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Abstract

We introduce a new approach to the model theory of metric structures by defining
the notion of a metric abstract elementary class (MAEC) closely resembling the notion
of an abstract elementary class. Further we define the framework of a homogeneous
MAEC were we additionally assume the existence of arbitrarily large models, joint
embedding, amalgamation, homogeneity and a property which we call the perturbation
property. We also assume that the Löwenheim-Skolem number, which in this setting
refers to the density character of the set instead of the cardinality, is ℵ0 . In these
settings we prove an analogue of Morley’s categoricity transfer theorem. We also give
concrete examples of homogeneous MAECs.

1 Introduction

The application of model theory to structures from analysis can be considered to have
started in the mid-sixties with the introduction of Banach space ultrapowers by Bretag-
nolle, Dacunha-Castelle and Krivine in [BDCK66] and [DCK72] and nonstandard hulls by
Luxemburg in [Lux69]. In 1981 Krivine and Maurey [KM81] introduced the notion of a
stable Banach space inspired by the model theoretic notion.

In [Hen75] Henson introduces a special first order language designed to express when
two Banach spaces have isometrically isomorphic nonstandard hulls. The language of posi-
tive bounded formulas is introduced in [Hen76] and its model theory is studied extensively
in [HI02] by Henson and Iovino. Iovino proves a Lindström-type maximality theorem for it
in [Iov01]. In [Iov99a] and [Iov99b] Iovino introduces a notion of stability based on density
characters for Banach spaces, develops a notion of forking and proves a stability spectrum
result. He also shows that his notion of stability implies the stability defined by Kriv-
ine and Maurey in [KM81]. Shelah and Usvyatsov have proved an analogue of Morley’s
categoricity transfer theorem in this setting and the proof will appear in [SU].

Another approach to metric structures is Ben-Yaacov’s notion of compact abstract
theories or cats. These were introduced in [BY03] and closely resemble Shelah’s Kind II
(together with Assumption III) in [She75]. In [BY05] Ben-Yaacov proves an analogue of
Morley’s theorem for cats.
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Although the general framework of compact abstract theories is more general than that
of positive bounded formulas, for metric structures the frameworks are equivalent. The
newest approach, which is equivalent to the previous two, is continuous logic. It is based
on Chang’s and Keisler’s work from the 1960’s [CK66], but has some crucial differences.
One main difference is that when Chang and Keisler allowed any compact Hausdorff space
X as a set of truth values, the new approach, introduced in [BYU], fixes X = [0, 1] . The
advantage of this approach over Henson’s logic is that it directly generalizes first order logic
and avoids the trouble of approximate satisfaction by having the approximations built into
the formulas.

All three approaches mentioned above provide a compact setting for the development of
metric model theory. A more general approach is presented by Buechler and Lessmann in
[BL03] where they develop forking theory in the framework of simple homogeneous models
and provide strongly homogeneous Hilbert spaces as examples of simple structures. The
approach is further developed by Buechler and Berenstein in [BB04] where they consider
expansions of Hilbert spaces and show that the structures considered are simple stable and
have built-in canonical bases.

In this paper we introduce a new approach to the model theory of metric structures. In
addition to abandoning compactness we choose not to use any specific language but work
in an environment very similar to that of abstract elementary classes (AEC). These were
introduced by Shelah in [She87] as a general foundation for model-theoretic studies of non-
elementary classes. Our modification of the concept, the metric abstract elementary class,
is a pair (K,4K) where K is a class of many-sorted models, each sort being a complete
metric space. 4K is a notion of substructure satisfying natural properties satisfied by the
elementary substructure relation in first order languages. The main differences between
metric abstract elementary classes and AECs are that we consider complete metric spaces,
take the completion of unions when considering closedness under 4K -chains and consider
the density character instead of cardinality in the Löwenheim-Skolem number. Of course,
if the metric is discrete these changes cancel out.

In addition to the demands of a metric abstract elementary class we also assume joint
embedding, amalgamation, the existence of arbitrarily large models, homogeneity and a
property which we call the perturbation property. It is our substitute for the perturba-
tion lemma of positive bounded formulas (Proposition 5.15 of [HI02]). A class with these
additional properties will be called a homogeneous metric abstract elementary class. We
also assume the density-Löwenheim-Skolem number mentioned above to be ℵ0 . Recently
categoricity has been studied extensively in abstract elementary classes and quite a lot
of stability theory has been developed for AECs with amalgamation. However, our as-
sumption of homogeneity makes it possible for us to use the results in homogeneous model
theory developed in [HS00].

A main motivation for introducing a new approach is that the authors hope that this
setting can be developed to allow for the the study of generalized notions of types based
on generalized notions of automorphisms e.g. being automorphic up to perturbations or
automorphic via a linear homeomorphism. Consider the example of probability algebras
with a generic automorphism studied in [BH04] and [BYB]. This example is unsuperstable
(i.e. ’unclassifiable’) if stability is measured the usual way from the syntactic types. Since
the class has the elimination of quantifiers, to get many types it is enough to look at the
syntactic types containing atomic formulas only. On the other hand if we switch the notion
of type to be that of being automorphic up to perturbations, the class is omega-stable.
Now if one wants to capture this notion of type as a syntactic type, drastic changes to
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formal language is needed (one can not allow even atomic formulas). It is very difficult to
see how this is done, but it is not difficult to see how to modify the approach introduced
below to capture these generalized notions of types and isomorphisms (and at least some
of the basic results can even be proved).

Our framework generalizes positive bounded theories, cats and continuous logic in the
sense that the complete models of a theory in any of these settings forms a homogeneous
metric abstract elementary class. We prove the following analogue of Morley’s categoricity
theorem (Theorem 8.6).

Theorem. Assume K is κ-categorical for some κ = κℵ0 > ℵ1 . Then there is ξ < i(2ℵ0 )+

such that K is categorical in all λ satisfying

(i) λ ≥ min{ξ, κ},

(ii) λℵ0 = λ,

(iii) for all ζ < λ, ζℵ0 < λ.

By the conditions on the cardinals in the theorem, the result actually holds regardless of
if we consider cardinalities or densities when measuring the size of models. The difficulties
in improving the result arise when we want to extract more information from having too
many types over some large set. Since ’too many’ is measured in the density of the type-
space we need a way to keep distances when moving down to a smaller parameter set.
In a last chapter we solve the problem by adding the assumption of metric homogeneity

which roughly states that distances of types have finite witnessing parameter sets. With
this extra assumption we acquire (Corollary 10.31)

Theorem. If K is metricly homogeneous and κ-categorical (with respect to densities) for

some uncountable κ. Assume further that either κ > ℵ1 or separable F M
ω -saturated models

exist. Then there exists some ξ < ic+ such that K is categorical in all λ ≥ min{κ, ξ}.

