (2ε12 − η12)(cos2 Θ− sin2 Θ) = 0 ,

(exercise) where

sin Θ cos Θ = 1
2 sin 2Θ and cos2 Θ− sin2 Θ = cos 2Θ (10.74)

so that

tan 2Θ = 2

[
2ε12 − η12

2(ε11 − ε22)− (η11 − η22)

]
. (10.75)

The λ1, λ2 are the eigenvalues of matrix M which we solve from

det(M − λI) = 0 (10.76)

whose solutions are (exercise)

λ = 1
2

{
4ε− (η11 + η22)±

√
[2(ε11 − ε22)− (η11 − η22)]2 + 4(2ε12 − η12)2

}
. (10.77)

(Hint: Note that since ε = ε11 + ε22, all three are not independent quantities, and you can, e.g.,
replace ε11 and ε22 by 1

2(ε+ x) and 1
2(ε− x) where x ≡ (ε11 − ε22).)

This does not say which one is λ1 and which one is λ2, but neither does Eq. (10.75) specify
Θ except up to a term π/2, i.e, we can add π/2 to Θ, which interchanges λ1 and λ2.

We can use the results of Sec. (10.6) to rewrite the results (10.75) and (10.77) in terms of
the rotated slow-roll parameters (exercise):

λ = 1
2

[
4ε− (ησσ + ηss)±

√
ω2 + 4η2

σs

]
(10.78)

λ1 + λ2 = 4ε− (ησσ + ηss)

λ1 − λ2 =
√
ω2 + 4η2

σs . (10.79)
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and

tan 2Θ =
ω sin 2θ − 2ησs cos 2θ

ω cos 2θ + 2ησs sin 2θ
, (10.80)

where we have defined the short-hand notation

ω ≡ 2ε− (ησσ − ηss) . (10.81)

From Eq. (10.80) we see, that tan 2Θ = tan 2θ, if ησs = 0, i.e., Vσs = 0 and we have a straight
trajectory (we work here with the slow-roll solution). Thus, in this case, the independent field
perturbations are the adiabatic and entropy field perturbations, but otherwise they are not.

Combining the two rotations (10.25) and (10.69) we can rotate the independently produced
perturbations into the adiabatic and entropy field perturbations(

aδσ
aδs

)
= STU

(
v1

v2

)
=

(
cos(Θ− θ) − sin(Θ− θ)
sin(Θ− θ) cos(Θ− θ)

)(
v1

v2

)
. (10.82)

(For 2-dimensional rotations, there is no need to perform matrix multiplication, one can just
add or subtract rotation angles.)

Using (10.80) we easily find (exercise) that

tan 2(Θ− θ) = −2
ησs
ω

cos 2(Θ− θ) =
ω√

ω2 + 4η2
σs

sin 2(Θ− θ) =
−2ησs√
ω2 + 4η2

σs

. (10.83)

We can now obtain the generated perturbation spectra for δσ and δs, from those of v1 and
v2 derived in Sec. 9.3:

vJ = awJ → L−3/22λJ
Γ(3

2 + λJ)

Γ(3
2)

1√
2k

(−kη)−1−λJ

〈|vJ |2〉 = V−122λJ

[
Γ(3

2 + λJ)

Γ(3
2)

]2
1

2k
(−kη)−2−2λJ

〈v1v
∗
2〉 = 0 , (10.84)

where V ≡ L3. For the power spectra we need these in the form

V k3

2π2

1

a2
〈|vJ |2〉 =

1

4π2
22λJ

[
Γ(3

2 + λJ)

Γ(3
2)

]2(
k

a

)2

(−kη)−2−2λJ . (10.85)

For each scale k we evaluate these at horizon exit, where k = H = aH and −kη = 1/(1 − ε)
(from Eq. 9.12). So we have

V k3

2π2

1

a2
〈|vJ |2〉 =

(
H∗
2π

)2

22λJ

[
Γ(3

2 + λJ)

Γ(3
2)

]2

(1− ε)2+2λJ

≈
(
H∗
2π

)2

(1 + 2CλJ − 2ε) , (10.86)

where C ≡ 2 − ln 2 − γ ≈ 0.729 637 (see Sec. 7.7.2), and H∗ signifies that H is to be evaluated
at horizon exit (as are ε and λJ also). (We used 22λ ≈ 1 + 2λ ln 2, Γ(3

2 + λ)/Γ(3
2) ≈ 1 + 2λψ(3

2),
and (1− ε)2+2λ ≈ 1− 2ε.)
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Using (10.82) we have

a2〈|δσ|2〉 = 〈[cos(Θ− θ)v1 − sin(Θ− θ)v2][cos(Θ− θ)v1 − sin(Θ− θ)v2]∗〉
= cos2(Θ− θ)〈|v1|2〉+ sin2(Θ− θ)〈|v2|2〉
= 1

2

(
〈|v1|2〉+ 〈|v2|2〉

)
+ 1

2 cos 2(Θ− θ)
(
〈|v1|2〉 − 〈|v2|2〉

)
(10.87)

a2〈δσδs∗〉 = 〈[cos(Θ− θ)v1 − sin(Θ− θ)v2][sin(Θ− θ)v1 + cos(Θ− θ)v2]∗〉
= 1

2 sin 2(Θ− θ)
(
〈|v1|2〉 − 〈|v2|2〉

)
(10.88)

a2〈|δs|2〉 = 1
2

(
〈|v1|2〉+ 〈|v2|2〉

)
− 1

2 cos 2(Θ− θ)
(
〈|v1|2〉 − 〈|v2|2〉

)
. (10.89)

(We see that interchanging v1 and v2 interchanges the results for 〈|δσ|2〉 and 〈|δs|2〉 and changes
the sign of 〈δσδs∗〉, as does adding π/2 to Θ; so I suppose we should pay attention to how our
choice of λ1 and λ2 is related to our choice of Θ (we make a choice in Eq. 10.83).)

Finally we get for the generated adiabatic and entropy field perturbation power spectra and
their correlation the results (exercise):

Pσ∗(k) ≡ V k3

2π2

〈
|δσ~k|

2
〉

=

(
H∗
2π

)2

[1 + (−2 + 6C)ε− 2Cησσ]

Cσs∗(k) ≡ V k3

2π2
〈δσ~kδs

∗
~k
〉 = −2Cησs

(
H∗
2π

)2

Ps∗(k) ≡ V k3

2π2
〈|δs~k|

2〉 =

(
H∗
2π

)2

[1− 2(1− C)ε− 2Cηss] . (10.90)

10.8 Evolution Outside the Horizon

Using Eqs. (10.48) and (10.50), we immediately get from (10.90) the perturbation spectra for R
and S, as they are generated at horizon exit,

PR∗(k) =

(
H∗
σ̇∗

)2

Pσ∗(k) =

(
H2
∗

2πσ̇∗

)2

[1 + (−2 + 6C)ε− 2Cησσ] (10.91)

CRS∗(k) = −
(
H∗
σ̇∗

)2

Cσs∗(k) = +2Cησs

(
H2
∗

2πσ̇∗

)2

(10.92)

PS∗(k) =

(
H∗
σ̇∗

)2

Ps∗(k) =

(
H2
∗

2πσ̇∗

)2

[1− 2(1− C)ε− 2Cηss] . (10.93)

However, unlike the 1-field case, where PR(k) stayed constant in time for as long as k � H, now
the perturbation spectra may evolve outside the horizon. In first-order perturbation theory, the
Fourier components of perturbations at some later time t are proportional to the earlier values
at t∗: (

R~k(t)
S~k(t)

)
= Tk(t, t∗)

(
R~k∗
S~k∗

)
(10.94)

(We write Tk, not T~k, since the relevant physics is assumed rotationally invariant.)
For superhorizon scales, the scale dependence of the evolution vanishes, so that Tk(t, t∗) =

T (t, t∗). However, Eq. (10.94) remains scale dependent, since t∗ depends on k. Thus(
R~k(t)
S~k(t)

)
=

(
TRR(t, t∗) TRS(t, t∗)
TSR(t, t∗) TSS(t, t∗)

)(
R~k∗
S~k∗

)
=

(
TRR(t, t∗)R~k∗ + TRS(t, t∗)S~k∗
TSR(t, t∗)R~k∗ + TSS(t, t∗)S~k∗

)
.

(10.95)
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We know two things that apply to superhorizon perturbations in general: 1) adiabatic per-
turbations remain adiabatic ⇒ TSR = 0; 2) for adiabatic perturbations, R is constant in
time ⇒ TRR = 1. Thus Eq. (10.95) becomes(

R~k(t)
S~k(t)

)
=

(
1 TRS(t, t∗)
0 TSS(t, t∗)

)(
R~k∗
S~k∗

)
=

(
R~k∗ + TRS(t, t∗)S~k∗

TSS(t, t∗)S~k∗

)
, (10.96)

and we can also write that, in general,

H−1Ṙ = α(t)S and H−1Ṡ = β(t)S , (10.97)

defining two functions α(t) and β(t) related to the transfer functions TRS and TSS . We can find
the relation by integrating (10.97). First, write (10.97b) as

d lnS(t′) ≡ dS(t′)

S(t′)
= β(t′)H(t′)dt′ ⇒ lnS(t)− lnS(t∗) =

∫ t

t∗

β(t′)H(t′)dt′

⇒ TSS(t, t∗) ≡
S(t)

S(t∗)
= exp

{∫ t

t∗

β(t′)H(t′)dt′
}
. (10.98)

Then

R(t) = R(t∗) +

∫ t

t∗

Ṙdt = R(t∗) +

∫ t

t∗

α(t′)H(t′)S(t′)dt′

= R(t∗) +

∫ t

t∗

α(t′)H(t′)TSS(t′, t∗)S(t∗)dt
′

⇒ TRS(t, t∗) =

∫ t

t∗

α(t′)H(t′)TSS(t′, t∗)dt
′ . (10.99)

The only quantities that depend on k or ~k in Eqs. (10.98,10.99) are R = R~k, S = S~k, and
t∗ = t∗(k).

In the above, α, β, TSS , and TRS , depend on the inflation model, and TSS(t, t∗), TRS(t, t∗)
may be complicated to calculate. To find the spectral indices, we need the derivatives of TSS
and TRS wrt k, which we get from

∂TSS(t, t∗)

∂t∗
= −β(t∗)H(t∗)TSS(t, t∗) (10.100)

∂TRS(t, t∗)

∂t∗
= −α(t∗)H(t∗)TSS(t∗, t∗) +

∫ t

t∗

α(t′)H(t′)
∂TSS(t′, t∗)

∂t∗
dt′

= −α(t∗)H(t∗)− β(t∗)H(t∗)

∫ t

t∗

α(t′)H(t′)TSS(t′, t∗)dt
′

= −α(t∗)H(t∗)− β(t∗)H(t∗)TRS(t, t∗) . (10.101)

Thus we need α(t∗) and β(t∗) at the time t∗ of horizon exit during inflation, which are more
easily accessible in terms of the slow-roll parameters at that time.

The primordial spectra PR(k), CRS(k), PS(k) are defined at some time t after inflation,
during the radiation-dominated era, when all cosmological scales are still well outside the horizon:

PR(k) ≡ V k3

2π2

〈
|R~k|

2
〉

= PR∗(k) + 2TRS(t, t∗)CRS∗(k) + TRS(t, t∗)
2PS∗(k)(10.102)

CRS(k) ≡ V k3

2π2
〈R~kS

∗
~k
〉 = TSS(t, t∗)CRS∗(k) + TRS(t, t∗)TSS(t, t∗)PS∗(k) (10.103)

PS(k) ≡ V k3

2π2
〈|S~k|

2〉 = TSS(t, t∗)
2PS∗(k) . (10.104)
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Since these refer to a time after inflation, when the inflation fields have been replaced by matter
and radiation, Eqs. (10.48) and (10.50) no longer apply. Nevertheless, we still have a comoving
curvature perturbation R and quantities called entropy perturbations, that describe the devia-
tion from adiabaticity. Since in this section we assume that two-field slow-roll inflation is the
origin of all perturbations, there are just two degrees of freedom for each Fourier mode, leaving
only one degree of freedom for the deviation from adiabaticity. (For example, the field ϕ2 may
decay into CDM particles and field ϕ1 into standard model particles, in which case entropy field
perturbations may give rise to a CDM isocurvature mode.) Thus all entropy perturbations can
be given in terms of one quantity S~k per Fourier mode, although we may have a choice in what
entropy quantity to choose as this S~k. This choice then affects TSS(t, t∗), but does not affect
the discussion in the following section.

10.9 Primordial Spectral Indices to First Order

To calculate spectral indices to first order in slow-roll parameters, it is enough to start from the
generated spectra calculated to zeroth order. Thus, instead of Eq. (10.93), it is enough to use

PR∗(k) =

(
H2
∗

2πσ̇∗

)2

≡ P(0)
∗ (k) (10.105)

CRS∗(k) = 0 (10.106)

PS∗(k) =

(
H2
∗

2πσ̇∗

)2

= P(0)
∗ (k) . (10.107)

Eqs. (10.102,10.103,10.104) become now

PR(k) = P(0)
∗ (k) + T 2

RSP
(0)
∗ (k) (10.108)

CRS(k) = TRSTSSP(0)
∗ (k) (10.109)

PS(k) = T 2
SSP

(0)
∗ (k) . (10.110)

To calculate spectral indices, we need α(t∗) and β(t∗). From Eq. (10.51), Ṙ = −2θ̇S. In the
slow-roll approximation, from Eq. (10.67) θ̇ = −Hησs. So we have

Ṙ = 2HησsS ⇒ α(t∗) = 2ησs . (10.111)

To get a slow-roll superhorizon value for β(t∗), we start from Eq. (10.45). In the superhorizon
limit, we can drop the ∇2 terms, giving

δ̈s+ 3Hδ̇s+
(
Vss + 3θ̇2

)
δs = 0 . (10.112)

In the slow-roll approximation we drop the second time derivative, so we have (writing Vss and
θ̇ in terms of the slow-roll parameters),

3Hδ̇s+ 3H2
(
ηss + η2

σs

)
δs = 0 . (10.113)

Dropping the 2nd order term, this becomes

H−1δ̇s+ ηssδs = 0 , (10.114)

(This—slow-roll approximation of perturbation equations at superhorizon scales—should be
done in a more systematic manner—perhaps I’ll improve this part later. An essential point
is that at superhorizon scales, the different parts of the universe are disconnected, and the
inhomogeneity of the perturbation plays no role in local evolution. Therefore ~ϕ + δ~ϕ evolves
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like the background, just along a different slow-roll trajectory. I have now added a discussion of
this in Sec. 12.3.)

For S ≡ (H/σ̇)δs this becomes (exercise) the equation

H−1Ṡ = (−2ε+ ησσ − ηss)S ⇒ β(t∗) = −2ε+ ησσ − ηss . (10.115)

We are now ready to calculate the spectral indices. From (10.108),

PR(k) = PR∗(k) + TRS(t, t∗)
2PS∗(k) =

H4

4π2σ̇2

(
1 + T 2

RS
)
, (10.116)

where for each scale k, H and σ̇ are evaluated at t∗, when k = aH; and TRS = TRS(t, t∗). From
(10.52,10.55),

H4

σ̇2
= H2(H−1σ̇)−2 =

V

3M2

V 2

M4V 2
σ

∝ V

ε
. (10.117)

The spectral index nR is given by

nR ≡
d lnPR(k)

d ln k
=

d lnV

d ln k
− d ln ε

d ln k
+
d ln

(
1 + T 2

RS
)

d ln k
. (10.118)

The d ln k can be converted to a time derivative by

d ln k

dt
=

d ln(aH)

dt
=

ȧ

a
+
Ḣ

H
= H

(
1 +

Ḣ

H2

)
= (1− ε)H (10.119)

(where we used Eq. (9.10) in the last step). Now, using (10.55) and (10.57),

d lnV

d ln k
=

1

V

1

(1− ε)H
V̇ =

1

V

1

(1− ε)H
Vσσ̇ =

−M2

1− ε

(
Vσ
V

)2

=
−2

1− ε
ε ≈ −2ε . (10.120)

Using Eq. (10.64),

d ln ε

d ln k
=

1

(1− ε)H
ε̇

ε
=

4ε− 2ησσ
1− ε

≈ 4ε− 2ησσ . (10.121)

These two contributions add up to the single-field result (7.105).
The new part comes from

d ln
(
1 + T 2

RS
)

d ln k
≈ 1

1 + T 2
RS

H−1 d

dt∗

(
1 + T 2

RS
)

=
2TRS

1 + T 2
RS

H−1∂TRS
∂t∗

=
2TRS

1 + T 2
RS

[−α(t∗)− β(t∗)TRS ]

=
TRS

1 + T 2
RS

(−4ησs) +
T 2
RS

1 + T 2
RS

(4ε− 2ησσ + 2ηss) . (10.122)

We have no a priori constraint on TRS . It depends on the inflation model, including the reheating
process. The combinations TRS/(1 + T 2

RS) and T 2
RS/(1 + T 2

RS) above, on the other hand, have
a limited range—the latter must be between 0 and 1. Its square root must then be between −1
and 1 and it has become customary to define it in terms of an angle ∆, so that

cos ∆ ≡ TRS√
1 + T 2

RS

. (10.123)
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(The angle ∆ is thus related to what part of the primordial R was generated at horizon exit
and what part outside horizon: ∆ = π/2 means all at exit, none of it outside; ∆ = 0 or π means
none of it at exit, all outside.) From this we get

T 2
RS

1 + T 2
RS

= cos2 ∆ ,
1

1 + T 2
RS

= sin2 ∆ ,
1√

1 + T 2
RS

= sin ∆ (10.124)

(choosing 0 ≤ ∆ ≤ π), and

1

T 2
RS

= tan2 ∆ ,
1

TRS
= tan ∆ . (10.125)

This allows us to write Eq. (10.122) as

d ln
(
1 + T 2

RS
)

d ln k
≈ −4ησs cos ∆ sin ∆ + (4ε− 2ησσ + 2ηss) cos2 ∆ (10.126)

and altogether we have the final result

nR = −(6− 4 cos2 ∆)ε+ 2ησσ sin2 ∆− 4ησs cos ∆ sin ∆ + 2ηss cos2 ∆ . (10.127)

(The sign differences when compared to [14] are due to a different sign convention for R, which
changes the sign of TRS and cos ∆, but not sin ∆, which is always nonnegative .)

