# Cosmology I

Introduction

#### Cosmology I

- FYS2081 Cosmology I (Kosmologia I) 5.9-20.10.2023
- https://moodle.helsinki.fi/course/view.php?id=60341
  - Lecture notes
  - Homework problems
- Lecturer: Hannu Kurki-Suonio, C329 Assistants: Jenni Häkkinen, Tiina Minkkinen, C304
- Lectures : Mo 14-16, Tu 14-16 in Physicum A315 The first lecture is on Tuesday, Sep 5th.
- Homework problem sets given out on Tuesdays, due the following Tuesday
- Exercise sessions: Fr 12-14 and 14-16 in Physicum A315
- The course is lectured in English (I take questions also in Finnish)
- Exam: Monday, Oct 23, 13-17 (TBC)
- Grade: 1/3 from homework, 2/3 from exam

#### Cosmology curriculum



#### Introduction

- Cosmology
  - The universe as a whole
    - structure
    - history
- The present universe is a result of evolution
  - expands
  - initial state was very different ("Big Bang")
  - age 13.8 Gyr
- Cosmology is based on
  - Laws of physics (known, hypothetical)
  - Observations
    - Redshift of distant galaxies
    - Primordial abundances of light element isotopes
    - Cosmic microwave background (CMB)
    - Distribution of galaxies (large scale structure)

#### Laws of Physics

- General relativity (GR) theory of gravitation
- SU(3) ⊗ SU(2) ⊗ U(1) quantum field theory (standard model of particle physics)
- Nuclear and atomic physics
- Thermodynamics

#### Observations

In the observable universe (= our past light cone) there are hundreds of billions of galaxies

Hubble Ultra Deep Field: NASA/ESA/S. Beckwith(STScI) and The HUDF Team.

#### Our Past Light Cone

- We can see the history of the universe
  - speed of light = 300 000 km/s = 1 light year / year
  - we see distant objects in the past:
    - Sun: 8 minutes
    - Sirius: 8.6 years
    - Andromeda galaxy: 2 million years
    - Distant galaxies: billions of years
- Age of the universe ~14 billion years
  - => The maximum distance we can see is the distance light travelled in this time (horizon)
  - At which distance we see the big bang (cosmic microwave background)



#### Expansion of the universe

• Edwin Hubble (1929): Redshift of distant galaxies



$$= \frac{\lambda - \lambda_0}{\lambda_0} \quad \text{or} \quad 1 + z = \frac{\lambda}{\lambda_0}$$
Hubble law  $cz = H_0 r$ 
Hubble constant

Possible interpretation: Doppler effect galaxy is receding with velocity v = cz=>  $v = H_0r$ 

> Modern value:  $H_0 \approx 70 \text{ km/s/Mpc}$ ( 1 Mpc = 3.26 million light years)

 $h = H_0 / (100 \text{ km/s/Mpc}) \approx 0.7$ 

#### A modern Hubble diagram



• Everything appears to slow down (e.g., supernova lightcurves)



- General relativity (Einstein): the galaxies are not moving, but the space between them is expanding
  - Wavelength expands with the universe

$$1 + z \equiv \frac{\lambda_2}{\lambda_1} = \frac{\delta t_2}{\delta t_1} = \frac{a(t_2)}{a(t_1)}$$

- Redshifts can be measured accurately
  - The Hubble law then gives a distance estimate
  - Large redshift surveys (2DFGRS, SDSS) map the 3-dimensional distribution of galaxies



• Redshift

=> distances between galaxies are increasing
=> the universe is expanding

- GR: a(t) scale factor increases with time
- Going back in time:
  - $a(t) \rightarrow 0$
  - $\rho \rightarrow \infty$  ~ 14 x 10<sup>9</sup> years ago

 $T \rightarrow \infty$ 

• Planck time  $\rho \approx \rho_{Pl} \approx 5 \times 10^{96} \text{ kg/m}^3$ T  $\approx T_{Pl} \approx 1.4 \times 10^{32} \text{ K}$ 

**GR** Quantum gravity

#### **Big Bang**

- The universe was once
  - very hot
  - very dense
  - expanding fast
- Homogeneous & in thermal equilibrium

