Signed quasiregular curves

Susanna Heikkilä

University of Helsinki

Geometric and Functional Analysis Seminar 18.2.2021

Liouville type growth results

Theorem (Liuoville's theorem)

Bounded entire functions $\mathbb{C} \to \mathbb{C}$ are constant.

Theorem (*n*-dimensional Liuoville's theorem)

Bounded quasiregular mappings $\mathbb{R}^n \to \mathbb{R}^n$ are constant.

The *n*-dimensional Liuoville's theorem follows from the following: there exists $\varepsilon = \varepsilon(n, K) > 0$ so that every *K*-quasiregular mapping $f : \mathbb{R}^n \to \mathbb{R}^n$ satisfying

$$\lim_{|x|\to\infty}|x|^{-\varepsilon}|f(x)|=0$$

is constant.

Quasiregular mappings

Definition

A continuous mapping $f: M \to N$ between oriented Riemannian *n*-manifolds is *K*-quasiregular if $f \in W_{loc}^{1,n}(M, N)$ and

$$||Df||^n \leq KJ_f$$
 a.e. in M ,

where ||Df|| is the operator norm and J_f is the Jacobian determinant.

Note that J_f satisfies $f^* \operatorname{vol}_N = J_f \operatorname{vol}_M$.

Cohomological obstructions for quasiregular mappings

Theorem (Bonk-Heinonen, 2001)

Let $f : \mathbb{R}^n \to N$ be a nonconstant K-quasiregular mapping into a closed Riemannian n-manifold. Then

 $\dim H^{\ell}(N) \leq C(n,K)$

for every $\ell = 0, \ldots, n$.

Theorem (Prywes, 2019)

Let $f : \mathbb{R}^n \to N$ be a nonconstant quasiregular mapping into a closed Riemannian n-manifold. Then

$$\dim H^\ell(N) \le \binom{n}{\ell}$$

for every $\ell = 0, \ldots, n$.

Bonk-Heinonen type growth of quasiregular mappings

Theorem (Bonk-Heinonen, 2001)

Let $f : \mathbb{R}^n \to N$ be a nonconstant K-quasiregular mapping, where N is a closed Riemannian n-manifold which is not a rational cohomology sphere. There exists $\varepsilon = \varepsilon(n, K) > 0$ for which

$$\liminf_{r\to\infty}\frac{1}{r^{\varepsilon}}\int_{B^n(r)}J_f>0.$$

Remark

If N is a closed Riemannian n-manifold which is not a rational cohomology sphere, then there exists $1 \le \ell \le n-1$ for which $H^{\ell}(N) \ne 0$.

Higher integrability of quasiregular mappings

Proposition (Prywes, 2019)

Let $f : \mathbb{R}^n \to N$ be a nonconstant K-quasiregular mapping into a closed Riemannian n-manifold which is not a rational cohomology sphere. Then there exists p = p(n, K, N) > 1 and C = C(n, K, N) > 0 for which

$$\left(\frac{1}{\left|\frac{1}{2}B\right|}\int_{\frac{1}{2}B}J_{f}^{p}\right)^{\frac{1}{p}} \leq C_{p}\frac{1}{\left|B\right|}\int_{B}J_{f}$$

for every ball B.

Higher integrability of quasiregular mappings

Lemma (Prywes, 2019)

Let N be a Riemannian n-manifold which is closed and not a rational cohomology sphere. Let $\alpha \in \Omega^{\ell}(N)$ and $\beta \in \Omega^{n-\ell}(N)$ be closed forms satisfying

$$\int_{N} \alpha \wedge \beta = \int_{N} \operatorname{vol}_{N}$$

for some $1 \le \ell \le n - 1$. Then there exists a smooth positive function h, a smooth partition of unity $\{\lambda_i\}$ and orientation preserving diffeomorphisms $\Phi_i \colon N \to N$ satisfying

$$\operatorname{vol}_{N} = h \sum_{i=1}^{j} \lambda_{i} \Phi_{i}^{*} (\alpha \wedge \beta).$$

Quasiregular curves

Definition

A smooth *n*-form $\omega \in \Omega^n(N)$ on a Riemannian *m*-manifold, $n \leq m$, is an *n*-volume form if ω is closed and pointwise nonvanishing.

Definition

A continuous mapping $f: M \to N$ between oriented Riemannian manifolds, $n = \dim M \leq \dim N$, is a K-quasiregular ω -curve with respect to an *n*-volume form $\omega \in \Omega^n(N)$ if $f \in W^{1,n}_{loc}(M, N)$ and

$$(||\omega|| \circ f) ||Df||^n \le K(\star f^*\omega)$$
 a.e. in M ,

where $||\omega||$ is the comass norm and the function $(\star f^*\omega)$ satisfies $f^*\omega = (\star f^*\omega) \operatorname{vol}_M$.