In a similar way we obtain (exercise):

nS = −2ε+ 2ηss (10.128)

and

nC ≡
d ln CRS(k)

d ln k
= −2ε− 2ησs tan ∆ + 2ηss . (10.129)

Derivating these first-order results for the spectral indices we obtain their running

q ≡ dn

d ln k
(10.130)

to 2nd order in slow-roll parameters (exercise) :

qS ≡ dnS
d ln k

≈ H−1ṅS = −2H−1ε̇+ 2H−1η̇ss = −8ε2 + 4ε(ησσ + ηss) + 4η2
σs + 2ξσss

qC ≡
dnC
d ln k

≈ H−1ṅC = . . .

= −8ε2 + 4ε(ησσ + ηss) + 4η2
σs(1− tan2 ∆)− 4ησs(ησσ − ηss) tan ∆ + 2ξσσs tan ∆− 2ξσss

qR ≡ dnR
d ln k

≈ H−1ṅR = . . . (10.131)

= 8(−3 + 4 cos2 ∆− 2 cos4 ∆)ε2

+4(4− 7 cos2 ∆ + 4 cos4 ∆)εησσ − 32 sin3 ∆ cos ∆εησs + 4(5 cos2 ∆− 4 cos4 ∆)εησσ

+4 sin2 ∆ cos2 ∆(η2
σσ + η2

ss) + 4(1− 4 sin2 ∆ cos2 ∆)η2
σs

+8(sin ∆ cos ∆− 2 sin ∆ cos3 ∆)ησs(ησσ − ηss)− 8 sin2 ∆ cos2 ∆ησσηss

−2 sin2 ∆ξσσσ + 4 sin ∆ cos ∆ξσσs − 2 cos2 ∆ξσss .

Since the running of the spectral indices is 2nd order in slow-roll parameters, it is usually
a good approximation to approximate the power spectra with a power law, i.e., with constant
spectral indices. An exception to this is nC in the case where TRS is very small, i.e., tan ∆ is very
large, since qC contains terms with a prefactor tan ∆ or tan2 ∆. These terms can thus be large
even though the slow-roll parameters in them are small. The spectral index nC itself contains
the term −2ησs tan ∆, which can make nC large. Thus the correlation CRS(k) is not necessarily
well approximated by a power law. However, this happens only when the correlation is small,
since the 0th order correlation is proportional to TRS .
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10.10 Alternative Parameterization

When comparing the theoretical predictions to observations, the primordial power spectra must
be represented in terms of a relatively small number of parameters. For a given inflation model,
the model itself may provide these parameters. In our general approach we may assume that the
primordial spectra can be approximated by power laws, so that for each spectrum we can take its
constant spectral index and its amplitude at some reference “pivot” scale kp as the parameters
to be fitted to the data. We could thus parameterize the three spectra, PR(k), CRS(k), PS(k)
with two amplitudes, A and B, a correlation parameter C, and three spectral indices nR, nC ,
and nS , i.e.,

PR(k) = A2

(
k

kp

)nR
CRS(k) = CAB

(
k

kp

)nC
PS(k) = B2

(
k

kp

)nS
. (10.132)

However, if we let these 6 parameters vary independently, some parameter combinations lead to
an inconsistent description of the perturbations, since in reality CRS(k)2 must always be smaller
than PR(k)PS(k), and this parameterization does not guarantee that. Restricting −1 ≤ C ≤ 1
is not enough, since if the three spectral indices are different, CRS(k) may still become too large
in relation to PR(k) and PS(k) at some small or large value of k. While there are ways to control
this in fitting to the data (the data always covers only a limited range in k), it may be more
convenient to parameterize the spectra differently.

We divide the primordial curvature perturbation power spectrum in two parts,

PR(k) = Par(k) + Pas(k) , (10.133)

where
Par(k) ≡ PR∗(k) (10.134)

is the part generated by the adiabatic field perturbations δσ alone, and

Pas(k) ≡ 2TRS(t, t∗)CRS∗(k) + TRS(t, t∗)
2PS∗(k) (10.135)

is the rest, i.e., the part generated by the entropy field perturbation and its original correlation
with the adiabatic field perturbation (this latter part vanishes to lowest order).

To lowest order we have then

Par(k) = P(0)
∗ (k) (10.136)

Pas(k) = T 2
RSP

(0)
∗ (k) (10.137)

PS(k) = T 2
SSP

(0)
∗ (k) (10.138)

and the correlation spectrum is now

CRS(k) = TRSTSSP(0)
∗ (k) =

√
Pas(k)PS(k) , (10.139)

so that
nC = 1

2(nas + nS) . (10.140)

To the lowest order the spectral indices are (exercise)

nar = −6ε+ 2ησσ

nas = −2ε− 4ησs tan ∆ + 2ηss (10.141)
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and their running is

qar = −24ε2 + 16εησσ − 4η2
σs − 2ξσσσ (10.142)

qas = −8ε2 + 4ε(ησσ + ηss) + 4η2
σs(1− 2 tan2 ∆)− 8ησs(ησσ − ηss) tan ∆ + 4ξσσs tan ∆− 2ξσss

(nC , nS , qC , and qS are as before).
We now approximate the three power spectra with power laws,

Par(k) ≈ A2
r

(
k

kp

)nar
and Pas(k) ≈ A2

s

(
k

kp

)nas
, (10.143)

and

PS(k) ≈ B2

(
k

kp

)nS
. (10.144)

The covariance is then given by

CRS(k) ≈ AsB

(
k

kp

)nas+nS
2

. (10.145)

Here A2
r ≡ Par(kp), A2

s ≡ Pas(kp), and B2 ≡ PS(kp). Here Ar and B are positive, but we let
the sign of As represent the sign of the correlation. We have thus 6 independent parameters to
describe the primordial perturbations:

Ar , As , B , nar , nas , nS . (10.146)

We further define a total amplitude

A2 ≡ A2
r +A2

s +B2 = PR(k0) + PS(k0) , (10.147)

and relative amplitudes

βiso ≡ B2

A2
=

PS(kp)

PR(kp) + PS(kp)
(10.148)

γ ≡ sign(AsB)
A2
s

A2
r +A2

s

= sign(CRS)
Pas(kp)
PR(kp)

= sign(TRSTSS)
T 2
RS

1 + T 2
RS

= sign(cos ∆) cos2 ∆ , (10.149)

so that

A2
s = |γ|(A2

r +A2
s) = |γ|(1− βiso)A2

A2
r = (1− |γ|)(A2

r +A2
s) = (1− |γ|)(1− βiso)A2

B2 = βisoA
2 . (10.150)

Now the 6 independent parameters are

A , βiso , γ , nar , nas , nS , (10.151)

where 0 ≤ βiso ≤ 1 and −1 ≤ γ ≤ 1. In the literature, nS is often called niso, as PS represents
the isocurvature mode of the perturbations.
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Figure 7: The contribution to the CMB angular power spectrum of the adiabatic mode and CDM
(CDI) and neutrino (NDI) entropy perturbations, in the case of scale-invariant (n = 0) perturbations.
(NVI is the neutrino velocity isocurvature mode, which we do not expect from inflation.) If the modes
are correlated, there is an additional contribution that is intermediate between the two modes in shape
and can be either positive or negative depending on the sign of the correlation. The same primordial
amplitude has been assumed for each mode. From [15].

10.11 Observational Constraints

The tightest constraints on primordial entropy perturbations come from the observations of the
cosmic microwave background (CMB) by the Planck satellite. These observations were made
in 2009–13 and the final results were published in 2018. The effect on the CMB depends on
whether the entropy field perturbations have been converted into CDM/baryon or neutrino
entropy perturbations. (The effect of CDM and baryon entropy perturbations is essentially the
same, so they cannot be distinguished by CMB observations.) Fig. 7 shows the contribution
to the CMB by the adiabatic mode (no primordial entropy perturbation) and the different
possibilities for the isocurvature mode (no primordial curvature perturbation, just an entropy
perturbation) in the case of scale-invariant primordial perturbations.

Observations agree well with a pure adiabatic mode. A pure isocurvature mode is not
allowed, so the data gives upper limits to the relative contribution of the isocurvature mode,
which we define as

βiso(k) ≡ PS(k)

PR(k) + PS(k)
. (10.152)

If PR(k) and PS(k) have different spectral indices, then βiso is scale-dependent, and we get
different constraints for it at different scales. Assuming that the running of the spectral indices
is negligible in the observational range Planck gives the upper (95% confidence) limits [16]

βiso < 0.025 at k = 0.002 Mpc−1

βiso < 0.26 at k = 0.05 Mpc−1

βiso < 0.47 at k = 0.1 Mpc−1 (10.153)

in the case of a CDM or baryon isocurvature mode. Why the limit is much tighter for large
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Figure 8: The likelihood distributions of the CDM isocurvature parameters βiso(0.002 Mpc−1) and
βiso(0.1 Mpc−1)), cos ∆, nS , and nC from final (2018) Planck data. From [16]. The dotted curves
are the 2015 results. The red and blue curves are essentially with and without using the data on CMB
polarization. (The 2015 results did not use polarization data.) Since we do not have a detection of the
isocurvature mode, we do not have any constraints on its spectral index. The curve for 1 + nS ≡ nII is
just an artifact resulting from priors used for the likelihood estimation reflecting the fact that isocurvature
contributions with 1 + nS ≈ 1.8 can be fit to the data with a larger primordial amplitude than redder or
bluer spectra.

scales (low k) is clear from Fig. 7. A given relative amplitude of the isocurvature mode has
a much larger relative effect on the CMB at large scales. This also means that it is easier
to accommodate an isocurvature mode with a high (blue) spectral index. In Fig. 8 we give
the likelihood distributions of the isocurvature parameters βiso (at klow = 0.002 Mpc−1 and
khigh = 0.1 Mpc−1), cos ∆, nS , and nC from final Planck data.

These limits on the isocurvature contributions are relatively weak considering the high preci-
sion of Planck data. This is due to the large number of isocurvature parameters. One gets tighter
limits [16] for specific inflation models or by making some assumptions about the isocurvature
parameters. For example, assuming the isocurvature mode is uncorrelated with the adiabatic
mode and close to scale invariant, nS ≈ 0, (an “axion”) model), the upper limit is βiso < 0.04.
Assuming the isocurvature mode is fully correlated or anticorrelated with the adiabatic mode,
with the same spectral index (“curvaton” models), the upper limit is very tight, βiso < 0.001.
This is because the correlation has a much bigger effect on the CMB than the direct contribution
of the isocurvature mode.
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11 Primordial Tensor Perturbations

For tensor perturbations, the metric is

gµν = a2ηµν + δgTµν = a2(ηµν + hµν) = = a2


−1

1 + h+ h×
h× 1− h+

1

 . (11.1)

There are thus two modes of tensor perturbations, h+ and h×. From the Hilbert action we find
(not obvious, this part should be done here) that

ψ+,× ≡
M√

2
h+,× (11.2)

appear in the action in the same way as a free massless scalar field. Therefore they acquire the
same spectrum13 during inflation as perturbations in the scalar fields,

Pψ(k) ≡ V k3

2π2

〈
|ψ(~k)|2

〉
=

(
H

2π

)2

k=aH

(11.3)

to lowest order.14 Tensor perturbations do not evolve outside the horizon, so this gives the
primordial tensor perturbation spectrum. It is commonly defined as

PT (k) ≡ V k3

2π2

〈
hµν(~k)hµν(~k)

∗〉
= V k3

2π2

〈
2|h+(~k)|2 + 2|h×(~k)|2

〉
=

8

M2
Pψ(k) =

8

M2

(
H

2π

)2

k=aH

. (11.4)

The two perturbation modes are independent, so〈
ha(~k)hb(~k

′)∗
〉

=
2π2

Vk3
δabδ~k~k′

1

4
PT (k) where a, b = +,× (11.5)

Using the slow-roll equations H2 = V/3M2 etc., we have

PT =
2

3π2M4
V (11.6)

nT ≡ d lnPT
d ln k

=
d lnV

d ln k
= −2ε (11.7)

qT ≡ dnT
d ln k

= −2
dε

d ln k
= −8ε2 + 4εησσ . (11.8)

The tensor-to-scalar ratio is defined15

r ≡ PT
PR

. (11.9)

We define

r∗ ≡
PT
PR∗

. (11.10)

13This generation of primordial tensor perturbations from quantum fluctuations assumes quantum gravity at
the perturbation level (quantized linear gravity, which is relatively straightforward to formulate compared to full
quantum gravity). The quanta of these perturbations are called gravitons.

14This is calculated to higher (first) order in slow-roll parameters in [22].
15There are also other definitions of r in the literature. In the older literature it is sometimes defined in terms

of its contribution to the CMB quadrupole, r ≡ CT2 /C
R
2 , which makes its relation to primordial power spectra

depend on the background cosmological parameters.
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If PR does not evolve outside the horizon, which is the case in single-field inflation, r = r∗. But
in many-field inflation, PR evolves outside the horizon, although PT does not, and therefore
r 6= r∗. Since

PR∗ = P(0)
∗ =

H4

4π2σ̇2
=

1

4π2

V

3M2

V 2

M4V 2
σ

=
1

24π2M4

V

ε
, (11.11)

we have

r∗ =
48π2M4

3π2M4
ε = 16ε . (11.12)

From (10.108),

PR = (1 + T 2
RS)P(0)

∗ =
P(0)
∗

sin2 ∆
=

P(0)
∗

1− |γ|
(11.13)

so that
r = r∗ sin2 ∆ = 16ε sin2 ∆ = 16ε(1− |γ|) . (11.14)

Since tensor perturbations add new observables (r, nT , qT ) without adding new slow-roll
parameters, we obtain consistency relations

nT = −1

8
r∗ = − r

8(1− |γ|)
(11.15)

qT = nT (nT − nar) (11.16)

that can be used to test inflation without having to assume a particular inflation model.
Primordial tensor perturbations have not been observed so far. The current (2015) upper

limit is from combined BICEP2/Keck/Planck data [18],

r < 0.07 (11.17)

(95 % confidence level). Assuming single-field inflation, this gives an upper limit

ε < 0.0044 (11.18)

and, from the consistency relation, a lower limit

nT > −0.009 (11.19)

The smaller r is, the less accurately it will be possible to measure nT (once we have first detected
tensor perturbations). While it is estimated that with a dedicated polarization-optimized CMB
space mission, we might be able to detect tensor perturbations if r > 0.0001, with the current
limits it is already questionable whether it is possible to ever detect the deviation of nT from
zero (assuming it satisfies the consistency relation). Thus the hope of verifying the consistency
relation observationally, and thus providing quantitative evidence for inflation, is waning. How-
ever, if nT deviates from scale invariance (nT = 0) by much more than the consistency relation
implies, we could still detect that with r < 0.07, and thus falsify this prediction of inflation.
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12 Noninteracting Fields

We now consider the simpler case of N fields, where the fields do not interact with each other,
except gravitationally, i.e., the potential is of the form

V (ϕ1, . . . , ϕN ) =

N∑
I=1

VI(ϕI) , (12.1)

which motivates this change from our previous notation: the subscript I now denotes that
term in the potential which depends on field ϕI , and thus does not denote a derivative.16 From
(12.1) follows that

∂2V

∂ϕI∂ϕJ
= 0 for I 6= J , (12.2)

i.e., the matrix of second derivatives is diagonal and we can denote the potential derivatives by

V ′I ≡
∂V

∂ϕI
=
dVI
dϕI

, V ′′I ≡
∂2V

∂ϕ2
I

=
d2VI
dϕ2

I

. (12.3)

We can write the background energy density and pressure as

ρ =
∑

ρI , where ρI = 1
2 ϕ̇

2
I + VI

p =
∑

pI , where pI = 1
2 ϕ̇

2
I − VI (12.4)

The background equations are

H2 =
8πG

3
ρ =

1

3M2

∑(
1
2 ϕ̇

2
I + VI

)
(12.5)

ϕ̈I + 3Hϕ̇I + V ′I = 0 (12.6)

In general, the ϕI will evolve at different rates, so that the background trajectory is curved. To
preserve the advantage of field separation we shall mostly calculate in the original basis, i.e., not
rotate into adiabatic and entropy field coordinates.