The precise settings are defined in section 2. In the third section we give the definitions
of the metric on the space of types originally introduced in [HI02] and the stability with
respect to density characters defined in [Iov99a]. We also introduce a new version of
saturation, the d-saturation which similarly to the stability notion considers dense sets of
types, and investigate its relation to conventional saturation. The fourth section is devoted
to splitting and independence. Again we introduce density-versions of both concepts and
use these among others to relate Iovino’s stability notion to conventional stability. In the
fifth section we build Ehrenfeucht-Mostowski models and show that categoricity implies
stability. In the sixth section we show how to introduce a first order language in order
to set our monster into the settings of [HS00]. The seventh section introduces primary
models and proves a dominance theorem for these and is roughly a modification of the
corresponding results in [She90] and [HS00]. In the eight section we put together the
pieces and prove the main theorem. The ninth chapter gives examples. We show that the
class of all Banach spaces fit into our framework and give an example of a categorical class
of Banach spaces which are not Hilbert. In the final chapter we add the assumption of
metric homogeneity and prove an improved version of the main theorem. We also show
that metric homogeneity holds in our categorical example class.

The authors wish to thank Hans-Olav Tylli for helpful discussions on Banach spaces.
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2 Homogeneous metric structures

We investigate a class K of complete metric space structures of some fixed, countable
signature τ . We work in a many-sorted context where the structures are of the form

M = 〈A0,A1, . . . , R, d0, d1, . . . , co, c1, . . . , R0, R1, . . . , F0, F1, . . . 〉,

where

(i) each Ai is a complete metric space with metric di (with values in R),

(ii) R is an isomorphic copy of the ordered field of real numbers (R,+, ·, 0, 1,≤) ,

(iii) each ci is a constant and each Ri a relation,

(iv) each Fi is a function Fi : B0 × · · · × Bm → Bm+1 where Bj ∈ {A0,A1, . . . , R} .

We will not specify the sorts of the elements we work with but just refer to the elements
of some sort of M as elements of M and call the union of the sorts the domain of M

(we assume the sorts are disjoint). This domain is not a metric space, so by the closure
of a (possibly many-sorted) subset A of this domain, denoted A , we mean the union of
the sortwise closures. For any non-complete metric space X we will also denote by X the
metric completion of X . Furthermore, by the density character of M , |M | , we mean the
sum of the density characters of its sorts. By card(A) we denote the cardinality of A .

After setting the assumptions we will obtain a homogeneous monster model M . After
that all models mentioned will be submodels of M . Until then a model is an element of
K and we write A , B and so on for these. We will also use A for the domain of the
model A . A , B etc. will be used for sets and a , b etc. for finite sequences of elements.
By a ∈ A we mean a ∈ Alength(a) . Note that a finite tuple a ∈ A may consist of elements
of different sorts.

By an automorphism we will mean an automorphism of M . We will write Aut(M/A)

for the set of automorphisms of M fixing A pointwise. Note that an automorphism of a
many-sorted structure preserves the sorts of elements.

κ , λ , ξ and ζ will be used for infinite cardinals, α , β , γ , i and j for ordinals. δ is
reserved for limit ordinals and m , n , k and l are reserved for natural numbers. We write
c for 2ℵ0 .

Definition 2.1. We call a class (K,4K) of τ -structures for some fixed signature τ a
metric abstract elementary class, MAEC, if the following hold:

(i) Both K and the binary relation 4K are closed under isomorphism.

(ii) If A 4K B then A is a substructure of B (i.e. each sort of A is a substructure of
the corresponding sort of B ).

(iii) 4K is a partial order on K .

(iv) If (Ai)i<δ is a 4K -increasing chain then

(a) the functions in τ can be uniquely defined on the completion of
⋃

i<δ Ai such
that

⋃
i<δ Ai ∈ K ,

(b) for each j < δ , Aj 4K

⋃
i<δ Ai ,
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(c) if each Ai 4K B ∈ K then
⋃

i<δ Ai 4K B .

(v) If A ,B,C ∈ K , A 4K C , B 4K C and A ⊆ B then A 4K B .

(vi) There exists a Löwenheim-Skolem number LSd(K) such that if A ∈ K and A ⊂ A

then there is B ⊇ A such that |B| = |A| + LSd(K) and B 4K A .

Notation 2.2. Since we will always be working with a fixed K , we will use the shorthand
4 for 4K .

This definition has two differences compared to the definition of an abstract elementary
class. In (iv) we consider the completion of the union of a chain instead of the union itself
and in (vi) the Löwenheim-Skolem number refers to the density of the added part instead
of its cardinality. Without these alterations we would have the definition of an abstract
elementary class (cf. [She87]).

Note that we do not not put any explicit demands on the functions except the ex-
tendability in (iv). When we define a homogeneous metric abstract elementary class in
Definition 2.13 we will also require an additional property called perturbation (Definition
2.12). However as an example we can mention that the condition holds if we have a uni-
form family of functions as defined in Section 8 of [HI02], i.e. the functions are bounded
and uniformly continuous on bounded subsets of their domains in a way that is uniform
for the family.

Remark 2.3. Since taking the completion of a set in a metric space only includes adding
limits to countable sequences, we note that if (Ai)i<λ is an increasing ⊆-chain of closed
sets in a given complete metric space and cf(λ) 6= ω then

⋃

i<λ

Ai =
⋃

i<λ

Ai.

From now on we assume (K,4) is a metric abstract elementary class and list some
properties. Except for Definition 2.12 the definitions are the same as for ordinary abstract
elementary classes.

Definition 2.4 (K-embedding). If A ,B ∈ K and f : A → B is an embedding such
that f(A ) 4 B , f is called a K-embedding.

Definition 2.5 (Joint embedding property). K is said to have the joint embedding

property if for any A ,B ∈ K there are C ∈ K and K-embeddings f : A → C and
g : B → C .

Remark 2.6. Note that since a MAEC is closed under isomorphism, when applying the
joint embedding property we may assume that one of the embeddings is the identity map-
ping.

Definition 2.7 (Amalgamation property). K is said to have the amalgamation prop-

erty if whenever A ,B,C ∈ K , A 4 B and A 4 C then there are D ∈ K and K-
embeddings f : B → D and g : C → D such that f � A = g � A .