The algebra $\mathcal{A}_b^n(N)$

Definition

A smooth form $\omega \in \Omega^n(N)$ on a Riemannian manifold N belongs to $\mathcal{A}_b^n(N)$ if

$$\omega = \sum_{i=1}^{j} \varphi_i \alpha_i \wedge \beta_i \tag{1}$$

for some smooth and bounded functions φ_i and smooth, bounded, and closed forms α_i and β_i . The representation (1) is \mathbb{R} -linear if all the functions φ_i are constant.

For example, $\mathcal{A}_b^n(\mathbb{R}^m) = \Omega_b^n(\mathbb{R}^m)$.

Signed quasiregular curves

Definition

A quasiregular ω -curve $f: M \to N$ is signed with respect to the *n*-volume form ω if

- $\omega = \sum_{i=1}^{j} \varphi_i \alpha_i \wedge \beta_i \in \mathcal{A}_b^n(N)$ and
- the measurable functions $(\star f^*(\alpha_i \wedge \beta_i))$ do not change sign.

Example

A holomorphic curve $h = (h_1, \ldots, h_k) \colon \mathbb{C} \to \mathbb{C}^k$ is a 1-quasiregular with respect to the standard symplectic form $dx_1 \wedge dy_1 + \cdots + dx_k \wedge dy_k \in \mathcal{A}_b^2(\mathbb{C}^k)$ and the functions $(\star h^*(dx_i \wedge dy_i)) = J_{h_i}$ are nonnegative.

Quasiregular mappings are signed

Let N be a Riemannian n-manifold which is closed and not a rational cohomology sphere. Let $c \in H^{\ell}(N)$ be nontrivial, $1 \leq \ell \leq n-1$, and let ξ_c be the harmonic representative of c.

There exists a smooth positive function h, a smooth partition of unity $\{\lambda_i\}$ and orientation preserving diffeomorphisms $\Phi_i \colon N \to N$ satisfying

$$\operatorname{vol}_{N} = \sum_{i=1}^{j} h \lambda_{i} \Phi_{i}^{*}(\xi_{c} \wedge \star \xi_{c}) \in \mathcal{A}_{b}^{n}(N).$$

Let $f: M \to N$ be a quasiregular mapping. Then f is signed with respect to vol_N since

$$f^*(\Phi_i^*(\xi_c \wedge \star \xi_c)) = (||\xi_c||^2 \circ \Phi_i \circ f)(J_{\Phi_i} \circ f)J_f \operatorname{vol}_M.$$

Bonk-Heinonen type growth of signed quasiregular curves

Theorem

Let $f : \mathbb{R}^n \to N$ be a nonconstant K-quasiregular ω -curve, where N is a Riemannian manifold and $\omega \in \mathcal{A}_b^n(N)$ in an n-volume form satisfying $\inf_N ||\omega|| > 0$. If f is signed or ω has an \mathbb{R} -linear representation, then there exists $\varepsilon = \varepsilon(n, K, \omega) > 0$ for which

$$\liminf_{r\to\infty}\frac{1}{r^{\varepsilon}}\int_{B^n(r)}f^*\omega>0. \tag{2}$$

If a quasiregular ω -curve $f : \mathbb{R}^n \to N$ satisfies (2), we say that f has fast growth.

Some corollaries

Corollary

A nonconstant signed quasiregular ω -curve $f : \mathbb{R}^n \to N$ into a closed Riemannian manifold N has fast growth.

Corollary

A nonconstant quasiregular ω -curve $f : \mathbb{R}^n \to \mathbb{R}^m$ with respect to a nonzero covector $\omega \in \Lambda^n(\mathbb{R}^m)$ has fast growth.

Corollary (Bonk-Heinonen)

If N is closed and not a rational cohomology sphere, then every nonconstant quasiregular mapping $f : \mathbb{R}^n \to N$ has fast growth.

Method of proof (part 1)

Theorem

Let $f : \mathbb{R}^n \to N$ be a nonconstant K-quasiregular ω -curve with respect to an n-volume form $\omega \in \Omega^n(N)$. If there exists p > 1 and $C_p > 0$ for which $(\star f^*\omega)$ satisfies

$$\left(\frac{1}{\left|B^{n}(\frac{r}{2})\right|}\int_{B^{n}(\frac{r}{2})}(\star f^{*}\omega)^{p}\right)^{\frac{1}{p}}\leq C_{p}\frac{1}{\left|B^{n}(r)\right|}\int_{B^{n}(r)}f^{*}\omega$$

for every r > 0, then there exists $\varepsilon = \varepsilon(n, p) > 0$ for which

$$\liminf_{r\to\infty}\frac{1}{r^{\varepsilon}}\int_{B^n(r)}f^*\omega>0.$$

Method of proof (part 2)