In the slow-roll approximation the background equations become

H2 =
V

3M2
H−1ϕ̇I = −M2V

′
I

V

Ḣ

H2
= −M

2

2V 2

∑
(V ′I )2 = −ε . (12.7)

We define slow-roll parameters for each field:

εI ≡
M2

2

(
V ′I
V

)2

ηI ≡ M2V
′′
I

V
. (12.8)

The εIJ and ηIJ that we defined earlier for the more general case are now

εIJ =
√
εIεJ ηIJ = ηIδIJ . (12.9)

16Sections 12 and 13 were initially written as a single section, and the clean-up after the separation is maybe
still incomplete. Originally I had some of the calculations of this section done only for the specific double inflation
model of Sec. 13; whereas now I just apply the more general results to it. It is not clear to me which would be
pedagogically better: to calculate first in the specific model and then redo it in the more general model, or the
current structure where the calculation is done directly in the more general case and the results then applied to
the specific model.
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The slow-roll conditions may fail for different fields at different times. How does slow-roll
fail? It fails when we can no longer drop the ϕ̇2

I and ϕ̈I terms in Eqs. (12.5) and (12.6). In the
slow-roll approximation these terms are

1
2 ϕ̇

2
I = 1

3εIV and ϕ̈I = (ε− ηI)Hϕ̇I , (12.10)

where V =
∑
VI and ε =

∑
εI . Thus the slow-roll approximation remains valid for (12.5) while

ε is small and for (12.6) while ε and ηI are small. Since ε =
∑
εI it can only remain small when

all of the εI are small. Thus the way for the slow-roll condition to fail for just one of the fields
ϕJ is that ηJ becomes large, while all the other slow-roll parameters remain small. When that
happens, ϕJ begins to move rapidly towards the minimum of VJ , where VJ = 0, and the energy
density ρJ begins to fall rapidly, while the energy density associated with the other fields keeps
changing slowly. Thus the effect of ϕJ on the metric and hence on the other fields becomes soon
negligible, and we can continue the discussion of the slow-roll solution with the remaining N −1
fields—and so on.

12.1 Perturbations

Following Polarski & Starobinsky [20] and Langlois [21] we work in the longitudinal (New-
tonian) gauge. We shall need the second Einstein equation (5.15) and the field perturbation
equations (5.8). In the Newtonian gauge (A = D = Φ) they become

Φ̇ +HΦ = 4πG
∑
I

ϕ̇Iδϕ
N
I (12.11)

δ̈ϕ
N
I + 3H ˙δϕ

N
I +

k2

a2
δϕNI + V ′′I δϕ

N
I = −2V ′IΦ + 4ϕ̇IΦ̇ . (12.12)

We shall also be interested in the comoving density perturbation (Eq. 6.17)

δρC =
∑
I

δρCI , where

δρCI = ϕ̇I ˙δϕ
N
I + V ′I δϕ

N
I + 3Hϕ̇Iδϕ

N
I − ϕ̇2

IΦ . (12.13)

We define also the total and component comoving relative density perturbations

δC ≡ δρC

ρ
δCI ≡

δρCI
ρI

. (12.14)

During inflation, ρI = 1
2 ϕ̇

2
I + VI is dominated by the potential term, and ρI + pI = ϕ̇2

I � ρI . It
is useful to define the quantities

∆I ≡
δρCI

ρI + pI
=

δρCI
ϕ̇2
I

=
d

dt

(
δϕNI
ϕ̇I

)
− Φ , (12.15)

which are much larger than the δρCI . The last equality follows from

d

dt

(
δϕNI
ϕ̇I

)
− Φ =

˙δϕ
N
I

ϕ̇I
− ϕ̈Iδϕ

N
I

ϕ̇2
I

− Φ =
ϕ̇I ˙δϕ

N
I + V ′I δϕ

N
I + 3Hϕ̇Iδϕ

N
I − ϕ̇2

IΦ

ϕ̇2
I

=
δρCI

ρI + pI
.

Note that SIJ ≡ ∆I −∆J is the relative entropy perturbation between components I and J , as
defined in part 1 of this course.
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12.2 Adiabatic Superhorizon Solution

We know from part I of this course (since the 28.11.2015 version) that, for perfect fluid, the
general adiabatic superhorizon solution for the Bardeen potential is

Φ~k(t) = A~k

(
1− H

a

∫ t

0
adt

)
+B~k

H

a
=

(
A~k

∫ t

0
adt−B~k

)(
−H
a

)
+A~k (12.16)

Φ̇~k(t) =

(
A~k

∫ t

0
adt−B~k

)(
−Ḣ +H2

a

)
−A~kH , (12.17)

where A~k gives the growing mode and B~k the decaying mode. Note that

d

dt

(
1

a

)
= −H

a
and

d

dt

(
H

a

)
=

Ḣ −H2

a
. (12.18)

These occur repeatedly in this subsection.
The background field equation is

ϕ̈I + 3Hϕ̇I + V ′I = 0 . (12.19)

For superhorizon scales the field perturbation equation is then

δ̈ϕ
N
I + 3H ˙δϕ

N
I + V ′′I δϕ

N
I = −2V ′IΦ + 4ϕ̇IΦ̇ (12.20)

=

(
A~k

∫ t

0
adt−B~k

)(
2
H

a
V ′I − 4

Ḣ −H2

a
ϕ̇I

)
− 2A~k

(
V ′I + 2Hϕ̇I

)
.

The solution is (exercise)

δϕNI =
1

a

(
A~k

∫ t

0
adt−B~k

)
ϕ̇I . (12.21)

Note that in the N-dimensional field space the field perturbation is in the direction of the
background trajectory, so this indeed represents an adiabatic field perturbation.

Derivating
δϕNI
ϕ̇I

=
1

a

(
A~k

∫ t

0
adt−B~k

)
(12.22)

and comparing to Eq. 12.15 we find

d

dt

(
δϕNI
ϕ̇I

)
= Φ ⇒ ∆I = 0 ⇒ δρCI = 0 . (12.23)

This may look problematic, but remember that we are at the superhorizon limit, and

δρC = −2

3
ρ

(
k

H

)2

Φ , (12.24)

so we are just ignoring δρCI in the superhorizon approximation for the adiabatic case. If we need
to know the total δρC we can always recover it from Φ.

The key point is that for entropy perturbations (to be discussed later) the individual ∆I and
δρCI are much larger that the total ∆ and δρC , i.e., “nonzero” in the superhorizon limit.

For the comoving curvature perturbation we get (exercise) (easy)

R~k = −Φ~k +
H

Ḣ

(
Φ̇~k +HΦ~k

)
= . . . = −A~k = const. (12.25)
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Thus R is associated with the growing mode and the decaying mode has R = 0. We can now
rewrite the growing mode solution for Φ as

Φ~k(t) = −R~k

(
1− H

a

∫ t

0
adt

)
. (12.26)

We do not have corresponding “exact” (i.e., no slow-roll approximation, just the superhorizon
approximation) results for entropy perturbations. Thus we go to the slow-roll approximation in
the next section.

12.3 Slow-Roll Approximation of the Field Perturbation Equations at Su-
perhorizon Scales

In the superhorizon approximation each region of space evolves essentially independently and
like a solution for the background universe. The field perturbation equation in the superhorizon
approximation is

H−2δ̈ϕ
N
I + 3H−1 ˙δϕ

N
I +H−2V ′′I (ϕ̄I)δϕ

N
I = −2H−2V ′I (ϕ̄I)Φ + 4H−1 ˙̄ϕIH

−1Φ̇ . (12.27)

We temporarily reinstall the overbar to the background field ϕ̄I to separate it from the total
field ϕI = ϕ̄I + δϕNI . The background field equation is

H−2 ¨̄ϕI + 3H−1 ˙̄ϕI +H−2V ′I (ϕ̄I) = 0 , (12.28)

so that the equation for the total field is

H−2ϕ̈I + 3H−1ϕ̇I +H−2V ′I (ϕI) = −2H−2V ′I (ϕ̄I)Φ + 4H−1 ˙̄ϕIH
−1Φ̇ . (12.29)

If we ignore the metric perturbations on the rhs, the equation for the total field is the same as
for the background field. Then it will have the same slow-roll trajectories as the background
field. It will just choose a slightly different one. The additional effect of the metric perturbations
appears as a slightly different expansion rate and a deviation of the coordinate time from the
“local time”.17

We know that in inflation, the slow-roll solutions are attractors. The perturbation equations
are second order equations and there will be a growing mode and a decaying mode for each degree
of freedom. The decaying of the decaying mode represents the settling of the total field into
the attractor solution. Thus the growing modes correspond to the slow-roll solutions. We can
then make the slow-roll approximation and drop the H−2ϕ̈I term from the total field equation

at the same time as from the background field equation, meaning that H−2δ̈ϕ
N
I drops from the

perturbation equation. In the slow-roll approximation the rhs of the perturbation equation is

−2H−2V ′I (ϕ̄I)Φ + 4H−1 ˙̄ϕIH
−1Φ̇ ≈ −2H−2V ′I (ϕ̄I)

(
Φ + 2H−1Φ̇

)
(12.30)

Since perturbations evolve slowly in the slow-roll solution, H−1Φ̇� Φ and we drop it.
Thus the slow-roll superhorizon field perturbation equation is

3H ˙δϕ
N
I + V ′′I δϕ

N
I = −2V ′IΦ . (12.31)

and the Einstein equation (12.11) becomes

Φ =
1

2M2

∑
H−1ϕ̇Iδϕ

N
I = − 1

2V

∑
V ′I δϕ

N
I . (12.32)

17Should try to formulate this more precisely, to make a more accurate statement about the slow-roll trajectories
in the perturbed universe—are they exactly the same as in the background universe? The rhs is proportional to
the potential gradient at the background trajectory. The full field is slightly displaced from it, but the difference
is a second order perturbation in this term; so we can replace it with the potential gradient at the trajectory of
the full field, so this term just pushes the total field slightly faster or slower along the slow-roll trajectory.
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12.3.1 Two Fields

To simplify the discussion, we now consider the case of N = 2 fields. The Einstein equation
(12.11) is now

Φ =
1

2M2H

(
ϕ̇1δϕ

N
1 + ϕ̇2δϕ

N
2

)
= − 1

2V

(
V ′1δϕ

N
1 + V ′2δϕ

N
2

)
. (12.33)

The general solution to Eqs. (12.31) and (12.33) is (exercise)

Φ = −C1
Ḣ

H2
+

1

3
C3
V1(V ′2)2 − V2(V ′1)2

V 2
(12.34)

δϕN1
ϕ̇1

= C1
1

H
− 2C3

HV2

V
(12.35)

δϕN2
ϕ̇2

= C1
1

H
+ 2C3

HV1

V
,

where C1(~k) and C3(~k) are constants fixed by the initial conditions. (My strategy for showing
that this is a solution would be to do the C1 and C3 parts separately, and for the more com-
plicated C3 part use the slow-roll equations to write everything in terms of the potentials and
their derivatives.) Constants C2 and C4 are reserved for the decaying modes which are killed in
the slow-roll approximation.

We see that the C1 part corresponds to the adiabatic solution, since for it we have

~δϕ
N

=
C1

H
~̇ϕ . (12.36)

The slow-roll approximation of the superhorizon adiabatic solution (Sec. 12.2) matches this
solution (exercise) so that C1(~k) = A~k.

The new, C3, mode is the isocurvature mode. For it we get (exercise)

∆1 =
d

dt

(
δϕN1
ϕ̇1

)
− Φ =

1

3
C3

(V ′2)2

V

∆2 =
d

dt

(
δϕN2
ϕ̇2

)
− Φ = −1

3
C3

(V ′1)2

V

S12 ≡ ∆1 −∆2 =
1

3
C3

(V ′1)2 + (V ′2)2

V
=

2

3
C3

V

M2
ε

δρC1 = ∆1ϕ̇
2
1 =

C3M
2

9V 2
(V ′2)2(V ′1)2

δρC2 = ∆2ϕ̇
2
2 =

C3M
2

9V 2
(V ′1)2(V ′2)2 = −δρC1

δρC = δρC1 + δρC2 = 0 . (12.37)

Thus in the isocurvature mode we have the opposite comoving density perturbations in the
two components so that the total comoving density perturbation vanishes (in the superhorizon
limit).

Inverting the equation pair (12.35) we can express the constants as

C1 =
H

V

(
V1
δϕN1
ϕ̇1

+ V2
δϕN2
ϕ̇2

)
= − 1

M2

(
V1
δϕN1
V ′1

+ V2
δϕN2
V ′2

)
C3 =

1

2H

(
δϕN2
ϕ̇2
− δϕN1

ϕ̇1

)
=

3

2

(
δϕN1
V ′1
− δϕN2

V ′2

)
. (12.38)
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(Note that C1 and C3 have different dimensions.) We can solve the constants C1 and C3 from
(12.38) at any time they are valid, i.e., in the superhorizon slow-roll regime. The application is
that as the perturbations are generated during horizon exit, we get the generated perturbations
δϕ1 and δϕ2, from which we solve C1 and C3, and then equations (12.35) tell us how the
perturbations evolve until the slow-roll approximation fails.

12.3.2 Generation

In Sec. 10.7 we calculated the generated spectra for the adiabatic and entropy field perturbations
in the spatially flat gauge. To first order in slow-roll parameters they were different and corre-
lated, but to zeroth order they were equal and uncorrelated. We learned that the zeroth order
spectra are enough for the lowest order results (e.g., spectral indices to first order, and their
running to second order). This allows us to apply the results directly to the present discussion,
where we use Newtonian gauge and unrotated field coordinates.

From Eq. (6.4) the field perturbations in the two gauges are related by

δϕQI = δϕNI +H−1ϕ̇IΦ . (12.39)

Since the change in ~δϕ is parallel to the background trajectory, in the rotated field coordinates
the gauge transformation changes only δσ,

δσQ = δσN +H−1σ̇Φ , (12.40)

whereas δs is gauge invariant. In terms of δσQ and δs the constants C1 and C3 are

C1 = H
δσN

σ̇
+

(
−V1

V
tan θ +

V2

V
cot θ

)
H
δs

σ̇

C3 =
1

2H

(
ϕ̇1

ϕ̇2
+
ϕ̇2

ϕ̇1

)
δs

σ̇
=

1

2H
(cot θ + tan θ)

δs

σ̇
=

1

2H

1

cos θ sin θ

δs

σ̇
. (12.41)

The zeroth order spectra for δσQ and δs are, from Eq. (10.90),

Pσ∗(k) ≡ V k3

2π2

〈
|δσQ~k |

2
〉

=

(
H∗
2π

)2

Cσs∗(k) ≡ V k3

2π2
〈δσQ~k δs

∗
~k
〉 = 0

Ps∗(k) ≡ V k3

2π2
〈|δs~k|

2〉 =

(
H∗
2π

)2

, (12.42)

where V is the reference volume for the Fourier expansion. Since the spectra are equal and
uncorrelated, they apply also to field components in an arbitrarily rotated basis, and in particular
to the original δϕQ1 and δϕQ2 .

We apply Eq. (12.39) to the perturbation spectra after they were generated, when the su-
perhorizon slow-roll approximation is valid. Thus

δϕN1 = δϕQ1 +M2V
′

1

V
Φ = δϕQ1 −

M2

2V 2
V ′1
(
V ′1δϕ

N
1 + V ′2δϕ

N
2

)
= δϕQ1 − ε11δϕ

N
1 − ε12δϕ

N
2

δϕN2 = . . . = δϕQ2 − ε12δϕ
N
1 − ε22δϕ

N
2

δσN = . . . = δσQ − εδσN . (12.43)
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Thus δϕQI and δϕNI differ in first slow-roll order and their spectra to zeroth order are the same:

P1∗(k) ≡ V k3

2π2

〈
|δϕ

1~k
|2
〉

=

(
H∗
2π

)2

C12∗(k) ≡ V k3

2π2
〈δϕ

1~k
δϕ∗

2~k
〉 = 0

P2∗(k) ≡ V k3

2π2
〈|δϕ

2~k
|2〉 =

(
H∗
2π

)2

. (12.44)

Another way to write this result is

δϕ
I~k

(∗) =
H∗√
2k3

e
I~k
, (12.45)

where the e
I~k

are normalized uncorrelated Gaussian random variables, i.e.,

〈e
I~k
e∗
J~k
〉 =

1

V
δIJ (12.46)

(and their probability distribution has Gaussian shape).
Thus this quantum process generates the values of the constants C1(~k) and C3(~k) according

to

C1(~k) = − Hk

M2
√

2k3

(
V1(∗)
V ′1(∗)

e
1~k

+
V2(∗)
V ′2(∗)

e
2~k

)
C3(~k) =

3Hk

2
√

2k3

(
e

1~k

V ′1(∗)
−

e
2~k

V ′2(∗)

)
, (12.47)

where Hk is the Hubble parameter at horizon exit of scale k.

12.3.3 Adiabatic Mode

The adiabatic mode, the one corresponding to the constant C1, can be trivially carried from the
perturbation generation during inflation through reheating to the primordial epoch, since for it
the comoving curvature perturbation stays constant,

R~k(rad, adi) = R~k(∗, adi) = −C1(~k) . (12.48)

12.3.4 Isocurvature Mode through Reheating

The case of the isocurvature mode is more involved and depends on the details of reheating. It
is quite possible that entropy perturbations are erased in reheating. For entropy perturbations
to survive reheating and produce a primordial isocurvature mode, they must either be protected
by some conserved quantity, or a field must remain decoupled from radiation (or the fields that
decay into radiation) so it does not reach thermal equilibrium with it.

Here we assume that the ϕ1 field decays into radiation in reheating, whereas the ϕ2 field
becomes the CDM, remaining decoupled (not interacting with ϕ1 or the radiation, except grav-
itationally) at all times.

