Quasiregular Curves of Small Distortion in Product Manifolds

Susanna Heikkilä

University of Helsinki

Joint work with Pekka Pankka (UH) and Eden Prywes (Princeton)

AGENT Forum 29.10.2021

Quasiregular mappings

Definition

A continuous mapping $f: M \to N$ between oriented Riemannian *n*-manifolds is *K*-quasiregular if $f \in W_{loc}^{1,n}(M, N)$ and

$$||Df||^n \leq KJ_f$$
 a.e. in M ,

where ||Df|| is the operator norm and J_f is the Jacobian determinant.

Note that J_f satisfies $f^* \operatorname{vol}_N = J_f \operatorname{vol}_M$.

Quasiregular curves

Definition

A smooth *n*-form $\omega \in \Omega^n(N)$ on a Riemannian *m*-manifold, $n \leq m$, is an *n*-volume form if ω is closed and pointwise non-vanishing.

Definition

A continuous mapping $F: M \to N$ between oriented Riemannian manifolds, $n = \dim M \leq \dim N$, is a K-quasiregular ω -curve with respect to an *n*-volume form $\omega \in \Omega^n(N)$ if $F \in W^{1,n}_{loc}(M, N)$ and

$$(||\omega|| \circ F) ||DF||^n \le K(\star F^* \omega)$$
 a.e. in M ,

where $||\omega||$ is the comass norm and the function $(\star F^*\omega)$ satisfies $F^*\omega = (\star F^*\omega) \operatorname{vol}_M$.

A product manifold $N = N_1 \times \cdots \times N_k$, where each factor N_i is an oriented Riemannian *n*-manifold, carries an *n*-form

$$\operatorname{vol}_{N}^{ imes} = \sum_{i=1}^{k} \pi_{i}^{*} \operatorname{vol}_{N_{i}} \in \Omega^{n}(N),$$

where each $\pi_i \colon N \to N_i$ is a projection $(p_1, \ldots, p_k) \mapsto p_i$.

Theorem

Let *M* be an oriented and connected Riemannian n-manifold for $n \ge 3$ and let $N = N_1 \times \cdots \times N_k$ be a product of oriented Riemannian n-manifolds. Let also $F = (f_1, \ldots, f_k)$: $M \to N$ be a non-constant 1-quasiregular vol[×]_N-curve. Then there exists an index i_0 so that

- the coordinate map $f_{i_0} \colon M \to N_{i_0}$ is conformal and
- the coordinate maps $f_i: M \to N_i$, $i \neq i_0$, are constant.

Theorem

Let *M* be an oriented and connected Riemannian n-manifold for $n \ge 3$ and let $N = N_1 \times \cdots \times N_k$ be a product of oriented Riemannian n-manifolds. Then there exists $\varepsilon = \varepsilon(n, k) > 0$ such that each non-constant $(1 + \varepsilon)$ -quasiregular $\operatorname{vol}_N^{\times}$ -curve $F = (f_1, \ldots, f_k) \colon M \to N$ has a unique coordinate map $f_{i_0} \colon M \to N_{i_0}$ which is a quasiregular local homeomorphism.

Theorem

Let $n \ge 3$. Then there exists $k \in \mathbb{N}$ and a non-constant quasiregular $\operatorname{vol}_{(\mathbb{R}^n)^k}^{\times}$ -curve $F : \mathbb{R}^n \to (\mathbb{R}^n)^k$ which is constant in the lower half-space.

Theorem (Rosay 2010)

Let K > 1 and $k \ge 2$. Then there exists a non-constant K-quasiregular $\operatorname{vol}_{\mathbb{C}^k}^{\times}$ -curve $F \colon \mathbb{C} \to \mathbb{C}^k$ which is not discrete.

Thank you!