Theorem

Let $f : \mathbb{R}^n \to N$ be a nonconstant K-quasiregular ω -curve, where N is a Riemannian manifold and $\omega \in \mathcal{A}_b^n(N)$ in an n-volume form satisfying $\inf_N ||\omega|| > 0$. If f is signed or ω has an \mathbb{R} -linear representation, then there exists $p = p(n, K, \omega) > 1$ and $C = C(n, K, \omega) > 0$ for which

$$\left(rac{1}{\left|rac{1}{2}B
ight|}\int_{rac{1}{2}B}(\star f^{*}\omega)^{p}
ight)^{rac{1}{p}}\leq C_{p}rac{1}{\left|B
ight|}\int_{B}f^{*}\omega$$

for every ball B.

As a consequence, $f \in W^{1,q}_{loc}(\mathbb{R}^n, N)$ for q = np > n.

Proof of part 1

The estimate

$$\left(\frac{1}{\left|B^{n}\left(\frac{r}{2}\right)\right|}\int_{B^{n}\left(\frac{r}{2}\right)}(\star f^{*}\omega)^{p}\right)^{\frac{1}{p}} \leq C_{p}\frac{1}{\left|B^{n}(r)\right|}\int_{B^{n}(r)}f^{*}\omega,$$

implies

$$C_p^{-1} \left|B^n(1)
ight|^{1-rac{1}{p}} 2^{rac{n}{p}} \left(\int_{B^n(rac{r}{2})} (\star f^*\omega)^p
ight)^{rac{1}{p}} \leq rac{1}{r^arepsilon} \int_{B^n(r)} f^*\omega$$

for $\varepsilon = n(1 - 1/p) > 0$. Since f is nonconstant and satisfies $(||\omega|| \circ f) ||Df||^n \le K(\star f^*\omega)$ a.e., the function $(\star f^*\omega)$ is nonnegative a.e. and nonzero in some set with positive measure.

Proof of part 1

Let t > 0 be so that

$$\int_{B^n(\frac{t}{2})} (\star f^* \omega)^p > 0.$$

Then

$$\frac{1}{r^{\varepsilon}}\int_{B^n(r)}f^*\omega \geq C\left(\int_{B^n(\frac{r}{2})}(\star f^*\omega)^p\right)^{\frac{1}{p}} \geq C\left(\int_{B^n(\frac{t}{2})}(\star f^*\omega)^p\right)^{\frac{1}{p}}$$

for $r \ge t$ and hence

$$\liminf_{r\to\infty}\frac{1}{r^{\varepsilon}}\int_{B^n(r)}f^*\omega\geq C\left(\int_{B^n(\frac{t}{2})}(\star f^*\omega)^p\right)^{\frac{1}{p}}>0.$$

Some steps in the proof of part 2

- Choose a suitable representation $\omega = \sum_{i=1}^{j} \varphi_i \alpha_i \wedge \beta_i \in \mathcal{A}_b^n(N)$
- Choose suitable forms τ_i satisfying $d\tau_i = f^* \alpha_i$
- Let $\psi \in {\sf C}^\infty_c(B)$ be the standard bump function
- Then

$$\int_{\frac{1}{2}B} f^* \omega \leq \int_B \psi f^* \omega = \sum_{i=1}^j \int_B \psi(\varphi_i \circ f) f^*(\alpha_i \wedge \beta_i)$$

Some steps in the proof of part 2

• If
$$(\star f^*(\alpha_i \wedge \beta_i)) \ge 0$$
, then

$$\int_B \psi(\varphi_i \circ f) f^*(\alpha_i \wedge \beta_i) \le ||\varphi_i||_{\infty} \int_B \psi f^*(\alpha_i \wedge \beta_i)$$

$$= ||\varphi_i||_{\infty} \left| \int_B \psi f^*(\alpha_i \wedge \beta_i) \right|$$

• If $(\star f^*(\alpha_i \wedge \beta_i)) \leq 0$, then

$$\begin{split} \int_{B} \psi(\varphi_{i} \circ f) f^{*}(\alpha_{i} \wedge \beta_{i}) &= \int_{B} \psi(-\varphi_{i} \circ f) (-f^{*}(\alpha_{i} \wedge \beta_{i})) \\ &\leq ||\varphi_{i}||_{\infty} \int_{B} \psi(-f^{*}(\alpha_{i} \wedge \beta_{i})) \\ &= ||\varphi_{i}||_{\infty} \left| \int_{B} \psi f^{*}(\alpha_{i} \wedge \beta_{i}) \right| \end{split}$$