Inflation ends when slow-roll conditions fail. With two fields, they are not likely to fail for
both at the same time. We have different cases depending on for which field they end first and
which field dominates the energy density at that time.
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How does slow roll fail? The exact background equations are

H2 =
1

3M2

(
1
2 ϕ̇

2
1 + 1

2 ϕ̇
2
2 + V1 + V2

)
(12.49)

ϕ̈1 + 3Hϕ̇1 + V ′1 = 0 (12.50)

ϕ̈2 + 3Hϕ̇2 + V ′2 = 0 . (12.51)

The slow-roll approximation is that we drop the 1
2 ϕ̇

2
I and ϕ̈I terms from these equations. In the

slow-roll approximation these terms are

1
2 ϕ̇

2
I = 1

3εIV and ϕ̈I = (ε− ηI)Hϕ̇I , (12.52)

where V = V1 + V2 and ε = ε1 + ε2. Thus the slow-roll approximation remains valid for (12.49)
while ε is small, for (12.50) while ε and η1 are small, and for (12.51) while ε and η2 are small.

We consider now the case, where slow-roll fails first for ϕ2, i.e., we can no longer drop ϕ̈2

from (12.51), while ϕ1 dominates the energy density. Thus

V2 < ρ2 � V1 ≈ V ≈ ρ1 . (12.53)

The field ϕ2 is then “close to the minimum” of V2 (meaning that is closer to it than it was before).
To proceed we need to know the shape of V2 in the region around the minimum that we have now
reached. We make the simplest assumption: V2 can be approximated by the lowest-order term

V2 ≈ 1
2m

2ϕ2
2 (12.54)

in this region. (We assume no vacuum energy, so there is no constant term—or even if there is,
we may consider it as part of V1. We choose the origin of the field coordinates at the potential
minimum⇒ no first-order term.) Using the approximations (12.53) and (12.54) we have for the
slow-roll parameters

ε1 = 1
2M

2

(
V ′1
V

)2

ε2 ≈ M2m
2V2

V 2
η1 = M2V

′′
1

V
η2 = M2m

2

V
. (12.55)

Slow roll fails when one of these parameters is no longer � 1. We see that ε2 = (V2/V )η2 � η2,
so η2 becomes large first, while all the other slow-roll parameters remain small. Thus we can
keep using the slow-roll approximation for (12.49) and (12.50) but must start using the exact
equation (12.51). We will assume that we can start using the approximations (12.53) and (12.54)
already a bit earlier than we have to drop the slow-roll approximation for (12.51).

The full equations for ϕ2 are now (we are still at superhorizon scales)

ϕ̈2 + 3Hϕ̇2 +m2ϕ2 = 0

δ̈ϕ2 + 3H ˙δϕ2 +m2δϕ2 = −2m2ϕ2Φ + 4ϕ̇2Φ̇ . (12.56)

We quote (slightly paraphrased) from Polarski & Starobinsky [20]: “If ρ2 � ρ, then irrespective
of whether ϕ2 is in the slow-roll regime or not, the rhs with the metric perturbations may be
ignored for the isocurvature modes”18 Dropping the rhs, we see that the equations for ϕ2 and
δϕ2 are the same. This is specific to a quadratic potential, for which V ′2 = V ′′2 ϕ2, and is key to
the following discussion.

18This is obvious, since if only one field has a significant contribution to the energy density, the metric pertur-
bations should depend only on the dominant field, and thus be the same as in the adiabatic solution with the
same perturbation in the dominant field. However, I was not able to show this with the equations at hand.
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Thus these equations have the same solutions. They are 2nd order equations, so there are
two independent solutions, but the slow-roll epoch has already killed the decaying solutions. In
the slow-roll regime

δϕN2
ϕ̇2

= 2C3H
V1

V
≈ 2C3H (12.57)

(as V2 � V1 ⇒ V1 ≈ V ), so that

δϕN2 ≈ 2C3Hϕ̇2 = −2
3C3m

2ϕ2 . (12.58)

Thus, during the slow-roll regime, δϕN2 has picked the same solution as ϕ2 (in the sense that
δϕ2 ∝ ϕ2) and this relation

δϕN2 = −2
3C3m

2ϕ2 (12.59)

will hold even after slow roll fails for ϕ2.
After slow roll fails for ϕ2, it begins to oscillate at the bottom of its potential. The slow-roll

equation

H2 =
V

3M2
(12.60)

remains valid for as long as ε remains small. Thus

η2 = M2m
2

V
⇒ m2 = 3η2H

2 . (12.61)

After slow roll fails for ϕ2, η2 becomes larger than 1 and H smaller than m. Since m stays
constant, while H shrinks (albeit slowly for as long as ϕ1 is in the slow-roll regime), after a
while H � m and the 3Hϕ̇2 term becomes subdominant in Eq. (12.56) and the Hubble time
becomes longer than the oscillation period.

For time scales shorter than the Hubble time we can ignore the 3Hϕ̇2 term, so that we have

ϕ̈2 +m2ϕ2 ≈ 0 (12.62)

whose solutions are sinusoidal

ϕ2 ≈ E sinm(t− t1)

ϕ̇2 ≈ Em2 cosm(t− t1)

ϕ̈2 ≈ −Em2
2 sinm(t− t1) (12.63)

while all the time δϕN2 = 2
3C3m

2ϕ2. In this oscillation the background density

ρ2 = 1
2

(
ϕ̇2

2 +m2ϕ2
2

)
≈ 1

2m
2E2 (12.64)

alternates between the kinetic and potential parts.
Over longer time scales the 3Hϕ̇2 term damps the amplitude of these oscillations. What

happens to ρ2? We now use the full equation (12.56a):

ρ̇2 + 3Hρ2 = ϕ̇2(ϕ̈2 +m2ϕ2) + 3
2H(ϕ̇2

2 +m2ϕ2
2)

= ϕ̇2(−3Hϕ̇2) + 3
2H(ϕ̇2

2 +m2ϕ2
2) = 3

2H(m2ϕ2
2 − ϕ̇2) (12.65)

which oscillates, but averaged over oscillations is zero, so that the long-time behaviour is

ρ̇2 + 3Hρ2 = 0 ⇒ ρ2 ∝ a−3 , (12.66)

so the energy density of ϕ2 behaves like matter.
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At some point it will become appropriate to switch from the field picture to the particle
picture. The quanta of the ϕ2 field are the CDM particles in our model. Once the ϕ1 field has
done its thing (reheating) and we have landed in the radiation-dominated universe, where the
CDM is the matter contribution (we ignore other matter components), it is time to evaluate the
entropy perturbation

S ≡ δm − 3
4δr = δCm − 3

4δ
C
r ≈ δCm . (12.67)

To justify the approximation, note that in the isocurvature mode during the superhorizon epoch
δρC = δρCm + δρCr = 0, so that δρCm = −δρCr . Therefore

∣∣δCm∣∣ =

∣∣∣∣δρCmρm
∣∣∣∣ � ∣∣∣∣δρCrρr

∣∣∣∣ =
∣∣δCr ∣∣ (12.68)

as ρr � ρm during the primordial epoch.
We have identified δρCm with δρC2 . From Eq. (12.13)

δρC2 = ϕ̇2
˙δϕ
N
2 + V ′2δϕ

N
2 + 3Hϕ̇2δϕ

N
2 − ϕ̇2

2Φ . (12.69)

We have argued that at this stage we can drop the metric perturbation term with Φ for the
isocurvature mode, and that by now 3Hϕ̇2 � V ′2 = m2ϕ2, so that, using Eq. (12.59),

S = δCm ≈
δρC2
ρ2

≈ 2
ϕ̇2

˙δϕ
N
2 +m2ϕ2δϕ

N
2

ϕ̇2
2 +m2ϕ2

2

= −4
3C3m

2 ϕ̇
2
2 +m2ϕ2

2

ϕ̇2
2 +m2ϕ2

2

(12.70)

and we have our final result

S~k(rad) = −4
3m

2C3(~k) (12.71)

To get the transfer function TSS(k), we compare this to

S(∗) ≡ H∗
δs∗
σ̇∗

. (12.72)

Since, from Eq. (12.41),

C3(~k) =
1

2H

(
ϕ̇1

ϕ̇2
+
ϕ̇2

ϕ̇1

)
δs~k
σ̇

=
1

2H2
k

(
V ′1(∗)
V ′2(∗)

+
V ′2(∗)
V ′1(∗)

)
S~k(∗) , (12.73)

we have

TSS(k) ≡
S~k(rad)

S~k(∗)
= −2

3

(
m

Hk

)2 [V ′1(∗)
V ′2(∗)

+
V ′2(∗)
V ′1(∗)

]
= −2

3

(
m

Hk

)2 1

sin θk cos θk
. (12.74)

To calculate TRS(k) we take note that when the perturbations are generated, there are two
contributions to R:

R~k(∗) = −Hk

δσQ~k
(∗)

σ̇k
= R~k(∗, adi) +R~k(∗, iso) (12.75)

where the first contribution, from the adiabatic mode, stays constant and the second contribu-
tion, from the isocurvature mode, decays away as we come to the primordial epoch:

R~k(rad) = R~k(∗, adi) = −C1(~k)

= −Hk

δσN~k
(∗)

σ̇k
+

(
V1(∗)
V (∗)

tan θk −
V2(∗)
V (∗)

cot θk

)
Hk

δs~k(∗)
σ̇k

. (12.76)
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Figure 9: Double inflation field space with cartesian and polar coordinates.

Thus, in the language of Sec. 10,

R~k(rad) = R~k(∗) + TRSS~k(∗) = R~k(∗, adi) (12.77)

so that
TRSS~k(∗) = −R~k(∗, iso) . (12.78)

We calculate to lowest slow-roll order, so we can approximate

R~k(∗) = −Hk

δσN~k
(∗)

σ̇k
(1 + ε) ≈ −Hk

δσN~k
(∗)

σ̇k
(12.79)

Thus we see that the isocurvature mode contribution to the generated R~k(∗) is

R~k(∗, iso) = R~k(∗)−R~k(∗, adi) =

(
−V1(∗)
V (∗)

tan θk +
V2(∗)
V (∗)

cot θk

)
S~k(∗) , (12.80)

and

TRS(k) =
V1(∗)
V (∗)

tan θk −
V2(∗)
V (∗)

cot θk . (12.81)

To recap, the key feature, or assumption, in the above model was that there were two con-
tributions to the energy density that interact only via gravity, and that the second contribution
(ϕ2 which decayed into CDM) became negligible compared to the first one during inflation
and remained negligible all the way to the primordial epoch, becoming important again only
as we approach matter domination. This meant that the second contribution had no effect on
spacetime curvature (on Φ or R) from the end of inflation to the primordial epoch.

13 Double Inflation

After the earlier more general discussion of two-field inflation, it is good to look at a specific
example.

In this section we consider the simplest nontrivial two-field inflation model,

V (ϕ, χ) = 1
2m

2
ϕϕ

2 + 1
2m

2
χχ

2 (13.1)

where mϕ < mχ. (The “trivial” case mϕ = mχ has straight background trajectories.) If
mϕ � mχ, this model leads to “double inflation”, i.e., there are two periods of inflation: the
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Figure 10: Left: Slow-roll trajectories. Right: Slow roll fails for χ.

first one driven by χ, the second by ϕ. (This is just one example of double inflation. Double
inflation models were first discussed in [19].) This is a case of noninteracting fields, so we base
our discussion on Sec. 12.

Historical note. Silk and Turner [19] introduced the idea of “double inflation” in 1987 to solve
the apparent problem that the standard CDM model of that time predicted less power at large scales
than observed, when the power spectrum was normalized to observations at small scales. There idea was
that there were two periods of inflation, the first one responsible for generating structure at large scales
and the second one at small scales. This original motivation for double inflation disappeared with the
discovery of the acceleration of the expansion of the universe at late times, since this inhibits the growth
of structure at large scales.

We have thus
V ′ϕ = m2

ϕϕ , V ′χ = m2
χχ , V ′′ϕ = m2

ϕ , V ′′χ = m2
χ . (13.2)

We define
R ≡ mχ

mϕ
> 1 . (13.3)

Without loss of generality we assume that initially both ϕ, χ > 0. We also define polar coordi-
nates r, α in field space:

r ≡
√
ϕ2 + χ2

tanα ≡ χ

ϕ
, (13.4)

so that
ϕ = r cosα and χ = r sinα . (13.5)

Note that α 6= θ ≡ χ̇/ϕ̇. See Fig. 9.
We shall mostly calculate in this original ~ϕ = (ϕ, χ) -basis, i.e., not rotating into (σ, s). The

background equations are

H2 =
8πG

3
ρ =

4πG

3
(ϕ̇2 + χ̇2 +m2

ϕϕ
2 +m2

χχ
2) (13.6)

ϕ̈+ 3Hϕ̇+m2
ϕϕ = 0 (13.7)

χ̈+ 3Hχ̇+m2
χχ = 0
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13.1 Background Equations in Slow-Roll Approximation

We assume that initially both fields are in the slow roll regime. In the slow-roll approximation
the background equations are

H2 =
1

3M2
V =

1

6M2
(m2

ϕϕ
2 +m2

χχ
2) ⇒ V = 3M2H2 (13.8)

3Hϕ̇+m2
ϕϕ = 0 ⇒ ϕ̇ = −

m2
ϕ

3H
ϕ ⇒ H−1ϕ̇ = −M2

m2
ϕ

V
ϕ (13.9)

3Hχ̇+m2
χχ = 0 ⇒ χ̇ = −

m2
χ

3H
χ ⇒ H−1χ̇ = −M2

m2
χ

V
χ

Since ~̇ϕ ∝ −∇V , we can immediately draw the family of slow-roll trajectories: they are ev-
erywhere orthogonal to the V (ϕ, χ) contours (see Fig. 10). In reality, χ may come out of the
slow-roll regime when it becomes small, and begin to oscillate, while the slow-roll approximation
remains valid for ϕ (we’ll discuss this later).

N of e-foldings for the single-field case. Before giving the two-field slow-roll solution, recall the
one-field case V = V (ϕ) = 1

2m
2ϕ2:

H2 =

(
ȧ

a

)2

=
m2

6M2
ϕ2 ⇒ da

a
=

1√
6

m

M
ϕdt and

ϕ

H
=
√

6
M

m
= const (13.10)

ϕ̇ = −m
2

3

ϕ

H
= −

√
2

3
Mm ⇒ ϕ =

√
2

3
Mm(tend − t) (13.11)

d ln a =
1√
6

m

M
ϕdt = − 1

3m
2(t− tend)dt , (13.12)

and we get for N , the remaining number of e-foldings of inflation,

N ≡ − ln
a

aend
= 1

6m
2(t− tend)2 (13.13)

and, using N as a “time coordinate”,
ϕ = 2M

√
N . (13.14)

Here tend denotes the time when ϕ = 0, assuming the slow-roll solution holds until then. In reality, the
slow-roll regime, and inflation, ends a little earlier.

The solution of the background slow-roll equations in terms of r(N) and α(N) – or rather
N(α) are (exercise)

r = 2M
√
N

N = N0
(sinα)2/(R2−1)

(cosα)2R2/(R2−1)
= N0(1 + tan2 α)(tanα)2/(R2−1) . (13.15)

We see that the solution for r(N) is exactly that of single-field inflation. The constant N0

corresponds roughly to the value of N when Vϕ = Vχ, see below. The field “velocity angle” θ
and “position angle” α are related by

tan θ ≡ χ̇

ϕ̇
=
m2
χχ

m2
ϕϕ

= R2 tanα . (13.16)

For all slow-roll trajectories (except the trivial ϕ = 0 and χ = 0 trajectories), there is an early
χ-dominated part, Vχ > Vϕ and a late ϕ-dominated part, Vϕ > Vχ. The transition, Vϕ = Vχ
occurs when

m2
ϕϕ

2 = m2
χχ

2 ⇒ tanα ≡ χ

ϕ
=
mϕ

mχ
≡ 1

R
⇒ tan θ = R (13.17)
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Figure 11: The transition point Vϕ = Vχ for R = 4.