In order to define further properties we need the notion of a type. We introduce the
notion of a Galois-type which was used by Shelah in [She87] and [She99] and further
investigated and named by Grossberg in [Gro02]. We first define the Galois-type with
respect to a given model. Later, when we have constructed a monster model, we will not
need the models any more and can also consider types over arbitrary sets. We then give a
new definition for Galois-type in Definition 2.11.
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Definition 2.8 (Galois-type in a model). For A ,B ∈ K and {ai : i < α} ⊂ A ,
{bi : i < α} ⊂ B we say that (ai)i<α and (bi)i<α have the same Galois-type in A and B

respectively,
tg
A

((ai)i<α/∅) = tg
B

((bi)i<α/∅),

if there are C ∈ K and K-embeddings f : A → C and g : B → C such that f(ai) = g(bi)

for every i < α .

The amalgamation property ensures that having the same Galois-type is a transitive
relation. It also holds that elements have the same Galois-type in a model and its 4-
extensions and that K-embeddings preserve Galois-types.

Definition 2.9 (Homogeneity). We call K homogeneous if whenever A ,B ∈ K , {ai :

i < α} ⊂ A , {bi : i < α} ⊂ B and for all n < ω , i0, . . . , in−1 < α

tg
A

((ai0 , . . . , ain−1)/∅) = tg
B

((bi0 , . . . , bin−1)/∅)

then
tg
A

((ai)i<α/∅) = tg
B

((bi)i<α/∅).

With the properties defined so far we can construct a homogeneous monster model.
We omit the proof which is a modification of the usual Jónsson-Fraïssé construction (see
[Jón56], [Jón60]), only considering completions of unions instead of just unions of chains
along the construction.

Theorem 2.10. Let (K,4) be a metric abstract elementary class of τ -structures satisfying

the joint embedding property, the amalgamation property and homogeneity. Let µ > |τ | +
ℵ0 . Then there is M ∈ K such that

(i) (µ-universality): M is µ-universal, that is for all A ∈ K with |A | < µ there is a

K-embedding f : A → M.

(ii) (µ-homogeneity): If (ai)i<α and (bi)i<α are sequences of elements of M such that

α < µ and for all n < ω and i0, . . . , in−1 < α

tg
M

((ai0 , . . . , ain−1)/∅) = tg
M

((bi0 , . . . , bin−1)/∅)

then there is an automorphism f of M such that f(ai) = bi for all i < α .

Definition 2.11 (Galois-type). We say that tg((ai)i<α/A) = tg((bi)i<α/A) if there is
f ∈ Aut(M/A) such that f(ai) = bi for every i < α .

Note that for A = ∅ the above definition coincides with the notion of Galois-type in
M in Definition 2.8.

Finally we introduce one last property concerning types. The importance of it will
become clear in the next section where we define the metric on the space of types. The
purpose of it is to replace the Perturbation lemma in [HI02].

Definition 2.12 (Perturbation). Assume K satisfies the joint embedding property, the
amalgamation property and homogeneity, so that M can be constructed. Then K is said
to have the perturbation property if whenever A ⊂ M and (bi)i<ω is a convergent sequence
with b = limi→∞ bi such that tg(bi/A) = tg(bj/A) for all i, j < ω , then tg(b/A) = tg(bi/A)

for i < ω .
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Now we are ready to list the assumptions we will make on K .

Definition 2.13 (Homogeneous metric abstract elementary class). We call a met-
ric abstract elementary class (K,4) a homogeneous MAEC if it satisfies the following
properties:

(i) K contains arbitrarily large models (i.e. models of arbitrarily large density).

(ii) K has the joint embedding property 2.5.

(iii) K has the amalgamation property 2.7

(iv) K is homogeneous as defined in 2.9.

(v) K satisfies the perturbation property 2.12.

Assumption 2.14. From now on we assume that K is a homogeneous MAEC of τ -
structures with LSd(K) = ℵ0 . Hence we can construct a µ-universal, µ-homogeneous
monster model M for some µ larger than any cardinality we will encounter and consider
only 4-submodels of M .

3 Metric saturation and stability notions

Since we live inside the monster model our space of n-types over A , Sn(A) , will be the
set

Sn(A) = {tg(a/A) : length(a) = n, a ∈ M}.

It is worth noting that the many-sorted context increases the number of types since we in
S(A) =

⋃
n<ω Sn(A) have types for each finite combination of sorts. However, since there

are only countably many sorts this only increases the number by a factor of ℵ0 .

For each A ⊂ M and n < ω we define a metric d on the space Sn(A) in the same
way as Henson and Iovino define it for types in the positive bounded logic in [HI02].

Definition 3.1. If p, q ∈ Sn(A)

d(p, q) = inf{d(b, c) : tg(b/A) = p, tg(c/A) = q},

where d(b, c) = maxi<n d(bi, ci) .

Remark 3.2. Note that if p, q ∈ S(A) and a realizes p then for every ε > 0 there is a
realization b of q such that d(a, b) ≤ d(p, q) + ε .

It is easy to see that d is always a pseudometric. To get a metric we need the Pertur-
bation property 2.12: Assume p, q ∈ S(A) and d(p, q) = 0 . Then for each n < ω there are
elements an, bn of types p and q respectively such that d(an, bn) < 1

n+1 . By the previous
remark we may assume an = a0 for all n < ω . Then (bn)n<ω is a convergent sequence
and by perturbation

p = tg(a0/A) = tg( lim
n→∞

bn/A) = tg(bn/A) = q.

Further it is clear that if p, q ∈ Sn(B) and A ⊆ B then d(p, q) ≥ d(p � A, q � A) .

We will use two notions of stability. One is the traditional notion, the other was
introduced by Iovino in [Iov99a] and considers the density of the set of types instead of its
cardinality.
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Definition 3.3. (i) K is ξ -stable if for all A ⊂ M with |A| ≤ ξ , card(S(A)) ≤ ξ .

(ii) K is ξ -stable with respect to d (ξ -d-stable for short) if for all A ⊂ M with |A| ≤ ξ ,
|S(A)| , the density of S(A) with respect to d , is ≤ ξ .

When we further on consider a stable K we will denote by λ(K) the smallest ξ such
that K is ξ -stable.

We define saturation and strong saturation with respect to the monster model. What
we call F M

λ -saturation was called (D,λ)-homogeneity in [She71].

Definition 3.4. We say that a and b have the same Lascar strong type over A , written
Lstp(a/A) = Lstp(b/A) , if E(a, b) holds for any A-invariant equivalence relation E (i.e.
E(a, b) iff E(f(a), f(b)) for each f ∈ Aut(M/A)) with less than |M| equivalence classes.

Definition 3.5. (i) We say that A is F M

λ -saturated if for all A ⊆ A of density < λ

and all a ∈ M , there is b ∈ A such that tg(b/A) = tg(a/A) .

(ii) We say that A is strongly F M

λ -saturated if for all A ⊆ A of density < λ and all
a ∈ M , there is b ∈ A such that Lstp(b/A) = Lstp(a/A) .