Some steps in the proof of part 2

• If
$$\varphi_i \equiv c_i$$
, then

$$\int_B \psi(\varphi_i \circ f) f^*(\alpha_i \wedge \beta_i) = c_i \int_B \psi f^*(\alpha_i \wedge \beta_i)$$

$$\leq ||\varphi_i||_{\infty} \left| \int_B \psi f^*(\alpha_i \wedge \beta_i) \right|$$

Suffices to estimate

$$\begin{split} \left| \int_{B} \psi f^{*}(\alpha_{i} \wedge \beta_{i}) \right| &= \left| \int_{B} d\tau_{i} \wedge (\psi f^{*} \beta_{i}) \right| = \left| \int_{B} \tau_{i} \wedge d\psi \wedge f^{*} \beta_{i} \right| \\ &\leq C(n) \int_{B} |\tau_{i}| |d\psi| |f^{*} \beta_{i}| \end{split}$$

• ...

Mattila-Rickman type equidistribution for quasiregular curves

Theorem

Let $f : \mathbb{R}^n \to N$ be a nonconstant quasiregular ω_0 -curve into a closed Riemannian manifold N. Suppose that the function $r \mapsto \int_{B^n(r)} f^* \omega_0$ is unbounded. Then, for every $\omega \in \Omega^n(N)$ in the de Rham cohomology class of ω_0 ,

$$\lim_{\substack{\to\\r\notin E}}\frac{\int_{B^n(r)}f^*\omega}{\int_{B^n(r)}f^*\omega_0}=1,$$

where E has finite logarithmic measure.

Cohomological value distribution for signed quasiregular curves

Theorem

Let $f : \mathbb{R}^n \to N$ be a nonconstant signed quasiregular ω_0 -curve into a closed Riemannian manifold N. Then, for every $\omega \in \Omega^n(N)$ in the de Rham cohomology class of ω_0 ,

$$\liminf_{\substack{r\to\infty\\r\notin E}}\frac{1}{r^{\varepsilon}}\int_{B^n(r)}f^*\omega>0,$$

where $\varepsilon > 0$ and E has finite logarithmic measure. In particular, if $(\star f^*\omega) \ge 0$ a.e., then

$$\liminf_{r\to\infty}\frac{1}{r^{\varepsilon}}\int_{B^n(r)}f^*\omega>0.$$

Family of examples

Let $T^3 = \mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1$ be the 3-dimensional torus and let $pr_1, pr_2: T^3 \to \mathbb{S}^1$ be the first and second projections. Let also

$$\omega = \mathsf{pr}_1^* \mathsf{vol}_{\mathbb{S}^1} \wedge \mathsf{pr}_2^* \mathsf{vol}_{\mathbb{S}^1} \in \Omega^2(\mathcal{T}^3).$$

Then

- ω is a 2-volume form on T^3 ,
- $||\omega|| = 1$, and

• ω has an \mathbb{R} -linear representation in $\mathcal{A}_b^2(T^3)$.

Let $\pi \colon \mathbb{R}^3 \to T^3$ be the cover map $(x, y, z) \mapsto (e^{2\pi i x}, e^{2\pi i y}, e^{2\pi i z})$. Note that $\pi^* \omega = dx \wedge dy \in \Omega^2(\mathbb{R}^3)$.

Family of examples

Let $a = (a_1, a_2) \in \mathbb{R}^2$ and let $L_a \colon \mathbb{R}^2 \to \mathbb{R}^3$ be the mapping $(x, y) \mapsto (x, y, a_1x + a_2y)$. Let $f_a \colon \mathbb{R}^2 \to T^3$ be the composed mapping $f_a = \pi \circ L_a$. Then f_a is a $(1 + |a|)^2$ -quasiregular ω -curve since

$$||Df_{a}||^{2} = ||D(\pi \circ L_{a})||^{2} = ||((D\pi) \circ L_{a})DL_{a}||^{2} = ||DL_{a}||^{2} \le (1 + |a|)^{2}$$

and

$$f_a^*\omega = (\pi \circ L_a)^*\omega = L_a^*(dx \wedge dy) = \operatorname{vol}_{\mathbb{R}^2}.$$

Result: The image $f_a(\mathbb{R}^2) \subset T^3$ is nowhere dense if $a \in \mathbb{Q}^2$ and dense if $a \in (\mathbb{R} \setminus \mathbb{Q})^2$. **Reason:** The set $\{e^{2\pi i k \theta} : k \in \mathbb{Z}\} \subset \mathbb{S}^1$ is finite if $\theta \in \mathbb{Q}$ and dense if $\theta \in \mathbb{R} \setminus \mathbb{Q}$.

Thank you!