(see Fig. 11.) Thus we have that χ/ϕ = ϕ̇/χ̇ = 1/R at this instant. From Eq. (13.15) we get
then

N = N0
1 + 1

R2

R
2

R2−1

⇒ ln
N0

N
=

2

R2 − 1
lnR− ln

(
1 +

1

R2

)
. (13.18)

For R� 1, ln(N0/N) ≈ (2 lnR− 1)/R2 � 1 ⇒ N0 ≈ N .
Note that tanα ≡ χ/ϕ→ 0 as N → 0.
Our model has three parameters: mφ and mχ, specifying the potential, and N0, specifying

the trajectory we are on. For the following discussion we want these parameters to have such
values that things happen in the following order:

1. The universe becomes ϕ-dominated, Vϕ > Vχ, while both fields are still in the slow-roll
regime.

2. Some time later, χ comes out of the slow-roll regime, while the slow-roll approximation
still remains valid for ϕ.

The slow-roll parameters are

εϕ ≡ M2

2

(
V ′ϕ
V

)2

= 2M2
m4
ϕϕ

2

(m2
ϕϕ

2 +m2
χχ

2)2
= 2

(
M

ϕ

)2 1

1 + 2R2
(
χ
ϕ

)2
+R4

(
χ
ϕ

)4

εχ ≡ M2

2

(
V ′χ
V

)2

= R4

(
χ

ϕ

)2

εϕ

ηϕ ≡ M2
V ′′ϕ
V

= 2M2
m2
ϕ

m2
ϕϕ

2 +m2
χχ

2
= 2

(
M

ϕ

)2 1

1 +R2
(
χ
ϕ

)2

ηχ ≡ M2
V ′′χ
V

= R2ηϕ . (13.19)

Slow roll is valid for both fields, when εϕ, εχ, |ηϕ|, |ηχ| � 1. The slow-roll equation V = 3M2H2

remains valid as long as slow roll is valid for the dominant field.
When Vϕ = Vχ, we have χ/ϕ = 1/R, so that

εϕ =
1

2

(
M

ϕ

)2

εχ =
1

2

(
RM

ϕ

)2

ηϕ =

(
M

ϕ

)2

ηχ =

(
RM

ϕ

)2

.
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For slow roll to be valid, the largest of these, ηχ, has to be < 1 ⇒ ϕ > RM . For R � 1,

we have r ≡
√
ϕ2 + χ2 = ϕ

√
1 + 1/R2 ≈ ϕ and N ≈ N0 then, so that we have the condition

ϕ ≈ r ≈ 2M
√
N0 > RM ⇒ N0 >

1
4R

2 (13.20)

for slow roll to be valid when Vϕ = Vχ. Since χ is then falling more rapidly, χ̇/χ = R2ϕ̇/ϕ,

V̇χ

V̇ϕ
=

V ′χχ̇

V ′ϕϕ̇
=

m2
χχχ̇

m2
ϕϕϕ̇

= R2 1

R
R = R2 � 1 (13.21)

the universe then becomes ϕ-dominated, Vϕ > Vχ and χ/ϕ < 1/R.
Once Vϕ � Vχ, we have χ/ϕ� 1/R, and we can approximate

εϕ ≈ ηϕ ≈ 2

(
M

ϕ

)2

, εχ ≈ 2

(
M

ϕ

)2

R4

(
χ

ϕ

)2

� 2

(
M

ϕ

)2

R2 , ηχ ≈ 2

(
M

ϕ

)2

R2 . (13.22)

Of these, ηχ is the largest ⇒ slow roll fails first for the χ field. This happens when ϕ ≈√
2RM . Thus our requirement 2 (χ comes out of the slow-roll regime first) follows from our

requirement 1 (slow roll valid when universe becomes ϕ-dominated). Both are satisfied when
the parameters of the model satisfy

N0 >
1
4R

2 . (13.23)

(To clarify this condition, should look at it graphically: draw the line that corresponds to
Vϕ = Vχ, and the ϕ = RM vertical. This N0 form is useful since it gives information about
which regime the cosmologically relevant scales come from. If R is too large, we are led to
models where only the second inflation is cosmologically relevant.)

13.2 Perturbations

From Eqs. (12.34) and (12.35) we have the general slow-roll solution for the perturbations:

Φ = −C1
Ḣ

H2
+

2

3
C3

(
m2
χ −m2

ϕ

)
m2
χm

2
ϕχ

2ϕ2(
m2
χχ

2 +m2
ϕϕ

2
)2 (13.24)

δϕN

ϕ̇
= C1

1

H
− 2C3H

m2
χχ

2

m2
χχ

2 +m2
ϕϕ

2
(13.25)

δχN

χ̇
= C1

1

H
+ 2C3H

m2
ϕϕ

2

m2
χχ

2 +m2
ϕϕ

2
,

where

− Ḣ

H2
≈ ε = 2M2

m4
ϕϕ

2 +m4
χχ

2

(m2
ϕϕ

2 +m2
χχ

2)2
(13.26)

and the coefficients are, from Eq. (12.47),

C1(~k) = − Hk

2M2
√

2k3

(
ϕke1~k

+ χke2~k

)
C3(~k) =

3Hk

2
√

2k3

(
e

1~k

m2
ϕϕk

−
e

2~k

m2
χχk

)
, (13.27)

where (ϕk, χk) is the background field value when scale k exited the horizon.
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At late times, when Vϕ � Vχ, the contribution of the isocurvature part (C3) to Φ shrinks
as (χ/ϕ)2 (as long as the slow-roll approximation is valid) and eventually becomes negligible19.
Likewise, its contribution to R becomes negligible.

We assume that the χ field decays into CDM whereas the ϕ field decays into standard model
particles, which behave like radiation during the primordial epoch. When the universe eventually
becomes matter dominated the CDM isocurvature mode begins again to contribute to Φ and R.
Thus the mode we are calling the isocurvature mode gets its name from not contributing to R
during the primordial epoch, although it did contribute to it earlier, during inflation, and again
contributes to it later, when the universe becomes matter dominated.

For the transfer functions we get, using the results of Sec. 12,

TRS(k) =
V1(∗)
V (∗)

tan θk −
V2(∗)
V (∗)

cot θk =
(R2 − 1) tanαk
1 +R2 tanαk

(13.28)

TSS(k) = −2

3

(
mχ

Hk

)2

(cot θk + tan θk) = − 1

Nk cosαk sinαk

1 +R4 tan2 αk
1 +R2 tan2 αk

.

The values αk and Nk are related by Eq. (13.15b). Using this relation we could obtain the
k-dependence of the transfer functions

dT (k)

d ln k
=

dT (k)

d ln(akHk)
≈ dT (k)

d ln ak
= −dT (k)

dNk
. (13.29)

14 Curvaton

The curvaton scenario is a two-field model, where one field, the inflaton ϕ, is responsible for
inflation, whereas another field, the curvaton χ, is responsible for the primordial perturbations.
We follow here Lyth et al.[23].20

We assume that during inflation the energy density in the inflaton field dominates, and that
the perturbations in the inflaton field are so small that we can make an approximation where we
ignore them. We assume that the perturbations in the curvaton field are larger, but because the
energy density in the curvaton is subdominant during inflation, we can make an approximation
where we also ignore the effect of the curvaton perturbations on the spacetime curvature during
inflation. Thus we can approximate that the spacetime is unperturbed during inflation.

We assume the curvaton field is practically free during inflation, with m2 � H2, i.e. |Vχχ| �
H2 (ηχχ � 1). Therefore, during inflation, Gaussian perturbations in the curvaton field are
generated at horizon exit, with spectral index

nχ = −2ε+ 2ηχχ . (14.1)

During inflation (and as long as we can ignore perturbations in spacetime curvature), the
field equations for the curvaton background and perturbation are

¨̄χ+ 3H ˙̄χ+ Vχ = 0 (14.2)

δ̈χ+ 3H ˙δχ+ Vχχδχ = 0 . (14.3)

19The slow-roll approximation for χ does not necessarily stay valid long enough for the C3 contribution to
become negligible, but we expect the C3 contribution to Φ to shrink even faster after slow roll ends for χ. The
time evolution of the C1 part is not so easy to characterize as it is ∝ ε = εϕ + εχ, where εϕ grows with time, but
what about εχ? Even if the εχ part is shrinking, it does not shrink as fast as (χ/ϕ)2, since it is ∝ (χ/ϕ)2εϕ with
εϕ growing.

20In the literature, the curvaton field is commonly denoted by σ. To avoid confusion with Sec. 10, we denote it
by χ.
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Thus, if either V is quadratic (⇒ Vχ = mχ, Vχχ = m), or sufficiently flat (Vχ, Vχχ ≈ 0), the
ratio δχ/χ stays constant. Otherwise it will evolve, until the field enters a region of V where it is
sufficiently quadratic. Denote by q the factor by which the ratio changed in this evolution. This
does not change the spectrum of the inflaton (as long as linear perturbation theory is valid).

During inflation, the curvaton rolls slowly down its potential. Once H falls below the cur-
vaton mass m, the curvaton begins to oscillate. We assume this happens after inflation and
reheating (of the inflaton), i.e., the energy of the inflaton field has been converted into radia-
tion, whose energy density we denote ρr. Assuming the oscillation stays within a region of the
potential where it is sufficiently quadratic, the ratio

δχ

χ
= q

(
δχ

χ

)
∗

(14.4)

remains constant (in time) in this oscillation (it is of course inhomogeneous, being a perturba-
tion).

The energy density of an oscillating field is determined by the oscillation amplitude, χamp =
χ̄amp + δχamp:

ρχ = 1
2m

2χ2
amp = 1

2m
2
(
χ̄2

amp + 2χ̄ampδχamp + δχ2
amp

)
(14.5)

ρ̄χ = 1
2m

2χ̄2
amp (14.6)

δρχ = 1
2m

2
(
2χ̄ampδχamp + δχ2

amp

)
(14.7)

δχ ≡ δρχ
ρ̄χ

= 2
δχamp

χ̄amp
+

(
δχamp

χ̄amp

)2

. (14.8)

The perturbations δχ are Gaussian, but the second term in the equation for δχ is a square
of a Gaussian, which is non-Gaussian. Since the perturbations δχ have to be small (they are
constrained by the observed magnitude of primordial perturbations), the ratio δχamp/χ̄amp has
to be small, and therefore the second term has to be small compared to the first, so that we can
approximate

δχ ≈ 2
δχamp

χ̄amp
≈ 2q

(
δχ

χ

)
∗
. (14.9)

Dropping the second term is consistent with sticking with first-order perturbation theory. One
might think that keeping the second term would require us to use second-order perturbation
theory throughout. However, it may be that δχamp/χ̄amp is much larger than other perturbation
quantities, so that it may make sense to keep the second term here, but still use only first-order
perturbation theory for metric perturbations. We return to this later when we discuss non-
Gaussianity.

We assume the curvaton oscillations last a long time. In the beginning of this oscillation
epoch, ρχ � ρr, but during the oscillation epoch

ρχ ∝ a−3 whereas ρr ∝ a−4 , (14.10)

so that the importance of the curvaton grows. The relevant part of this is, that the curvaton
perturbations become important—the curvaton background energy density may either become
dominant or remain subdominant. At some point the assumption of unperturbed spacetime
thus breaks down.

The follow the evolution during the curvaton oscillation epoch, it is useful to define the
perturbation quantities

ζi ≡ −ψ −H
δρi
ρi

= −ψ +
δi

3(1 + wi)
, (14.11)
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i.e., ζi is the curvature perturbation of the slice where the component energy density ρi is
uniform. These are gauge-invariant quantities, so they can be evaluated in any gauge. (Note
that until this point we used a gauge where the spacetime was unperturbed, i.e., ψ = 0 in this
gauge and the ζi are proportional to δi.)

We already know that the “total” ζ is conserved at superhorizon scales for adiabatic pertur-
bations. The same is true for these “component” ζi, if the component is “internally adiabatic”,
i.e.,

δpi
δρi

=
p̄′i
ρ̄′i
, (14.12)

which is guaranteed when pi is uniquely determined by ρi, and there is no energy transfer between
fluid components. (Should show this somewhere.) This is a much more powerful result, since
the internal adiabaticity condition is satisfied much more generally than the total adiabaticity
condition.

In the curvaton model we assume that during the curvaton oscillation epoch the cosmic fluid
consists of two components

ρ = ρr + ρχ , with wr = 1
3 and wχ = 0 (14.13)

that satisfy the above conditions, so that

ζr ≡ −ψ +
δr
4

andζχ ≡ −ψ +
δχ
3

(14.14)

stay constant, but the total curvature perturbation

ζ = (1− fχ)ζr + fχζχ , (14.15)

where

fχ ≡
ρχ + pχ
ρ+ p

=
3ρχ

4ρr + 3ρχ
(14.16)

is the curvaton fraction of inertia density, evolves as the curvaton fraction grows,

ζ̇ = ḟχ(ζχ − ζr) . (14.17)

In the curvaton model we assume that ζr ≈ 0 is negligible, and that initially also the curvaton
fraction is negligible, so that in the beginning of the curvaton oscillation period ζ ≈ 0, but later
it is ζ = fχζχ. The constant ζχ can be evaluated at the beginning of the oscillation period, using
then the gauge where the spacetime was then unperturbed:

ζχ =
1

3
δχ =

2q

3

(
δχ

χ

)
∗
. (14.18)

The curvaton oscillation period ends when the curvaton decays. We assume that the curvaton
decay products are eventually thermalized (with the possible exception of CDM), both among
themselves and the pre-existing radiation from inflation reheating. (If fχ ≈ 1 when the curvaton
decays, we don’t have to care about the pre-existing radiation.) This is a second (curvaton)
reheating. After curvaton decay there is no more a separate ζχ.

In the approximation of sudden decay, there is no time for anything to happen to the cur-
vature perturbation ζ between the end of the curvaton oscillation period and the end of the
curvaton reheating, so that we end up with

ζ = fdecζχ =
2

3
fdecq

(
δχ

χ

)
∗
. (14.19)
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More generally, we define r so that ζ after curvaton reheating is given by

ζ = rζχ , (14.20)

where ζχ is from Eq. (14.18), so that

ζ = rζχ =
2

3
rq

(
δχ

χ

)
∗
. (14.21)

That is, in the sudden decay approximation, r = fdec. Also otherwise it is (this is presumably
backed by numerical simulations) expected to be of the order of ρχ/ρ at the time of curvaton
decay.

In the curvaton model we assume standard evolution after curvaton reheating, so that ζ is
now the primordial curvature perturbation.

An important feature of the curvaton scenario is that it may produce significant non-
Gaussianity. A simple kind of non-Gaussianity of primordial perturbations is one where the
perturbation is related to a Gaussian perturbation via a simple transformation:

Φ(~x) = ΦG(~x)− fNLΦG(~x)2 , (14.22)

where fNL is called the (local) non-linearity parameter.21 Its value gives the level of non-
Gaussianity. It is customary to define it in terms of the primordial Bardeen potential Φ. In
principle it could have been defined using some other perturbation quantity as well—then it
would differ by a numerical factor, and possibly have different sign from this standard definition.
Here Φ is the true Bardeen potential, and ΦG is a quantity with a Gaussian distribution related
to Φ in the above way. Since the values of Φ are of the order of 10−5 to 10−4, an fNL of the
order 1 has a very small effect, unobservable with current methods. A non-Gaussianity of a
similar magnitude than the primordial perturbation itself requires fNL of the order 104. The
limit from Planck data22 is [17]

fNL = −0.9± 5.1 68% CL . (14.23)

In the case of adiabatic perturbations, during the matter-dominated epoch we have at su-
perhorizon scales

Ψ = −3

5
ζ (14.24)

so Eq. (14.22) becomes

ζ = ζG +
3

5
fNLζ

2
G . (14.25)

21Note that in the literature there is a lot of confusion about the sign of fNL.
22An earlier limit from WMAP 7-year data [10] was −10 < fNL < 74 (95% CL).
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15 Conformal Metric

Often one can simplify the solution of a problem by transforming the problem into different
variables.

Given a spacetime with a metric gµν , we may define another metric g̃µν

g̃µν ≡ ω2gµν (15.1)

where ω is a function of spacetime position (a scalar field). The factor ω2 is called the con-
formal factor and g̃µν the conformally transformed metric, or, for short, the conformal metric.
The transformation (15.1) is called a Weyl transformation. It may also be called a conformal
transformation, but that is a much more general concept; there are many kinds of conformal
transformations, in different contexts. It is important not to confuse a Weyl transformation with
a coordinate transformation, where we change the coordinate system so that the components of
the metric tensor change, but the metric is still the same tensor. A Weyl transformation is not
a spacetime coordinate transformation; g̃ and g are really two different tensor fields.

From (15.1) we trivially get

g̃µν ≡ ω−2gµν , gµν ≡ ω−2g̃µν , gµν ≡ ω2g̃µν (15.2)

and for the determinant of the metric

g̃ = ω8g , g = ω−8g̃ . (15.3)

Note that
g̃αβ g̃µν = gαβgµν . (15.4)

We can define connection coefficients and curvature tensors corresponding to the conformal
metric. The (Levi–Civita) connection coefficients (in coordinate basis) are defined

Γσµν ≡ 1
2g
σρ (∂µgνρ + ∂νgµρ − ∂ρgµν) . (15.5)

Thus (exercise)

Γ̃σµν ≡ 1
2 g̃
σρ (∂µg̃νρ + ∂ν g̃µρ − ∂ρg̃µν) = . . .

= Γσµν +
1

ω

(
δσν ∂µω + δσµ∂νω − gσρgµν∂ρω

)
. (15.6)

The connection defines a covariant derivative. For a scalar field f we have (exercise)

∇̃µf = ∇µf = ∂µf

∇̃µ∇̃νf = ∂µ∂νf − Γ̃βµν∂βf

= ∇µ∇νf −
1

ω

(
δαµδ

β
ν + δβµδ

α
ν − gαβgµν

)
∇αω∇βf

∇µ∇νf = ∇̃µ∇̃νf +
1

ω

(
δαµδ

β
ν + δβµδ

α
ν − g̃αβ g̃µν

)
∇̃αω∇̃βf

�f ≡ gµν∇µ∇νf = ω2�̃f − 2ωg̃µν∇̃µω∇̃νf (15.7)

(where ∇̃αω = ∇αω = ∂αω).
For the Riemann curvature tensor

Rρσµν ≡ ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ (15.8)
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we get (exercise)

R̃ρσµν ≡ ∂µΓ̃ρνσ − ∂νΓ̃ρµσ + Γ̃ρµλΓ̃λνσ − Γ̃ρνλΓ̃λµσ = . . .

= Rρσµν −
1

ω

(
δρµδ

α
ν δ

β
σ − δρνδαµδβσ − gσµδαν gρβ + gσνδ

α
µg

ρβ
)
∇α∇βω (15.9)

+
1

ω2

(
2δρµδ

α
ν δ

β
σ − 2δρνδ

α
µδ

β
σ − 2gσµδ

α
ν g

ρβ + 2gσνδ
α
µg

ρβ + gµσδ
ρ
νg
αβ − gνσδρµgαβ

)
∇αω∇βω .