Note that since automorphisms fixing a dense subset of a given set A must fix the set
A , we get the same notion if we consider the cardinality of the parameter set instead of the
density character. This will be important when applying results from [HS00] from section
6 onwards.

As with stability we will also use a density version of saturation.

Definition 3.6. We say that a model A is densely F M

λ -saturated with respect to d (F M

λ -

d-saturated for short) if for every B ⊂ A with |B| < λ , A realizes every type in a
d-dense subset of S(B) .

Theorem 3.7. If A is F M

λ -d-saturated then it is F M

λ -saturated.

Proof. Let A ⊂ A , |A| < λ and a ∈ M . We wish to realize tg(a/A) in A . By induction
on n < ω , define bn and automorphisms gn , fn such that

(i) bn ∈ A ,

(ii) fn ∈ Aut(M/A ∪ {bm : m < n}) ,

(iii) g0 = id and gn+1 = fn ◦ gn ,

(iv) d(tg(bn/A ∪ {bm : m < n}), tg(gn(a)/A ∪ {bm : m < n})) ≤ 2−(n+2) ,

(v) d(gn+1(a), bn) ≤ 2−(n+1) .

By F M

λ -d-saturation we can satisfy (i) and (iv) and then by 3.2 we can find a′ such that
tg(a′/A ∪ {bm : m < n}) = tg(gn(a)/A ∪ {bm : m < n}) and d(a′, bn) ≤ 2−(n+1) . Hence
there is fn ∈ Aut(M/A ∪ {bm : m < n}) mapping gn(a) to a′ . Then (ii) and (v) are
satisfied (and (iii) is just a definition).

Now since fn+1 ∈ Aut(M/A ∪ {bm : m ≤ n}) and distances are preserved under
automorphisms we get

d(bn+1, bn) ≤ d(bn+1, gn+2(a)) + d(gn+2(a), bn)

= d(bn+1, gn+2(a)) + d(gn+1(a), bn)

≤ 2−(n+2) + 2−(n+1)

≤ 2−n.
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Thus the sequence (bn)n<ω is a Cauchy sequence and we can define b = limn→∞ bn .
Since for all n , gn ∈ Aut(M/A) we have tg(gn(a)/A) = tg(a/A) and by (v) (bn)n<ω and
(gn(a))n<ω have the same limit, so by perturbation

tg(b/A) = tg( lim
n→∞

bn/A) = tg( lim
n→∞

gn(a)/A) = tg(gn(a)/A) = tg(a/A).

We introduce yet another notion of saturation. This is a modification of the notion
of approximate saturation introduced by Ben-Yaacov in [BY05]. The essential part of
Theorem 3.10 is a modification of the proof of [BYU07, Fact 1.5].

Definition 3.8. A model A is called approximately F M

λ -saturated if for all A = {ai : i <

ξ} ⊆ A with ξ < λ , all a ∈ M and ε > 0 there are b ∈ A and A′ = {a′i : i < ξ} ⊆ A

such that d(ai, a
′
i) ≤ ε for every i < ξ and

tg(b/A′) = tg(a/A′).

Lemma 3.9. If K is ω -d-stable then there exists a separable approximately F M
ω -saturated

model containing any given separable set A.

Proof. By LSd = ℵ0 and ω -d-stability, construct inductively separable models An , n < ω ,
satisfying

(i) An ⊇ A ,

(ii) An 4 M ,

(iii) An ⊆ An+1 and An+1 realizes a dense subset of S(An) .

Then we get

Aω =
⋃

n<ω

An 4 M.

Now if B ⊂ Aω is finite and ε > 0 there is B ′ ⊆
⋃

n<ω An with |B′| = |B| and
d(b, b′) ≤ ε for corresponding elements b ∈ B , b′ ∈ B′ . Since B′ is finite there is m < ω

such that B ′ ⊂ Am . Now for any a ∈ M by a construction similar to that in 3.7 (choose
bn ∈ Am+n ) we see that tg(a/B′) is realized in Aω .

Theorem 3.10. If A is (metricly) complete and approximately F M
ω saturated then for any

separable A+ ⊆ A there is a separable model A such that A+ ⊆ A ⊆ A.

Proof. By the previous lemma there is a separable approximately F M
ω -saturated model

B 4 M . Choose countable dense sets A′ ⊆ A+ and B′ ⊆ B and enumerate them
A′ = {an : n < ω} , B′ = {bn : n < ω} .

We will construct increasing sequences of finite sets An ⊂ A and Bn ⊂ B and auto-
morphisms fn , gn such that

(i) fn(An) ⊂ B ,

(ii) gn(Bn) ⊂ A ,

(iii) A0 = B0 = ∅ ,
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(iv) An+1 = {ai : i ≤ n} ∪ An ∪ gn(Bn) ,

(v) Bn+1 = {bi : i ≤ n} ∪ Bn ∪ fn+1(An+1) ,

(vi) for all c ∈ An , d(c, gn ◦ fn(c)) ≤ 2−n ,

(vii) for all c ∈ Bn , d(c, fn+1 ◦ gn(c)) ≤ 2−n .

We start with f0 = idM . Then assume An , Bn and fn have been defined and consider
tg(f−1

n (Bn)/An) . Since A is approximately F M
ω -saturated there are B∗

n, A′
n ⊂ A such

that d(a, a′) ≤ 2−(n+1) for corresponding a ∈ A , a′ ∈ A′ and

tg(B∗
n/A′

n) = tg(f−1
n (Bn)/A′

n).

We let g′ witness this, i.e. g′ ∈ Aut(A′
n) and g′(f−1

n (Bn)) = B∗
n . Then we let gn = g′◦f−1

n ,
which is an automorphism of M mapping Bn to B∗

n . We construct fn+1 from gn in a
similar fashion by considering the type tg(g−1

n (An+1)/Bn) .

To see that (vi) holds let c ∈ An . Then there is c′ ∈ A′
n with d(c′, c) ≤ 2−(n+1) and

since tg(gn ◦ fn(c)/A′
n) = tg(g′(c)/A′

n) = tg(c/A′
n) we obtain

d(c, gn ◦ fn(c)) ≤ d(c, c′) + d(c′, gn ◦ fn(c)) = 2d(c, c′) = 2−n.

(vii) is obtained similarly.

Next we note that for c ∈ An ,

d(fn+1(c), fn(c)) ≤ d(fn+1(c), fn+1 ◦ gn ◦ fn(c)) + d(fn+1 ◦ gn ◦ fn(c), fn(c))

≤ d(c, gn ◦ fn(c)) + 2−n

≤ 2−n + 2−n

= 2−n+1.