=> simple, we can calculate

• High T => high energies => particle physics

#### Natural units: $c = k_B = \hbar = 1$

- Relativity: space and time unified into spacetime: use same units for time and distance
  - 1 s = 299 792 458 m, 1 year = 1 light-year, c = 1
  - Velocity is dimensionless, < 1 for massive particles</li>
  - Same units for energy and mass
- Measure temperature in energy units:  $k_BT = T$ 
  - $1 \text{ K} = 1.38 \times 10^{-23} \text{ J}$
  - $-1 \text{ eV} = 11600 \text{ K} = 1.78 \times 10^{-36} \text{ kg} = 1.60 \times 10^{-19} \text{ J}$
- Quantum physics: energy related to time
  - Energy of photon related to its angular frequency: E =  $\hbar \omega$  =  $\omega$
  - $1 \text{ eV} = 1.52 \text{ x} 10^{15} \text{ s}^{-1}$

# The Standard Model of particle physics

 $SU(3) \otimes SU(2) \otimes U(1)$  (symmetries)

**Electroweak theory (EW)** 

Quantum chromodynamics (QCD)

• T > 100 GeV:

| Fermions:                       | Quarks:                                                  | d  | u                | S  | С           | b      | t       |
|---------------------------------|----------------------------------------------------------|----|------------------|----|-------------|--------|---------|
| (matter)                        | Leptons:                                                 | e⁻ | $\nu_{\text{e}}$ | μ- | $\nu_{\mu}$ | $\tau$ | $\nu_t$ |
| Gauge bosons:<br>(interactions) | 8 gluons<br>W <sup>+</sup> W <sup>-</sup> W <sup>0</sup> | В  |                  |    |             |        |         |

These are all massless

Higgs boson Η

#### Short history of the universe I



#### Short history of the universe II



#### Short history of the universe III





Atoms formed in recombination

#### Structure formation

- Cosmic microwave background
  - => early universe was homogeneous few x 10<sup>-5</sup> density fluctuations = seeds of galaxies
- Gravity => fluctuations grow
  - => galaxies,

clusters of galaxies,

superclusters, "walls", "voids"



= large scale structure of the universe



#### Structure formation

- 1. Origin of fluctuations
  - Inflation ? +
  - Cosmic strings ?
- 2. Growth of fluctuations
  - Caused by gravity
  - Depends on composition / nature of matter
  - Dark matter ? Baryonic dark matter -
    - Hot dark matter -

+

Cold dark matter

#### Dark matter

- "Luminous" matter: stars, gas, dust
- Motions of galaxies => there's more matter (gravity) => dark matter
- Ordinary = baryonic, dark matter (BDM): "jupiters", brown dwarfs, intergalactic gas
- 2. Non-baryonic dark matter
  - 1. Hot dark matter (HDM): neutrinos m ~ 1 eV
  - 2. Cold dark matter (CDM): "exotic" particles, e.g., axions, neutralinos
- Need both baryonic and non-baryonic dark matter
  - Big bang nucleosynthesis
  - Galaxy motions
  - Structure formation

### Dark Energy

GR: gravity depends on both energy density and pressure

- source of gravity = ρ + 3p
- equation of state  $\rho(p)$  expansion law
- distance-redshift relation of supernovae

=> expansion is accelerating =>  $\rho$ +3p < 0

=> a negative pressure component

- > 2/3 of total energy density
- uniformly distributed
- large negative pressure
- Possibilities:
  - vacuum energy (cosmological constant)
  - scalar field (quintessence)

#### Cosmological principle

- Copernican principle: We do not occupy a privileged position in the universe
- Cosmological principle: The universe is homogeneous and isotropic (at large scales)
  - The evidence for isotropy (as seen from our location) is stronger than for homogeneity
  - Copernican principle => should be isotropic as seen from other locations also
  - Isotropic from everywhere => homogeneous
- These principles are invoked to arrive at plausible models, which are then tested against observation

## Cosmology I

- 1. Introduction
- 2. General relativity (brief introduction)
- 3. Friedmann-Robertson-Walker (FRW) universe
- 4. Thermal history of the early universe
- 5. Big bang nucleosynthesis (BBN)
- 6. Dark matter

### Cosmology II

- 7. Inflation
- 8. Structure formation
- 9. Cosmic microwave background (CMB) anisotropy

# THE END