Contracting this we get the Ricci tensor (exercise)

R̃σν ≡ R̃µσµν = Rσν−
1

ω

(
2δασ δ

β
ν + gσνg

αβ
)
∇α∇βω+

1

ω2

(
4δασ δ

β
ν − gσνgαβ

)
∇αω∇βω (15.10)

and the Ricci scalar (scalar curvature)

R̃ ≡ g̃σνR̃σν = ω−2R− 6

ω3
�ω , (15.11)

where � ≡ gαβ∇α∇β.

Tools. The calculation of R̃ρσµν can be shortened by taking advantage of its antisymmetry. For
example, one can write

R̃ρσµν ≡ ∂µΓ̃ρνσ + Γ̃ρµλΓ̃λνσ − (µ↔ ν) (15.12)

and calculate just this first half, dropping all terms that are symmetric in (µ↔ ν). Using this notation,
one could shorten (15.9) by half. However, for the contraction (15.10) one has to start from the full (15.9),
since the (µ↔ ν) part contracts differently. Note also that δµµ = 4. (In general, this gives the dimension
d of spacetime. There exist generalizations of the above results for arbitrary spacetime dimensions, but
we stick here with d = 4, since theories with extra dimensions will not be studied in this course.)

In the following sections we will need the inverse transformations, i.e., to express the quanti-
ties associated with the original metric in terms of the conformal quantities. One way to derive
them would be to replace ω → 1/ω in the above results, and then do the derivatives of 1/ω.
However, there is a simpler way: We can just move the “extra parts” in the above equations to
the LHS and apply (15.7) to f = ω:

∇̃µ∇̃νω = ∂µ∂νω − Γ̃βµν∂βω

= ∇µ∇νω −
1

ω

(
δαµδ

β
ν + δβµδ

α
ν − gαβgµν

)
∇αω∇βω

∇µ∇νω = ∇̃µ∇̃νω +
1

ω

(
δαµδ

β
ν + δβµδ

α
ν − g̃αβ g̃µν

)
∇̃αω∇̃βω (15.13)

We get (exercise)

Rρσµν = R̃ρσµν +

[
1

ω

(
δρµδ

α
ν δ

β
σ − g̃σµδαν g̃ρβ

)
∇̃α∇̃βω +

1

ω2
g̃σµδ

ρ
ν g̃
αβ∇̃αω∇̃βω − (µ↔ ν)

]
Rσν = R̃σν +

1

ω

(
2δασ δ

β
ν + g̃σν g̃

αβ
)
∇̃α∇̃βω −

3

ω2
g̃σν g̃

αβ∇̃αω∇̃βω

R = ω2R̃+ 6ωg̃αβ∇̃α∇̃βω − 12g̃αβ∇̃αω∇̃β ω (15.14)

and for the Einstein tensor

Gµν = Rµν − 1
2Rgµν = G̃µν +

1

ω

(
2δαµδ

β
ν − 2g̃µν g̃

αβ
)
∇̃α∇̃βω +

3

ω2
g̃µν g̃

αβ∇̃αω∇̃βω . (15.15)

By a suitable choice of ω we may convert equations (of a gravity theory) for gµν into easier
equations for g̃µν .
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16 Scalar-Tensor Theories

Scalar-tensor theories are an important class of Modified Gravity theories. They start from an
action

S =

∫
d4x
√
−g
[

1
2f(ϕ)R− 1

2g
µν∇µϕ∇νϕ− V (ϕ) + Lmat

]
, (16.1)

where R is the scalar curvature, ϕ a scalar field, and Lmat represents the rest of physics, of
which we are now not so interested in. We get ordinary General Relativity with a scalar field,
if f(ϕ) = const , since then the first term gives the Hilbert action. This constant determines the
strength of gravity, i.e., the gravitational constant G, by f(ϕ) = 1/(8πG) = M2

Pl , where

MPl ≡
1√

8πG
= 2.4353× 1018 GeV (16.2)

is the (reduced) Planck mass.23

These theories are called scalar-tensor theories, since with the 1
2f(ϕ)R in the action the

scalar field ϕ affects gravity in additional ways besides contributing to the energy tensor. One
way to look at this is to think of f(ϕ) representing a “gravitational constant” that is not a
constant. The “tensor” in “scalar-tensor” is the metric gµν .

Consider now a Weyl transformation g̃µν = ω2gµν with

ω2 =
f(ϕ)

M2
Pl

. (16.3)

Using (15.3) and (15.14) we have (exercise)

1
2

√
−gf(ϕ)R =

√
−g̃

{
1
2M

2
PlR̃+ 1

2M
2
Pl

[
3
f ′′

f
− 9

2

(
f ′

f

)2
]
g̃µν∇̃µϕ∇̃νϕ+ 3

2M
2
Pl

f ′

f
g̃µν∇̃µ∇̃νϕ

}

−1
2

√
−ggµν∇µϕ∇νϕ =

√
−g̃
{
−1

2M
2
Pl

1

f
g̃µν∇̃µϕ∇̃νϕ

}
−
√
−gV (ϕ) = −

√
−g̃

M4
Pl

f2
V (ϕ) , (16.4)

so that

S =

∫
d4x
√
−g̃

{
1
2M

2
PlR̃+ 1

2M
2
Pl

[
3
f ′′

f
− 9

2

(
f ′

f

)2

− 1

f

]
g̃µν∇̃µϕ∇̃νϕ

+ 3
2M

2
Pl

f ′

f
g̃µν∇̃µ∇̃νϕ−

M4
Pl

f2
V (ϕ) + L̃mat

}
. (16.5)

The term with ∇̃µ∇̃νϕ can be converted to 1st derivatives by partial integration∫
d4x
√
−g̃ f

′

f
g̃µν∇̃µ∇̃νϕ =

∫
∂Σ

√
|γ|d3σ

f ′

f
g̃µνnµ∇̃νϕ −

∫
d4x
√
−g̃g̃µν∇̃µ

(
f ′

f

)
∇̃νϕ ,

where we can ignore the boundary term, since its variation vanishes24, and

∇̃µ
(
f ′

f

)
=

[
f ′′

f
−
(
f ′

f

)2
]
∇̃µϕ , (16.6)

23https://physics.nist.gov/cgi-bin/cuu/Value?plkmc2gev|search for=Planck+mass gives
mPl ≡ 1/

√
G = (1.220890± 0.000014)× 1019 GeV. (2018 CODATA recommended value.)

24Should argue this more carefully.
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so that we end up with

S =

∫
d4x
√
−g̃

{
1
2M

2
PlR̃− 1

2M
2
Pl

[
3

2

(
f ′

f

)2

+
1

f

]
g̃µν∇̃µϕ∇̃νϕ−

M4
Pl

f2
V (ϕ) + L̃mat

}
. (16.7)

The result of the Weyl transformation was that the gravitational part of the action has now
the form of the standard Hilbert action, so that the conformal metric g̃µν will obey the standard
Einstein equation! The price of this was that the other parts of the action were modified. In
particular, the canonical kinetic term −1

2g
µν∇µϕ∇νϕ was replaced by a non-canonical term.

We get back to the canonical form by defining a transformed field ϕ̃ with

dϕ̃ = MPl

√
3

2

(
f ′

f

)2

+
1

f
dϕ = MPl

√
2f + 3(f ′)2

2f2
dϕ . (16.8)

We also define for it a transformed potential

Ṽ (ϕ̃) ≡
M4

Pl

f2
V (ϕ) . (16.9)

The integration constant for (16.8), which defines when ϕ̃ = 0, can be chosen as convenient.
Thus we finally have

S =

∫
d4x
√
−g̃

{
1
2M

2
PlR̃− 1

2 g̃
µν∇̃µϕ̃∇̃νϕ̃− Ṽ (ϕ̃) + L̃mat

}
. (16.10)

We have converted the scalar-tensor theory into ordinary Einstein gravity with a canonical
minimally coupled scalar field, but for new variables g̃µν and ϕ̃, which are not the observed25

metric and field (if we assume that the original formulation of the theory (16.1) holds for those).
Thus any solution in terms of g̃µν and ϕ̃ should in the end be converted into gµν and ϕ – or into
whatever observable quantities we are looking for.

Standard terminology is to call the description in terms of gµν and ϕ the Jordan26 frame
and in terms of g̃µν and ϕ̃ the Einstein frame. They describe the same physics, but in terms of
different variables.

As an example, we discuss Higgs inflation in Sec. 17.

17 Higgs Inflation

In the Standard Model of particle physics, Higgs is the only fundamental scalar field. Could Higgs
be the inflaton? With standard General Relativity and minimal coupling of Higgs to gravity,
we do not get viable inflation (the potential is not sufficiently flat). However, by introducing a
non-minimal coupling, we get a promising inflation candidate, Higgs inflation [24].

In the Standard Model, Higgs field φ is an SU(2) doublet and has two complex components

φ =
1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
. (17.1)

25This is loose talk. One should consider what are the true observables, and how they are affected by modified
gravity. In cosmology observables are, e.g., redshifts, apparent positions, and apparent luminosities of galaxies.
These are related to the metric; but one should also consider whether the motions of light and massive particles
are affected otherwise in the theory. In Higgs inflation this is not an issue, as we will see in Sec. 17.

26Pascual Jordan (1902–1980), German theoretical physicist.
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The potential is

V (φ) = 1
4

µ4

λ
− µ2φ†φ+ λ

(
φ†φ
)2

, (17.2)

where
φ†φ = |φ|2 = 1

2

(
ϕ2

1 + ϕ2
2 + ϕ2

3 + ϕ2
4

)
. (17.3)

The situation is spherically symmetric in the internal 4D space (ϕ1, ϕ2, ϕ3, ϕ4). The potential
has a minimum V (φ) = 0 at

|φ|2 =
µ2

2λ
≡ 1

2σ
2 . (17.4)

For inflation dynamics, only the radial degree of freedom in φ is important. Rotate the
coordinates in the internal space so that only one of the ϕi is nonzero, and call it ϕ. Then

V (ϕ) = 1
4

µ4

λ
− 1

2µ
2ϕ2 + 1

4λϕ
4 = 1

4λ
(
ϕ2 − σ2

)2
. (17.5)

After the EW transition, the Higgs field has settled at the minimum, ϕ = σ, and the Higgs
mass is given by

m2
H = V ′′(σ) = 2µ2 . (17.6)

The coupling of the Higgs with the W and Z bosons gives rise to their masses and thus the
strength of the weak interaction, which is described by the Fermi constant GF . We do not
review this part of electroweak theory, but the result is [26]

GF =
1√
2σ2

. (17.7)

From the experimental measurements [26],

mH = 125.10± 0.14 GeV and GF = 1.16638× 10−5 GeV2 , (17.8)

we get

µ =
mH√

2
= 88.46 GeV, σ =

1(√
2GF

)1/2 = 246.22 GeV , λ =
(µ
σ

)2
= 0.129 . (17.9)

We get Higgs inflation by letting the Higgs couple non-minimally to gravity so that the action
is

S =

∫
d4x
√
−g
[

1
2M

2R+ 1
2ξϕ

2R− 1
2g
µν∇µϕ∇νϕ− V (ϕ) + LSM

]
, (17.10)

where LSM is the standard model Lagrangian except for the −1
2g
µν∇µϕ∇νϕ − V (ϕ) part for

the radial component of the Higgs field. The term 1
2ξϕ

2R is the nonminimal coupling of Higgs
to gravity.27 For ξ = 0 we get the minimal coupling. We will find that for Higgs inflation we
need ξ = O(104). To begin, we first assume 1� ξ � (MPl/σ)2 ∼ 1032 (later we adopt a tighter
bound 1� ξ �MPl/σ ∼ 1016).

We see that the action has the form (16.1) of scalar-tensor gravity, with

f(ϕ) = M2 + ξϕ2 . (17.11)

After the EW transition, ϕ = σ, so that f(ϕ) = M2 + ξσ2 = const , which gives the observed
strength of gravity, i.e.,

M2
Pl = M2 + ξσ2 . (17.12)
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Figure 12: Higgs potential Ṽ (ϕ̃) in the Einstein frame. From [24]; here χ, U , v stand for our ϕ̃, Ṽ , σ.
For ϕ̃ = ϕ̃end = 0 (end of inflation) (17.18) gives λM4

Pl/(16ξ2). There is a range where neither the small-
field nor the large-field approximation is valid and we did not make any effort to match then integration
constants for dϕ̃/dϕ between these two regimes; matching them would make ϕ̃end > 0 as in this figure.

Since we assumed ξ � (MPl/σ)2, the difference between M and MPl is negligible; for ξ = O(104)
it is less than 1 eV.28

We now transform to the Einstein frame. From (16.8) and (17.11),

dϕ̃ = MPl

√
M2 + ξϕ2 + 6ξ2ϕ2

M2 + ξϕ2
dϕ . (17.13)

This is difficult to integrate exactly,29 but we can consider various limits.
For small field values ϕ � M/ξ, we have ξϕ2 � 6ξ2ϕ2 � M2, so that dϕ̃ ≈ (MPl/M)dϕ ≈

dϕ, and we can take ϕ̃ ≈ ϕ. For the Einstein frame potential we get

Ṽ (ϕ̃) =
M4

Pl

(M2 + ξϕ2)2
1
4λ
(
ϕ2 − σ2

)2 ≈ 1
4λ
(
ϕ̃2 − σ2

)2
, (17.15)

so that there is no difference between the Einstein frame and the Jordan frame, except that the
coupling 1

2ξϕ
2R has disappeared (its effect is negligible at these small field values).

We now assume that ξ � MPl/σ ∼ 1016, so that we are in this small-field limit when
ϕ = O(σ) and the non-minimal coupling will not affect the physics of the EW transition.
Results from collider experiments at LHC provide an upper limit ξ . 1015 [28, 29].

Inflation will happen at large field values where the Einstein and Jordan frames are quite
different, but as inflation ends, ϕ moves to small field values, and any results we calculated in
the Einstein frame will apply as such in the Jordan frame as long as they are about these late
times when ϕ is already small.

27This can be motivated by quantum effects: Even if such a coupling would not exist in the classical level,
quantum corrections would introduce such a term.

28One could drop the distinction between M and MPl at this point. When preparing these notes I kept the
distinction to be prepared for the possibility that it might have some role. Anyway, the distinction serves to
remind us that we are dealing with modified gravity where the Higgs field affects the observed gravitational
constant (in principle, although in practice the effect is negligible).

29With help from WolframAlpha, I get

ϕ̃

MPl
=

√
6ξ + 1

ξ
arsinh

(√
6ξ + 1

√
ξ
ϕ

MPl

)
−
√

6 arsinh

[ √
6ξ(ϕ/M)√

ξ(ϕ/M)2 + 1

]
+ const . (17.14)

(WolframAlpha gives a formula in terms of ln and artanh, but I converted it into arsinh to facilitate comparison
to Eq. (2.20) of [27].) One can get the same limits from this.



17 HIGGS INFLATION 82

For large field values ϕ�M/
√
ξ � σ, we have ξϕ2 �M2, so that

dϕ̃ ≈
√

1 +
1

6ξ

√
6MPl

dϕ

ϕ
≈
√

6MPl
dϕ

ϕ
⇒ ϕ̃ ≈

√
6MPl ln

ϕ

ϕ0

⇒ ϕ = ϕ0e
ϕ̃/
√

6MPl (17.16)

where ϕ0 is an integration constant. We will find it convenient to choose ϕ0 = M/
√
ξ ⇒ ξϕ2

0 =
M2, so that

ϕ =
M√
ξ
eϕ̃/
√

6MPl . (17.17)

Now ϕ�M/
√
ξ, so that eϕ̃/

√
6MPl � 1. For the Einstein frame potential we get (exercise)

Ṽ (ϕ̃) =
M4

Pl

(M2 + ξϕ2)2
1
4λ
(
ϕ2 − σ2

)2 ≈ M4
Pl

(M2 + ξϕ2)2
1
4λϕ

4

=
λM4

Pl

4ξ2

e(4/
√

6)(ϕ̃/MPl)[
1 + e(2/

√
6)(ϕ̃/MPl)

]2 =
λM4

Pl

4ξ2

(
1 + e−2ϕ̃/

√
6MPl

)−2
. (17.18)

There is a temptation here to approximate M2 + ξϕ2 ≈ ξϕ2; but this would lead to Ṽ (ϕ̃) ≈
λM4

Pl/4ξ
2 = const ; although e−2ϕ̃/

√
6MPl � 1, it will be important: it gives the small slope for

slow-roll inflation. See Fig. 12.
In the Einstein frame, physics behaves just as in the standard treatment of inflation, so all

our old results apply in it. We can follow ϕ̃ slowly rolling down the potential Ṽ and generating
primordial perturbations as different scales exit the horizon, all concepts defined in the Einstein
frame. We find for the slow-roll parameters30 (exercise)

ε̃ ≡
M2

Pl

2

(
Ṽ ′

Ṽ

)2

=
4

3

1(
e2ϕ̃/

√
6MPl + 1

)2 =
4

3

1(
ξϕ2

M2 + 1
)2 ≈

4

3ξ2

( ϕ
M

)−4

η̃ ≡ M2
Pl

Ṽ ′′

Ṽ
= −4

3

e−2ϕ̃/
√

6MPl

(
1− 2e−2ϕ̃/

√
6MPl

)
(

1 + e−2ϕ̃/
√

6MPl

)2 = −4

3

M2

ξϕ2

1− 2M2

ξϕ2(
1 + M2

ξϕ2

)2 ≈ −
4

3ξ

( ϕ
M

)−2

ξ̃ ≡ M4
Pl

Ṽ ′′′Ṽ ′

Ṽ 2
≈ 16

9 e
−4ϕ̃/

√
6MPl ≈ 16

9ξ2

( ϕ
M

)−4
(17.20)

expressed both in terms of the transformed ϕ̃ and original ϕ. We see that inflation ends (at
least one of the slow-roll parameters becomes O(1)), when ϕ ≈M/

√
ξ, i.e., when our large-field

approximation breaks down.