Hence the sequence of mappings fn � An converges pointwisely to a mapping f ′ :⋃
n<ω An → B and since all fn are automorphisms, by the perturbation property f ′ is

type preserving and hence extends to an automorphism f of M , which maps
⋃

n<ω An

into B (since B is complete and f(
⋃

n<ω An) ⊂ B ). Similarly we find an automorphism
g mapping B =

⋃
n<ω Bn into A .

For n < m < ω ,

d(an, g ◦ f(an)) ≤ d(an, g ◦ fm(an)) + d(fm(an), f(an))

≤ d(an, gm ◦ fm(an)) + d(gm ◦ fm(an), g ◦ fm(an)) + 2−m+2

≤ 2−m + 2−m+2 + 2−m+2

< 2−m+4.

By letting m → ∞ we see that g ◦ f is the identity on
⋃

n<ω An and hence on
⋃

n<ω An .
Similarly f ◦ g is the identity on B . Hence

⋃
n<ω An is isomorphic to B and is the

required A .

Corollary 3.11. Complete approximately F M
ω -saturated sets are models.

Proof. Using Theorem 3.10 as a starting point it is easy to prove by induction on λ that
if B is complete and approximately F M

ω -saturated, then for any set A ⊆ B of density
λ there exists a model A of density λ satisfying A ⊆ A ⊆ B . Then the claim follows
considering A = B .
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4 Splitting and independence

We define splitting with respect to the Galois-types from Definition 2.11.

Definition 4.1. Let A ⊂ B and a ∈ M . We say that tg(a/B) splits over A if there are
b, c ∈ B such that

tg(b/A) = tg(c/A)

but
tg(b/A ∪ a) 6= tg(c/A ∪ a).

Further we define strong splitting based on the previous definition.

Definition 4.2. A type tg(a/B) is said to split strongly over A ⊂ B if there are b, c ∈ B

and an infinite sequence I , indiscernible over A , with b, c ∈ I such that tg(b/A ∪ a) 6=
tg(c/A∪ a) . Here indiscernible is with respect to Galois-types, i.e. (ai)i∈J is indiscernible
over C if for any order-preserving finite partial mapping f : J → J there is F ∈ Aut(M/C)

such that F (ai) = af(i) for all i ∈ dom(f) .

Definition 4.3. We denote by κ(K) the least cardinal such that there are no a , bi and
ci for i < κ(K) such that tg(a/

⋃
j≤i(bj ∪ cj)) splits strongly over

⋃
j<i(bj ∪ cj) for each

i < κ(K) .

Again a metric version of splitting will prove itself useful.

Definition 4.4 (ε-splitting). For ε > 0 , a ∈ M and A ⊂ B we say that tg(a/B) ε-

splits over A if there are b, c ∈ B and f ∈ Aut(M/A) such that f(c) = b but d(tg(a/A∪
b), tg(f(a)/A ∪ b)) ≥ ε .

Lemma 4.5. If K is ω -d-stable then for all a and B and every ε > 0 there is a finite

A ⊂ B such that tg(a/B) does not ε-split over A.

Proof. Assume towards a contradiction that tg(a/B) ε-splits over every finite A ⊂ B .
Choose for i < ω , Ai , bi , ci and fi such that

(i) A0 = ∅ , Ai ⊂ Ai+1 and Ai is finite,

(ii) tg(bi/Ai) = tg(ci/Ai) , bi, ci ∈ Ai+1 ,

(iii) fi ∈ Aut(M/Ai) , fi(ci) = bi ,

(iv) d(tg(a/Ai ∪ bi), tg(fi(a)/Ai ∪ bi)) ≥ ε .

Next for every η ∈ ω2 define automorphisms Fη�n , n < ω as follows:

(i) Fη�0 = id,

(ii) Fη�n+1 =

{
Fη�n if η(n) = 0

Fη�n ◦ fn if η(n) = 1.

Then Fη�n � An ⊆ Fη�n+1 � An+1 and
⋃

n<ω Fη�n � An is a type-preserving mapping and
can be extended to an automorphism Fη . Now note that for all η ∈ ω2 and all n < ω ,
tg(Fη(a)/Fη�n(An)) = tg(Fη�n(a)/Fη�n(An)) since Fη�n◦F−1

η is an automorphism mapping
Fη(a) to Fη�n(a) and fixing Fη�n(An) pointwise.
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Let D =
⋃
{Fχ(Alength(χ)) : χ ∈ <ω2} . Then |D| ≤ ℵ0 . Let η 6= ν ∈ ω2 and

n = min{n : η(n) 6= ν(n)} . Without loss of generality we may assume η(n) = 0 . Now

D ⊃ Fν�n+1(An∪cn) = Fν�n◦fn(An∪cn) = Fν�n(An∪bn) = Fη�n(An∪bn) = Fη�n+1(An∪bn)

so

d(tg(Fη(a)/D), tg(Fν(a)/D))

≥ d(tg(Fη(a)/Fη�n+1(An ∪ bn)), tg(Fν(a)/Fν�n+1(An ∪ cn)))

= d(tg(Fη�n+1(a)/Fη�n+1(An ∪ bn)), tg(Fν�n+1(a)/Fν�n+1(An ∪ cn)))

= d(tg(Fη�n(a)/Fη�n(An ∪ bn)), tg(Fη�n ◦ fn(a)/Fη�n(An ∪ bn)))

= d(tg(a/An ∪ bn), tg(fn(a)/An ∪ bn))

≥ ε,

which contradicts the assumption of ω -d-stability.

Theorem 4.6. If K is ω -d-stable then for all a and B there is a countable A ⊂ B such

that tg(a/B) does not split over A.

Proof. For each n < ω , by Lemma 4.5 choose An such that

(i) tg(a/B) does not 1
n+1 -split over An ,

(ii) An ⊂ An+1 ,

(iii) An is finite.

We claim that A =
⋃

n<ω An is as wanted. If tg(a/B) splits over A there are b, c ∈
B such that tg(b/A) = tg(c/A) but tg(b/A ∪ a) 6= tg(c/A ∪ a) . Let f ∈ Aut(M/A) ,
f(c) = b . Now we cannot have tg(a/A ∪ b) = tg(f(a)/A ∪ b) since then there would exist
g ∈ Aut(M/A ∪ b) mapping f(a) to a . But then g ◦ f ∈ Aut(M/A) , (g ◦ f)(c) = b

and (g ◦ f)(a) = a , so tg(b/A ∪ a) = tg(c/A ∪ a) , a contradiction. Hence d(tg(a/A ∪
b), tg(f(a)/A ∪ b)) > 0 so there is a positive ε such that tg(a/B) ε-splits over A and
hence over every An , a contradiction for n > 1

ε .

Corollary 4.7. If K is ω -d-stable then there is no increasing sequence (Ai)i<ℵ1 and

b ∈ M such that tg(b/Ai+1) splits over Ai for every i < ℵ1 .

Proof. If there were such a sequence then B =
⋃

i<ℵ1
Ai and b would contradict Theorem

4.6 since every countable A ⊆ B is contained in some Ai .

Corollary 4.8. If K is ω -d-stable then κ(K) ≤ ℵ1 .

Proof. Immediate since strong splitting implies splitting.

We define independence as in [HS00].

Definition 4.9. (i) We write a ↓A B and say that a is independent from B over A

if there is C ⊆ A of cardinality < κ(K) such that for all D ⊇ A ∪ B there is b

satisfying

tg(b/A ∪ B) = tg(a/A ∪ B) and tg(b/D) does not split strongly over C.

We write C ↓A B if for all a ∈ C , a ↓A B .

12



(ii) We say that tg(a/A) is bounded if |{b : tg(b/A) = tg(a/A)}| < |M| , otherwise we
call tg(a/A) unbounded.

In section 6 we will gain access to results from homogeneous model theory which will
show that this definition makes sense. However before that we will introduce another
notion resembling independence and with its aid study the stability spectrum of ω -d-
stable models.

Definition 4.10. (i) We write a ↓ε
A B if there is a finite C ⊆ A such that tg(a/A∪B)

does not ε-split over C .

(ii) We write a ↓0
A B and say that a is 0-independent from B over A if for all ε > 0 ,

a ↓ε
A B .

Lemma 4.11. If K is ω -d-stable then for all a and B there is a countable A ⊆ B such

that a ↓0
A B .

Proof. This we get from the proof of Theorem 4.6. For a given a and B , the A given by
the theorem is as required. Namely for each ε > 0 , any An with n > 1

ε is finite, contained
in A and such that tg(a/B) does not 1

n -split and hence not ε-split over An .

Lemma 4.12. For all a, b and B , if A ⊆ A ⊆ B , tg(a/A ) = tg(b/A ), a ↓0
A B , b ↓0

A B

and A realizes all types over finite subsets of A realized in B , then tg(a/B) = tg(b/B).

Proof. Fix a , b , A , A and B as in the claim. If tg(a/B) 6= tg(b/B) , then by homogeneity
there is some (finite) c ∈ B such that tg(a/c) 6= tg(b/c) . Then d(tg(a/c), tg(b/c)) > 0 . So
it is enough to prove that for each ε > 0 , and each c ∈ B , d(tg(a/c), tg(b/c)) ≤ ε .

Fix ε > 0 and c ∈ B . By the assumption, choose a finite A′ ⊂ A such that neither
tg(a/B) nor tg(b/B) ε

2 -splits over A′ . Then choose c′ ∈ A and f ∈ Aut(M/A′) such
that f(c) = c′ . Now note that

d(tg(a/c), tg(b/c)) = d(tg(f(a)/c′), tg(f(b)/c′)).

and by non- ε
2 -splitting, d(tg(a/c′), tg(f(a)/c′)) ≤ ε

2 and d(tg(b/c′), tg(f(b)/c′)) ≤ ε
2 . So

finally

d(tg(a/c), tg(b/c))

= d(tg(f(a)/c′), tg(f(b)/c′))

≤ d(tg(f(a)/c′), tg(a/c′)) + d(tg(a/c′), tg(b/c′)) + d(tg(b/c′), tg(f(b)/c′))

≤
ε

2
+ 0 +

ε

2
= ε.

Theorem 4.13. If K is ω -d-stable then it is λ-stable (and especially λ-d-stable) for

every λ = λℵ0 .

Proof. Let |B| ≤ λ . By ω -d-stability and the assumption λ = λℵ0 we may assume B is
FM

ω -saturated. Now fix ai ∈ M for i < λ+ . For each i < λ+ choose by Lemma 4.11 a
countable Ai ⊂ B such that ai ↓

0
Ai

B . Since there are only λℵ0 = λ countable subsets
of B , λ+ many of the sets Ai are the same and we denote this set by A . Next by a
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construction similar to that in Lemma 3.9 (and considerations similar to those in the proof
of Theorem 3.7) construct a separable model A ⊃ A realizing all types over finite subsets
of A realized in B (here we use the F M

ω -saturation of B to find realizations of the types
and not just something arbitrarily close). Since K is ω -d-stable, there are only separably
many types over A and hence card(S(A )) ≤ 2ℵ0 ≤ λ . So λ+ many tuples ai have the
same type over A and hence by Lemma 4.12 have the same type over B .

Finally we show that if K is ω -d-stable, ↓0 satisfies extension over F M

ℵ1
saturated

models. In section 6, when we acquire tools for ↓ , we will see that our two independence
notions coincide over F M

ℵ1
-saturated models (see theorem 6.4).

Lemma 4.14. Assume Bn , bn , for n < ω , are such that

(i) Bn ⊆ Bn+1 ,

(ii) tg(bn+1/Bn) = tg(bn/Bn).

Then there is b such that for all n < ω tg(b/Bn) = tg(bn/Bn).

Proof. We define automorphisms Fn , fn such that

(i) F0 = f0 = id, Fn+1 = fn+1 ◦ Fn ,

(ii) fn+1 � Fn(Bn) = id,

(iii) Fn+1(bn+1) = b0 .

Assume Fi and fi have been defined for i ≤ n . By the assumption let g ∈ Aut(M/Bn)

such that g(bn+1) = bn . Let fn+1 = Fn ◦ g ◦ F−1
n . Then fn+1 � Fn(Bn) = id and

Fn+1(bn+1) = fn+1(Fn(bn+1)) = Fn ◦ g ◦ F−1
n ◦ Fn(bn+1) = Fn ◦ g(bn+1) = Fn(bn) = b0,

the last step by the induction hypothesis.

By (ii) if m ≤ n then Fm � Bm = Fn � Bm so by the homogeneity of M we can
extend

⋃
n<ω Fn � Bn to an automorphism F . Let b = F−1(b0) . Then for all n < ω ,

(F−1
n ◦ F ) � Bn = (F−1

n ◦ Fn) � Bn = id � Bn and (F−1
n ◦ F )(b) = F−1

n (b0) = bn , so
tg(b/Bn) = tg(bn/Bn) for all n < ω .

Theorem 4.15. Assume K is ω -d-stable. Then ↓0 satisfies extension over F M

ℵ1
-saturated

models, i.e. if a ↓0
A B , where A ⊆ B and B is F M

ℵ1
-saturated, then for all D ⊇ B there

is some b satisfying tg(b/B) = tg(a/B) and b ↓0
A D .