30For the calculation of ξ̃ we made first a further approximation in (17.18),

λM4
Pl

4ξ2

(
1 + e−2ϕ̃/

√
6MPl

)−2

≈ λM4
Pl

4ξ2

(
1− 2e−2ϕ̃/

√
6MPl

)
. (17.19)

(I was too lazy to do the third derivative of the original form.) This approximation will also lead directly to the
final approximate forms for ε̃ and η̃ we give in (17.20). This is not such a good approximation, since during the

“observable” part of inflation e−ϕ̃/
√
6MPl is not that small; it leads to O(10%) errors in the slow-roll parameters

and Ñ .
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The number of remaining e-foldings of inflation is given (Cosmology II) by (exercise)

Ñ(ϕ̃) =
1

M2
Pl

∫ ϕ̃

ϕ̃end

Ṽ

Ṽ ′
dϕ̃

=
3

4

(
e2ϕ̃/

√
6MPl − e2ϕ̃end/

√
6MPl

)
+

√
6

4

1

MPl
(ϕ̃− ϕ̃end)

≈ 3

4
e2ϕ̃/

√
6MPl ≈ 3

4
ξ
( ϕ
M

)2
(17.21)

so that we have (do not confuse the slow-roll parameter ξ̃ with the coupling ξ)

ε̃ ≈ 3

4Ñ2
, η̃ ≈ − 1

Ñ
, ξ̃ ≈ 1

Ñ2
. (17.22)

The Einstein and Jordan frame scale factors are related by ã = ω̄a, so the numbers of e-
foldings will be related by Ñ = N+ln ω̄end/ω̄ (where ω̄ is the background value of the conformal
factor). (Exercise: find N for Ñ = 60.) However, we don’t care here about N – we haven’t even
considered whether we have inflation in the Jordan frame.31 The point is that the physics of
the Einstein frame is the familiar inflation physics, where we produce a spectrum of primordial
perturbations, and once this Einstein frame inflation is over the difference between the two
frames disappears and we are left with primordial scalar and tensor perturbation spectra

PR(k) =
1

24π2

1

M4
Pl

Ṽ

ε̃
≈ λÑ2

72π2ξ2

PT (k) =
2

3π2M4
Pl

Ṽ , (17.23)

whose spectral indices and ratio are given by

ns = 1− 6ε̃+ 2η̃ ≈ 1 + 2η̃ = 1− 2

Ñ

nT = −2ε̃ = − 3

2Ñ2

r ≡ PT
PR

= 16ε̃ =
12

Ñ2

dns
d ln k

= 16ε̃η̃ − 24ε̃2 − 2ξ̃ ≈ −2ξ̃ = − 2

Ñ2
(17.24)

to lowest order in slow-roll parameters.
The observed magnitude of primordial perturbations, PR ≈ 2.1× 10−9 [13] requires

ξ ≈ 816
√
λÑ ≈ 293Ñ . (17.25)

For Ñ = 50–60 this means ξ ≈ 1.47–1.76 × 104. Since this is the standard model, reheating
physics is known: interactions between the Higgs and other particles after end of inflation are
strong so that reheating is not delayed32, which means that the scales observable in the CMB
correspond to Ñ ≈ 60, which gives

ns ≈ 0.967 , nT ≈ −0.00042 , r ≈ 0.0033 ,
dns
d ln k

≈ −0.00056 , (17.26)

31We must have; the coupling of Higgs to gravity does not affect, e.g., the “horizon problem”, which inflation
solves. The above exercise will show that the difference between N and Ñ is not that large.

32Citing[25]: “the Higgs-inflaton field rapidly produces weak bosons, which subsequently decay into all other
standard model particles and reheat the Universe, leading to a . . . temperature Treh ≈ 6× 1013 GeV, with uncer-
tainty factor about two”. [25] gives Ñ = 57.66 for the WMAP pivot scale k = 0.002/Mpc.
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which are all in agreement with observations [13]

ns = 0.965± 0.004 , r < 0.065 ,
dns
d ln k

= −0.004± 0.013 . (17.27)

There is no observation for nT , since primordial tensor perturbations have not been observed.
A future CMB satellite optimized for polarization observations should be able to detect tensor
perturbations corresponding to this value of r, verifying this r prediction (the accuracy of nT
measurement would still be poor).

The non-minimal coupling of Higgs to R can be motivated by quantum effects, i.e., even if it
did not exist at the classical level, quantum effects would introduce such coupling. There would
be also other quantum effects that could modify the above “tree-level” calculation.

More accurate spectral index. We noted already in the footnote that e−ϕ̃/
√

6MPl is not that
small during the part of inflation that generates the perturbations at observable scales. One sees the
results (17.22) given in literature, but they are not that accurate. We can perhaps do better by using the

second-to-last forms for ε̃ and η̃ in (17.20) and not dropping the
√

6
4

1
MPl

ϕ̃ in (17.21). The contribution

from the lower limit of the integral in (17.21) is an approximation, since the large-field limit breaks down
there, but if we take it at face value and define end of inflation to correspond to ϕ ≈ M/

√
ξ, then this

gives ϕ̃end ≈ 0 and the lower-limit contribution is O(1), which we keep ignoring. Thus we have

Ñ =
3

4

[
e2ϕ̃/

√
6MPl +

2ϕ̃√
6MPl

]
=

3

4

[
ξ

(
ϕ

MPl

)2

+ ln ξ

(
ϕ

MPl

)2
]
≡ 3

4 (x+ lnx) . (17.28)

For a given Ñ , we can solve x = 4
3Ñ − lnx by iteration. For Ñ = 60,

x = 80− lnx = 75.62 , 75.67 , 75.67 . (17.29)

With ξ(ϕ/M)2 = 75.67, we get ε̃ = 0.000227, η̃ = −0.017610, and

ns = 1− 6ε̃+ 2η̃ = 0.9634 . (17.30)

One should not take all the digits seriously; there is room for further improvement in the accuracy of
dϕ̃/dϕ towards the end of inflation. In particular, we have still used the ξϕ2 � M2 approximation in
going from (17.13) to (17.16). This might cause an error of similar order of magnitude so it is not clear
that (17.30) is better than (17.26). For more accurate results one should use (17.14). [25] says “Using
exact formulas gives numerically . . .ns = 0.967, r = 0.0032”. Also it is possible that quantum corrections
change these results further.
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18 Palatini Variation

In General Relativity the metric defines the connection (2.9). We call this the Christoffel or
Levi–Civita connection. In the Palatini formalism one assumes that the metric gµν and the
connection Γαβγ are independent degrees of freedom and one uses the action principle to derive
field equations for both.

What does it mean that the metric and connection are independent?
The metric defines (infinitesimal) distances; it determines the length of spacelike curves and

proper time of timelike curves. It defines the light cone, i.e., separates timelike, spacelike, and
lightlike directions and separates past from the future. We can use the metric to define a geodesic
between two spacetime events as the path that extremises the path length or proper time.

The connection defines the covariant derivative ∇βvα = ∂βv
α+Γαβγv

γ and parallel transport

D

dλ
vα ≡ dxβ

dλ
∇βvα =

dvα

dλ
+ Γαβγ

dxβ

dλ
vγ = 0 . (18.1)

It defines the Riemann and Ricci curvature tensors (2.3). We can use the connection to define a
geodesic as a curve that parallel transports its tangent vector, i.e., satisfies the geodesic equation

D

dλ

dxα

dλ
≡ d2xα

dλ2
+ Γαβγ

dxβ

dλ

dxγ

dλ
= 0 . (18.2)

For the definition of the scalar (Ricci) curvature

R ≡ gµνRµν (18.3)

both the metric and the connection are needed.
If the connection is the Christoffel connection, the metric and parallel transport definitions

of geodesics agree. But if the connection is something else, they do not. This leaves open the
question, which geodesics give the paths of freely falling particles. In GR we don’t face this
question, since the field equation one finds for the connection when one applies the Palatini
formalism to the action (2.1) is exactly the one that makes it equal to the Christoffel connection
(see Sec. 18.1). But if the action is something else (modified gravity) the Palatini formalism
typically leads to a non-Christoffel connection.

Thus for a given modified gravity action we have the possibility for two different modified
gravity theories; the one obtained when the connection is assumed to be the Christoffel one
(metric formalism) and the one where the connection is an independent dynamical variable
(Palatini formalism).

The Riemann tensor is by definition antisymmetric in the last two indices. If the connection
is Christoffel, then there are additional symmetries in Riemann, and from these follow that the
Ricci tensor is symmetric. Metric compatibility and the Stokes theorem are true only for the
Christoffel connection.

18.1 Palatini formulation of GR

(This was done first by Einstein, in 1925. The association with Palatini comes from the use of
the Palatini identity, which Palatini derived in 1919.) The Palatini–Hilbert action for empty
spacetime is

S =

∫
d4x
√
−ggµνRµν(Γ) , (18.4)

where Rµν(Γ) signifies that Rµν is defined by the independent connection, not by the metric. We
assume the connection is torsion-free, i.e., symmetric in the lower indices, Γλµν = Γλνµ. Varying
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the metric gives

δS =

∫
d4x
√
−gRµνδgµν +

∫
d4xRδ

√
−g =

∫
d4x
√
−g
(
Rµν − 1

2gµνR
)
δgµν , (18.5)

where R = gµνRµν(Γ), leading to the field equation for the metric

Rµν − 1
2gµνR = 0 . (18.6)

Varying the connection will lead to the Christoffel connection. This is easiest to show by
writing the connection as

Γλµν = Γ̃λµν + Cλµν , (18.7)

where Γ̃λµν is the Christoffel connection (sorry about using notation I elsewhere use for Weyl-

transformed quantities). Being a difference between two connections, Cλµν is a tensor field. We
get, using the Palatini identity (2.7),

δS =

∫
d4x
√
−ggµνδRµν =

∫
d4x
√
−ggµν

[
∇σ(δΓσνµ)−∇ν(δΓλλµ)

]
, (18.8)

where now

∇σ(δΓσνµ) = ∇̃σ(δΓσνµ) + CσσλδΓ
λ
νµ − CλσνδΓσλµ − CλσµδΓσνλ

−∇ν(δΓλλµ) = −∇̃ν(δΓλλµ)− CλνσδΓσλµ + CσνλδΓ
λ
σµ + CσνµδΓ

λ
λσ , (18.9)

where ∇̃ is the covariant derivative defined by the Christoffel connection. The part of the
variation with ∇̃ vanishes as before. Noting that two terms with C cancel and that other two
become equal after contracting with gµν , we are left with the condition

δS =

∫
d4x
√
−ggµν

(
CσσλδΓ

λ
νµ + CσνµδΓ

λ
λσ − 2CλνσδΓ

σ
λµ

)
=

∫
d4x
√
−g
(
gµνCσσλ + gρσδµλC

ν
ρσ − 2gµσCνσλ

)
δΓλµν = 0 (18.10)

for any variation δΓλµν . Noting that by assumption δΓλµν is symmetric in µν, this leads to the
condition that the symmetric part of the expression in parenthesis must vanish, i.e., that

2gµνCσσλ + δµλC
νσ
σ + δνλC

µσ
σ − 2Cνµλ − 2Cµνλ = 0 . (18.11)

Multiplying this with δλν gives Cµσσ = 0, eliminating two terms. Multiplying then with gµν gives
Cσσλ = 0. We are left with the field equation

Cµνλ + Cνµλ = 0 . (18.12)

Since this is a tensor equation, we can lower the indices. The rank 3 tensor Cµνλ is thus
antisymmetric in the first two indices and symmetric in the last two indices. Such a tensor must
vanish. To see this, subtract the equation Cµνλ + Cνµλ = 0 twice from itself, with different
naming of indices:

Cµνλ + Cνµλ − Cνλµ − Cλνµ − Cλµν − Cµλν = −2Cλµν = 0 . (18.13)

Therefore the connection is the Christoffel connection,

Γλµν = Γ̃λµν ≡ 1
2g
λρ (∂µgνρ + ∂νgµρ − ∂ρgµν) . (18.14)



18 PALATINI VARIATION 87

The matter Lagrangian, at least the kind based on scalar fields that we have discussed,
involves the metric and partial derivatives of the scalar fields. For scalar fields there is no
difference between the partial and covariant derivative; in derivation of the field equations we
replace the partial derivatives with the Christoffel covariant derivatives so that we can use the
Stokes theorem. Thus the independent connection has no role in the matter Lagrangian, so
that matter will not affect the field equation for the connection. We get the contribution of the
matter Lagrangian to the field equation of the metric (the Einstein equation) and the effect of
the metric on the field equations of the matter fields the same way as before.

Thus if the gravity part of the Lagrangian is R, we get the same field equations, i.e., we get
General Relativity, both using the metric and using the Palatini formalism.

Palatini f(R) gravity. Consider now the Palatini version of f(R) gravity. The (vacuum) action is

S =

∫ √
−gd4xf(R̂) , where R̂ = gµνR̂µν(Γ̂) , (18.15)

Γ̂ is a connection independent of the metric, and R̂µν(Γ̂) is the Ricci tensor obtained from this connection.

We write Γ̂ and R̂, since in the following discussion we will have a role also for the Christoffel connection
associated with the metric gµν and the curvature tensors obtained from it, which we will write as Γ and
R.

Varying gµν gives the condition

δS =

∫ √
−gd4x

[
F (R̂)R̂µν − 1

2f(R̂)gµν

]
δgµν = 0 , (18.16)

where

F (R̂) ≡ df(R̂)

dR̂
, (18.17)

leading to the field equation
F (R̂)R̂µν − 1

2f(R̂)gµν = 0 (18.18)

for the metric. We still need to relate R̂µν and R̂ to the metric.

Varying Γ̂→ Γ̂ + δΓ gives the condition

δS =

∫
d4x
√
−gF (R̂)gµνδR̂µν =

∫
d4x
√
−gF (R̂)gµν

[
∇̂σ(δΓσνµ)− ∇̂ν(δΓλλµ)

]
= 0 , (18.19)

The trick of (18.7) does not work as such, since the presence of F (R̂) prevents the conversion of the
Christoffel part of the covariant derivates into a total derivative.

However, if we introduce a conformal metric

g̃µν = F (R̂)gµν ⇒ gµν = F g̃µν and
√
−g = F−2

√
−g̃ (18.20)

the variation becomes

δS =

∫
d4x
√
−g̃g̃µν

[
∇̂σ(δΓσνµ)− ∇̂ν(δΓλλµ)

]
, (18.21)

and if we write
Γ̂λµν = Γ̃λµν + Cλµν , (18.22)

where Γ̃λµν is the Christoffel connection for g̃µν , then the same calculation as we did for the Palatini–

Hilbert action shows that Cλµν = 0. Thus

Γ̂λµν = Γ̃λµν ⇒ R̂ρσµν = R̃ρσµν , R̂µν = R̃µν and R̂ = gµνR̃µν (18.23)

and we can use the results from Sec. 15 to relate them to the Γλµν , Rρσµν , Rµν and R associated with the

metric gµν . Note that R̂ = FR̃, not R̃.
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If the matter Lagrangian involves just the metric, not the independent connection, then adding matter
just adds the energy tensor in the field equation for the metric in the usual way,

F (R̂)R̃µν − 1
2f(R̂)gµν = 8πGTµν . (18.24)

Compared to (2.28) we got rid of the term (∇µ∇ν − gµν�)F (R), which contains fourth derivatives of

the metric. However, as we see from (15.10), now R̃µν will contain first and second derivatives of the

conformal factor F (or
√
F ).

Taking the trace of (18.24), i.e., multiplying it with gµν gives

F (R̂)R̂− 2f(R̂) = 8πGT , (18.25)

which gives an algebraic relation between R̂ and T . For example, if f(R̂) = cR̂α and the matter is
nonrelativistic so that T = −ρ, we get R̂ = [8πGρ/c(2 − α)]1/α, f(R̂) = 8πGρ/(2 − α), and F =
c−1/αα[8πGρ/(2− α)]1−1/α for α 6= 2.

18.2 Palatini Scalar-Tensor Theories

The Palatini action for scalar-tensor theories is

S =

∫
d4x
√
−g
[

1
2f(ϕ)gµνR̂µν(Γ̂)− 1

2∂µϕ∂
µϕ− V (ϕ) + Lmat

]
, (18.26)

where R̂µν(Γ̂) is the Ricci tensor obtained from the independent connection Γ̂. We will write
∇̂µ for the covariant derivative defined by the independent connection, and ∇µ for the covariant
derivative defined by the Christoffel connection compatible with the metric gµν . Since ϕ is a
scalar field, its covariant derivative is just the partial derivative and does not depend on the
connection, so

1
2∂µϕ∂

µϕ = 1
2g
µν∂µϕ∂νϕ = 1

2g
µν∇̂µϕ∇̂νϕ = 1

2g
µν∇µϕ∇νϕ . (18.27)

We assume here that Lmat does not depend on the connection.
Varying gµν → gµν + δgµν gives the condition

δS =

∫ √
−gd4x

{
1
2f(ϕ)

(
R̂µν − 1

2gµνR̂
)
− 1

2∂µϕ∂νϕ+ 1
2gµν

[
1
2∂σϕ∂

σϕ+ V (ϕ)
]}
δgµν + δSmat = 0

(18.28)

leading to the field equation

f(ϕ)R̂µν − 1
2f(ϕ)R̂gµν = ∂µϕ∂νϕ− gµν

[
1
2∂σϕ∂

σϕ+ V (ϕ)
]

+ Tmat
µν . (18.29)

We still need to relate R̂µν and R̂ to the metric.
Varying Γ̂→ Γ̂ + δΓ gives the condition

δS =

∫
d4x
√
−g 1

2f(ϕ)gµνδR̂µν =

∫
d4x
√
−g 1

2f(ϕ)gµν
[
∇̂σ(δΓσνµ)− ∇̂ν(δΓλλµ)

]
= 0 ,

(18.30)
The trick of (18.7) does not work as such, since the presence of f(ϕ) prevents the conversion of
the Christoffel part of the covariant derivates into a total derivative.