Proof. Assume K is ω -d-stable, a ↓0
A B , A ⊆ B and B is F M

ℵ1
saturated. By the

assumption, for each n < ω , there is a finite An ⊆ A such that tg(a/B) does not 1
n+1 -

split over An . Let A′ =
⋃

n<ω An and note that then tg(a/B) does not split over A′ .

Now let D ⊇ B be given. We wish to find some b satisfying tg(b/B) = tg(a/B) and
b ↓0

A D .

For each C ⊆ D we will define bC such that

(i) tg(bC/A′) = tg(a/A′) ,

(ii) C1 ⊆ C2 implies tg(bC2/A
′ ∪ C1) = tg(bC1/A

′ ∪ C1) .
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We do this by induction on card(C) so first assume C is finite. By the F M

ℵ1
-saturation of B

choose C ′ ∈ B and fC ∈ Aut(M/A′) such that fC(C ′) = C . Then let bC = fC(a) which
clearly satisfies (i). For (ii) note that if C1 ⊆ C2 and tg(bC2/A

′ ∪ C1) 6= tg(bC1/A
′ ∪ C1)

then f−1
C1

(C1), f
−1
C2

(C1) ∈ B and the sets have the same type over A′ but

tg(f−1
C1

(C1) ∪ a/A′) = tg(C1 ∪ bC1/A
′) 6= tg(C1 ∪ bC2/A

′) = tg(f−1
C2

(C1) ∪ a/A′)

so tg(a/B) splits over A′ , a contradiction.
Next let C ⊆ D be infinite and assume we have defined bC′ for all C ′ ⊂ D of strictly

smaller cardinality. We can write C as
⋃

i<α Ci where card(Ci) < card(C) and Ci ⊆ Cj

for each i ≤ j < α . By the induction hypothesis tg(bCj
/A′ ∪ Ci) = tg(bCi

/A′ ∪ Ci) for all
i ≤ j < α so by Lemma 4.14 there is a bC such that tg(bC/A′∪Ci) = tg(bCi

/A′∪Ci) for all
i < α . Then (i) clearly holds but we still need to show that tg(bC/A′ ∪C) is independent
of the choice of the sequence (Ci)i<α . So let (C ′

j)j<β be another increasing sequence of
sets of cardinality strictly smaller than card(C) and let b′C realize the type defined using
the sequence (C ′

j)j<β . Now for each finite C∗ ⊂ C there are i < α and j < β such that
C∗ ⊂ Ci ∩ C ′

j . By the construction of bC and b′C we have

tg(bC/A′ ∪ C∗) = tg(bCi
/A′ ∪ C∗) and tg(b′C/A′ ∪ C∗) = tg(bC′

j
/A′ ∪ C∗)

and by the induction hypothesis

tg(bCi
/A′ ∪ C∗) = tg(bC∗/A′ ∪ C∗) = tg(bC′

j
/A′ ∪ C∗)

So we have tg(bC/A′∪C∗) = tg(b′C/A′∪C∗) for every finite C∗ ⊂ C , hence by homogeneity
tg(bC/A′ ∪ C) = tg(b′C/A′ ∪ C) .

Denote b = bD . Next we show that tg(b/D) does not 1
n+1 -split over An , which will

prove b ↓0
A D . For this let n < ω and note that if c, d ∈ D and f ∈ Aut(M/An) such

that f(d) = c and

d(tg(b/An ∪ c), tg(f(b)/An ∪ c)) ≥
1

n + 1

then there are c′, d′ ∈ B and fcd ∈ Aut(M/A′) such that fcd(c
′d′) = cd . Furthermore since

tg(b/A′cd) = tg(bcd/A
′cd) (recall b = bD and bcd = fcd(a)), there is f ′ ∈ Aut(M/A′cd) ,

f ′(bcd) = b . Denote g = f ′ ◦ fcd . Now g−1 ◦ f ◦ g ∈ Aut(M/An) , g−1 ◦ f ◦ g(d′) = c′ and

d(tg(a/Anc′), tg(g−1 ◦ f ◦ g(a)/Anc′)) = d(tg(g(a)/Ang(c′)), tg(f ◦ g(a)/Ang(c′)))

= d(tg(b/Anc), tg(f(b)/Anc))

≥ 1
n+1 ,

contradicting the assumption that tg(a/B) does not 1
n+1 split over An . Hence we have in

fact proven that b ↓0
A′ D which implies that tg(b/D) does not split over A′ .

Finally we show that tg(b/B) = tg(a/B) . By homogeneity it is enough to show
that tg(b/C) = tg(a/C) for every finite C ⊂ B , so fix some finite C ′ ⊂ B and let
fC ∈ Aut(M/A′) and C ⊂ D be such that fC(C ′) = C and fC(a) = bC . Now since
tg(b/D) does not split over A′ , neither does tg(bC∪C′/A′ ∪ C ∪ C ′) . Hence there is g ∈
Aut(M/A′ ∪ bC∪C′) such that g � C ′ = fC � C ′ . Also there is h ∈ Aut(M/A′ ∪ C) such
that h(bC) = bC∪C′ and similarly h′ ∈ Aut(M/A′ ∪ C ′) such that h′(bC′) = bC∪C′ . But
then f−1

C ◦ h−1 ◦ g ◦ h′ ∈ Aut(M/A′ ∪ C ′) and

f−1
C ◦ h−1 ◦ g ◦ h′(bC′) = f−1

C ◦ h−1 ◦ g(bC∪C′)

= f−1
C ◦ h−1(bC∪C′)

= f−1
C (bC)

= a.
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Hence
tg(b/A′ ∪ C ′) = tg(bC′/A′ ∪ C ′) = tg(a/A′ ∪ C ′)

and since C ′ was arbitrary
tg(b/B) = tg(a/B).

5 Skolem functions and Ehrenfeucht-Mostowski models

In [She87] Shelah shows that abstract elementary classes are so called PC-classes by intro-
ducing a sort of Skolem functions. A similar construction can be done for metric abstract
elementary classes with the difference that our Löwenheim-Skolem axiom does not allow
us to list all the elements of a model but only a dense subset of it with Skolem functions.
Thus we obtain the following:

Fact 5.1. Let (K,4) be a metric abstract elementary class of τ -structures with |τ | +

LSd(K) ≤ ℵ0 . Then for each A ∈ K we can define an expansion A ∗ with Skolem

functions F k
n for k, n < ω such that

(i) if A ⊆ A ∗ and A is closed under the functions F k
n then A � τ ∈ K and A � τ 4 A ,

(ii) for all a ∈ A Aa = {(F
length(a)
n )A

∗
(a) : n < ω} is such that

(a) Aa � τ ∈ K and Aa � τ 4 A ,

(b) if b ⊆ a (as sets) then b ∈ Ab ⊆ Aa .