However, if we introduce a conformal metric

g̃µν = ω2gµν , where ω2 =
f(ϕ)

M2
Pl

(18.31)

we have

gµν =
f(ϕ)

M2
Pl

g̃µν and
√
−g =

M4
Pl

f(ϕ)2

√
−g̃ (18.32)
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and the variation becomes

δS = 1
2M

2
Pl

∫
d4x
√
−g̃ g̃µν

[
∇̂σ(δΓσνµ)− ∇̂ν(δΓλλµ)

]
, (18.33)

and if we write
Γ̂λµν = Γ̃λµν + Cλµν , (18.34)

where Γ̃λµν is the Christoffel connection for g̃µν , then the same calculation as we did for the

Palatini–Hilbert action shows that Cλµν = 0. Thus

Γ̂λµν = Γ̃λµν ⇒ R̂ρσµν = R̃ρσµν , R̂µν = R̃µν and R̂ = gµνR̃µν (18.35)

and we can use the results from Sec. 15 to relate them to the Γλµν , Rρσµν , Rµν and R associated
with the metric gµν . This also means that the Riemann tensor has all its usual symmetries and
the Ricci tensor is symmetric, as they are derived from a Christoffel connection of some metric.
Note that R̂ = ω2R̃, not R̃.

Now the connection is not the Christoffel connection and we have the issue of two different
definitions of geodesics. (We could also say that the theory has two metrics, gµν and g̃µν ,
and two different connections Γ̃ and Γ.) That freely falling particles follow geodesics is not
an independent assumption in GR, but can be derived from the Einstein equation. Thus the
behavior of test particles in this theory should also be determined by the field equation we
derived (but we will not try to do this here). The answer may also depend on whether Lmat

depends on the connection (we assumed here that it does not), and if it does, which of the two
connections appears there.

The field equation (18.29) is likely to be difficult to handle because of the complicated ϕ-
dependent relation R̃µν has with the metric gµν . It will be easier in the Einstein frame. To rewrite
(18.26) in the Einstein frame the other parts go as in Sec. 16, except the 1

2

√
−gf(ϕ)gµνR̂µν ,

where R̂µν is now independent of the metric at this stage and is not affected by the Weyl
transformation. Instead we just convert the factor

1
2

√
−ggµν = 1

2M
2
Pl

1

f

√
−g̃g̃µν . (18.36)

The Einstein frame action is thus

S =

∫
d4x
√
−g̃
[

1
2M

2
Plg̃

µνR̂µν(Γ̂)− 1
2M

2
Pl

1

f
g̃µν∇̃µϕ∇̃νϕ−

M4
Pl

f2
V (ϕ) + L̃mat

]
. (18.37)

The kinetic term is now simpler than in the metric formalism (16.7) and to convert it to the
canonical form requires the simpler field transformation

dϕ̃ =
MPl√
f
dϕ . (18.38)

Finally we have

S =

∫
d4x
√
−g̃

{
1
2M

2
Plg̃

µνR̂µν(Γ̂)− 1
2 g̃
µν∇̃µϕ̃∇̃νϕ̃− Ṽ (ϕ̃) + L̃mat

}
, (18.39)

where

Ṽ (ϕ̃) ≡
M4

Pl

f2
V (ϕ) . (18.40)

This is the Palatini–Hilbert action with a scalar field and matter. Varying Γ̂ gives Γ̂λµν = Γ̃λµν
and varying g̃µν and ϕ̃ give the Einstein equation for g̃µν and the usual field equation for ϕ̃.
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18.3 Palatini Higgs Inflation

The Palatini version of Higgs inflation has the action (18.26) with

f(ϕ) = M2 + ξϕ2 and V (ϕ) = 1
4λ
(
ϕ2 − σ2

)2
. (18.41)

Again ϕ = σ after the EW transition, so that M2
Pl = M2 + ξσ2 and we assume ξ � (MPl/σ)2

so that M ≈MPl, although the distinction between them is kept in the following. Compared to
Sec. 17 the difference is that the transformed field ϕ̃ is obtained from (18.38) instead of (16.8).
We have now

dϕ̃ =
MPl

M

dϕ√
1 + ξ(ϕ/M)2

⇒ ϕ =
M√
ξ

sinh
√
ξ
ϕ̃

MPl
(18.42)

and

Ṽ (ϕ̃) =
1

4

λM4
Pl

(M2 + ξϕ2)2

(
M2

ξ
sinh2

√
ξ
ϕ̃

MPl
− σ2

)2

. (18.43)

For small field values ϕ � M/
√
ξ, we have ϕ̃ ≈ ϕ and Ṽ ≈ V and the difference between

the Einstein and Jordan frame (and the coupling of Higgs to curvature scalar) disappears. Since
we assumed ξ � (MPl/σ)2, we are already in this small-field limit at the EW transition. (Note
that compared to the metric version of Higgs inflation,

√
ξ appears here instead of ξ.)

In the large-field limit, ϕ̃�MPl/
√
ξ we can ignore the σ2 term in the potential, so that

Ṽ (ϕ̃) ≈
λM4

Pl

4ξ2

sinh4√ξ(ϕ̃/MPl)[
1 + sinh2√ξ(ϕ̃/MPl)

]2 =
λM4

Pl

4ξ2
tanh4

√
ξ(ϕ̃/MPl) . (18.44)

Approximating

sinh
√
ξ(ϕ̃/MPl) ≈ 1

2 exp
[√

ξ(ϕ̃/MPl)
]

or ϕ ≈ M

2
√
ξ
e
√
ξϕ̃/MPl , (18.45)

we have

Ṽ (ϕ̃) ≈
λM4

Pl

4ξ2

1

1 + 8e−2
√
ξ(ϕ̃/MPl) + 16e−4

√
ξ(ϕ̃/MPl)

≈
λM4

Pl

4ξ2

[
1− 8e−2

√
ξ(ϕ̃/MPl)

]
. (18.46)

From this we get the slow-roll parameters (exercise)

ε̃ ≈ 8

ξ

(
M

ϕ

)4

, η̃ ≈ −8

(
M

ϕ

)2

, ξ̃ ≈ 64

(
M

ϕ

)4

. (18.47)

For the remaining number of inflation e-foldings we get(exercise)

Ñ(ϕ̃) ≈ 1

8

( ϕ
M

)2
(18.48)

(ignoring the contribution from ϕ̃end) so that

ε̃ ≈ 1

8ξÑ2
, η̃ ≈ − 1

Ñ
, ξ̃ ≈ 1

Ñ2
. (18.49)

The results for η̃ and ξ̃ in terms of Ñ are the same as in the metric Higgs inflation, but ε̃ is
smaller by the factor 1/6ξ. The same factor (or its square for ξ̃) appears in (18.47) and (18.48)
compared to the metric case and it can be traced to the

√
6ξ difference in the exponent in

(18.45).
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For the primordial power spectrum we get

PR =
1

24π2

1

M4
Pl

Ṽ

ε̃
≈ λÑ2

12π2ξ
. (18.50)

The observed value PR ≈ 2.1× 10−9 requires

ξ ≈ λ

12π2

Ñ2

2.1× 10−9
= 4.0× 106λÑ2 ≈ 5.2× 105Ñ2 ≈ 1.9× 109 , (18.51)

where the last number is for Ñ = 60. The spectral indices and tensor/scalar ratio are

ns = 1− 6ε̃+ 2η̃ ≈ 1 + 2η̃ = 1− 2

Ñ
≈ 0.967

nT = −2ε̃ = − 1

4ξÑ2
≈ 4× 10−14

r ≡ PT
PR

= 16ε̃ =
2

ξÑ2
=

3.8× 10−6

Ñ4
≈ 3× 10−13

dns
d ln k

= 16ε̃η̃ − 24ε̃2 − 2ξ̃ ≈ −2ξ̃ = − 2

Ñ2
≈ −0.00056 , (18.52)

where the last numbers are for Ñ = 60. The main difference from metric Higgs inflation is the
much smaller amplitude of tensor perturbations (primordial gravitational waves). For metric
Higgs inflation they should be observable with a future polarization-optimized CMB satellite;
for Palatini Higgs inflation they are completely unobservable.
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19 f(R) gravity in the Einstein frame

Consider a theory given by the action

S =

∫
d4x
√
−g
{

1
2

[
f(χ) + f ′(χ)(R− χ)

]
+ Lm

}
, (19.1)

where the degrees of freedom are the metric gµν , a scalar field χ, and matter of degrees of
freedom in Lm; R = gµνRµν is the curvature scalar; and f(χ) is a scalar function of χ, which
is at this point unspecified. We require f ′′(χ) 6= 0, because otherwise f(χ) ∝ χ and the χ-
dependence disappears in (19.1) leaving just the Hilbert action. The following discussion puts
some additional constraints on the form of f(χ). We now find the field equations for this theory
using the principle of stationary action.

Varying χ,

δS =

∫
d4x
√
−g
{

1
2

[
f ′(χ) + f ′′(χ)(R− χ)− f ′(χ)

]}
δχ , (19.2)

the stationary requirement δS = 0 gives the field equation for χ,

χ = R . (19.3)

Varying gµν ,

δS =

∫
d4x
√
−g 1

2f
′(χ)gµνδRµν +

∫
d4x
√
−g 1

2f
′(χ)Rµνδg

µν

+

∫
d4x

{
1
2

[
f(χ) + f ′(χ)(R− χ)

]}
δ
√
−g + δSm

≡ δS1 + δS2 + δS3 + δSm . (19.4)

We did similar variations in Sec. 2.2 on f(R) gravity. Following this example, we get

δS1 =

∫
d4x
√
−g 1

2

[
gµν∇λ∇λf ′(χ)−∇ν∇µf ′(χ)

]
δgµν

δS2 =

∫
d4x
√
−g 1

2f
′(χ)Rµνδg

µν

δS3 = −
∫
d4x
√
−g 1

4

[
f(χ) + f ′(χ)(R− χ)

]
gµνδg

µν . (19.5)

The stationary requirement gives the field equation for gµν ,

f ′(χ)Rµν − 1
2gµν

[
f(χ) + f ′(χ)(R− χ)

]
−∇µ∇νf ′(χ) + gµν�f

′(χ) = − δSm
1
2

√
−gδgµν

, (19.6)

where we identify the rhs as the energy tensor Tµν due to matter degrees of freedom. Solving χ
from (19.3) this becomes

f ′(R)Rµν − 1
2gµνf(R) = (∇µ∇ν − gµν�) f ′(R) + Tµν , (19.7)

which is the same equation as (2.28) (where we denoted F (R) ≡ f ′(R); I need to decide where
I want to put the 8πG = 1/M2

Pl).
Thus the theory (19.1) is equivalent to f(R) gravity33 (in the metric formalism; one could

also do a similar operation in the Palatini formalism).

33I haven’t seen a pedagogical discussion about how one comes up with the idea of trying out (19.1) to attack
f(R) gravity. I traced the idea in literature back to [30]. See also [31]. Somewhere I saw the (19.1) Lagrangian
referred to as the Legendre transform of the f(R) Lagrangian, but I have lost the reference. One may wonder how
a theory with just the metric as a variable is equivalent to a theory with both metric and a scalar field. But note
that f(R) gravity has a fourth-order field equation and therefore it has more degrees of freedom than Einstein
gravity: to specify initial conditions one must specify also second and third derivatives. Now these additional
degrees of freedom are transferred into the scalar field.
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Go back to (19.1). Define

ϕ ≡ f ′(χ)

W (ϕ) ≡ χ(ϕ)ϕ− f(χ(ϕ)) . (19.8)

Here we have to assume that f ′(χ) is monotonic, so that we can invert it to χ(ϕ). With these
definitions, (19.1) becomes

S =

∫
d4x
√
−g
{

1
2 [ϕR−W (ϕ)] + Lm

}
. (19.9)

This looks like a scalar-tensor theory, except that the kinetic term is missing.
Consider now a Weyl transformation g̃µν = ω2gµν with

ω2 =
ϕ

M2
Pl

. (19.10)

Following Sec. 16,

1
2

√
−gϕR =

√
−g̃

{
1
2M

2
PlR̃+ 1

2M
2
Pl

[
3 · 0− 9

2

(
1

ϕ

)2
]
g̃µν∇̃µϕ∇̃νϕ+ 3

2M
2
Pl

1

ϕ
g̃µν∇̃µ∇̃νϕ

}

−1
2

√
−gW (ϕ) = −1

2

√
−g̃

M4
Pl

ϕ2
W (ϕ) , (19.11)

so that, after partial integration of the term with ∇̃µ∇̃νϕ,

S =

∫
d4x
√
−g̃
{

1
2M

2
PlR̃−

3

4
M2

Pl

1

ϕ2
g̃µν∇̃µϕ∇̃νϕ− 1

2

M2
Pl

ϕ2
W (ϕ) + L̃m

}
. (19.12)

We see that a kinetic term has appeared! We convert it to the canonical form by defining a
transformed field ϕ̃ by

dϕ̃ = MPl

√
3

2

dϕ

ϕ
⇒ ϕ = e

√
2/3(ϕ̃/MPl) (19.13)

(with a convenient choice of integration constant). We also define a transformed potential

Ṽ (ϕ̃) = 1
2

M2
Pl

ϕ2
W (ϕ) , (19.14)

and we have the action in the Einstein frame,

S =

∫
d4x
√
−g̃
{

1
2M

2
PlR̃− 1

2 g̃
µν∇̃µϕ̃∇̃νϕ̃− Ṽ (ϕ̃) + L̃m

}
. (19.15)

Thus, by going to the Einstein frame, we have converted f(R) gravity to ordinary Einstein
gravity with a scalar field. The question is what is the Einstein frame potential Ṽ (ϕ̃). It
depends on f(χ), i.e. of the function f(R) defining the f(R) gravity theory.
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19.1 Starobinsky inflation

Starobinsky inflation[1], also known as R2 inflation, was already introduced in Sec. 2.2. For

f(R) = R+
1

6M2
R2 (19.16)

we get

ϕ ≡ f ′(χ) = 1 +
χ

3M2
⇒ χ = 3M2(ϕ− 1) (19.17)

and (exercise)

W (ϕ) = 3
2M

2(ϕ− 1)2

Ṽ (ϕ̃) = 3
2M

2M2
Pl

(
1− e−

√
2/3(ϕ̃/MPl)

)2
. (19.18)

We note that the potential Ṽ (ϕ̃) is approximately the same as in Higgs inflation, if we replace

λ

ξ2
→ 3

(
M

MPl

)2

. (19.19)

Thus the inflation predictions are the same,

ns − 1 ≈ 2

Ñ
, r ≈ 12

Ñ2
(19.20)

and comparing the predicted scalar perturbation spectrum to its observed magnitude,

PR(k) ≈ 1

24π2

(
M

MPl

)2

Ñ2 ≈ 2.1× 10−9 , (19.21)

we get, for Ñ = 50–60,

M = 1.2–1.4× 10−5MPl ⇒ α ≡ 1

6M2
= 8.3–11.9× 108M−2

Pl , (19.22)

a somewhat small M and large α compared to our natural expectation M = O(MPl).
From the literature[25], where reheating is discussed in Higgs and R2 inflation, the latter

has a lower reheating temperature, Treh ≈ 109 GeV, leading to a smaller Ñ ≈ 55 and thus a
slightly smaller (redder) spectral index and higher tensor/scalar ratio. [25] gives Ñ = 54.37
for the WMAP pivot scale k = 0.002/Mpc and says: “Using exact formulas gives numerically
. . .ns = 0.965, r = 0.0036”. Both Higgs and R2 inflation are consistent with Planck data ([16],
p. 15) but could be distinguished from each other by a more accurate future CMB experiment.
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A Rules to Convert between Different Time Coordinates

The cosmic time t and the conformal time η are related by

dt = adη ⇒ d

dt
=

1

a

d

dη
⇒ ( )̇ =

1

a
( )′ or ( )′ = a( )̇ (A.1)

For any two functions of time, f and g, we have

df

dg
=

ḟ

ġ
=

f ′

g′
(A.2)

The ordinary Hubble parameter H and the conformal (or comoving) Hubble parameter are
related by

H = aH = ȧ =
a′

a
(A.3)

Sometimes it is convenient to use the scale factor a or its logarithm ln a as the time coordinate.
We have the following relations between the derivatives wrt these time coordinates:

H−1f ′ = H−1ḟ = a
df

da
=

df

d ln a
(A.4)

H−2f ′′ = H−2f̈ +H−1ḟ = a2d
2f

da2
+

1− 3w

2
a
df

da
=

(
d

d ln a

)2

f − 1 + 3w

2

df

d ln a
(A.5)

In many equations the combination

H−2f ′′ + 2H−1f ′ = H−2f̈ + 3H−1ḟ (A.6)

appears. We also have that

H′ = aä = a2
(
Ḣ +H2

)
. (A.7)
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