Notation 5.2. For A ⊆ A ∗ , SH(A) will denote the closure of A under the Skolem
functions.

Now we will use the Skolem functions to build Ehrenfeucht-Mostowski models. M∗

will denote the model we get by introducing Skolem functions into the monster model M

and τ∗ will denote the extension of the signature τ of K .

Definition 5.3 (∗-type). For (ai)i<α, (bi)i<α, A ⊂ A ∗ we write

t∗((ai)i<α/A) = t∗((bi)i<α/A)

if for all atomic formulas ϕ of signature τ ∗ with parameters from A and all n < ω ,
i0, . . . , in−1 < α

A
∗ |= ϕ(ai0 , . . . , ain−1) if and only if A

∗ |= ϕ(bi0 , . . . , bin−1).

Lemma 5.4. If t∗(a/A) = t∗(b/A) then tg(a/A) = tg(b/A).

Proof. Assume t∗(a/A) = t∗(b/A) . Then a ∪ A and b ∪ A have isomorphic Skolem hulls,
the closures of which are 4-submodels of M . By the homogeneity of M there hence is an
automorphism of M mapping the first of these models onto the second and hence mapping
a to b and fixing A pointwise.
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Definition 5.5. Let (I,<) be a linear ordering. We call (ai)i∈I a ∗-n-order-indiscernible

sequence over A if for i0 < · · · < in−1 ∈ I , j0 < · · · < jn−1 ∈ I

t∗(〈ai0 , . . . ain−1〉/A) = t∗(〈aj0 , . . . ajn−1〉/A).

(ai)i∈I is ∗-order-indiscernible over A if it is ∗-n-order-indiscernible over A for all n < ω .
If A = ∅ we omit it.

By an application of the Erdős-Rado theorem we obtain:

Fact 5.6. Assume τ ∗ is as above and countable, and A ⊂ M is countable. If I = (ai)i<i
c+

then there are infinite In ⊂ I for all n < ω such that each In is ∗-n-order-indiscernible

over A and for m ≥ n, for ai0 , . . . ain−1 ∈ Im , bj0 , . . . bjn−1 ∈ In with i0 < i1 < · · · < in−1 ,

j0 < j1 < · · · < jn−1

t∗(〈ai0 , . . . , ain−1〉/A) = t∗(〈bj0 , . . . , bjn−1〉/A).

Theorem 5.7. Let τ be countable. For every linear order (I,<) there is a model EM(I) ∈
K of density card(I) +ℵ0 , and if I is a well-order, it realizes only a separable set of types

over a countable parameter set.

Proof. Fix a model A ∗ as in 5.1, for A ∈ K , containing sequences In (n < ω ) as in the
previous lemma such that each In is ∗-n-order-indiscernible (over ∅). Consider the set

D = {t(x0, . . . , xn−1) : t a τ∗-term, x0, . . . , xn−1 ∈ I, n < ω}.

Here we consider the notation t(x0, . . . , xn−1) to mean that the variables of t are among
x0, . . . , xn−1 and hence that

{t(x0, . . . , xn−1) : t a τ∗-term}
= {t(y0, . . . , ym−1) : t a τ∗-term and 〈y0, . . . , ym−1〉 a subsequence of 〈x0, . . . , xn−1〉}.

We then let dom(EM(I)) = D/∼ where

t1(x0, . . . , xm−1) ∼ t2(y0, . . . yn−1)

if
(t1(ai0 , . . . , aim−1))

A ∗

= (t2(aj0 , . . . , ajn−1))
A ∗

where 〈i0, . . . , im−1, j0, . . . , jn−1〉 has the same order as 〈x0, . . . , xm−1, y0, . . . , yn−1〉 and
ai0 , . . . , aim−1 , aj0 , . . . , ajn−1 ∈ Ik for some k ≥ m+n . By indiscernibility, the exact choice
of elements does not matter, and the ∗-type of the elements determine the τ -structure of
D/∼ .

We show by induction on card(I) that EM(I) ∈ K . For J a suborder of I we denote

AJ = {t(y0, . . . , ym−1) : t a τ∗-term and y0, . . . , ym−1 ∈ J}/∼.

We then note that for each finite sequence J = 〈x0, . . . , xn−1〉 and for every correspondingly
ordered a ∈ (In′)n with n′ ≥ n , AJ is isomorphic to

A(a) = {(t(a))A ∗

: t a τ∗-term}

which is contained in A ∗ and closed under the functions (F k
n )A

∗
, k, n < ω . So by 5.1

A(a) � τ 4 A and hence we can use A(a) to define the τ ∗ -structure on AJ such that
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AJ � τ ∈ K . If for J ⊆ J ′ we identify equivalence classes t1 ∈ AJ and t2 ∈ AJ ′ whenever
t1 ⊆ t2 , we get

AJ ⊆ AJ ′ whenever J ⊆ J ′.

By the universality of M we may assume AJ � τ 4 M and hence for all finite subsequences
J ⊂ J ′ of I we have

AJ � τ 4 AJ ′ � τ.

Next let card(I) = κ ≥ ℵ0 and use as induction hypothesis the property that for all
suborders J, J ′ ⊂ I of smaller cardinality

AJ � τ ∈ K

and if J ⊆ J ′

AJ � τ 4 AJ ′ � τ.

Write I as an increasing union of suborders Ji , i < κ of smaller cardinality and note that

AI = D/∼ =
⋃

i<κ

AJi
.

So EM(I) is defined as the closure of the union of an increasing chain:

EM(I) =
⋃

i<κ

AJi
=
⋃

i<κ

AJi
� τ .

Now if I is well-ordered and A is a countable subset of EM(I) , choose a subset J ⊂ I

such that each element of A is a limit of elements of the form t(b0, . . . , bn−1) , where t is
a τ∗ -term and b0, . . . , bn−1 ∈ J . J can be chosen so that card(J) ≤ card(A) + ℵ0 = ℵ0 .
Let t be a τ ∗ -term and c a tuple from I . The Galois-type of t(c) over A is determined
already by its Galois-type over the set of elements t(b0, . . . , bn−1) . Further this type is
determined by the ∗-type of t(c) over these elements and hence by the ∗-type of t(c) over
J . By indiscernibility, the ∗-type of t(c) is determined by the positions of the elements
of c relative to the elements of J , and since J is well-ordered there are only card(J) +ℵ0

different positions. Hence there are at most card(J) + τ = ℵ0 different ∗-types over J

among the terms t(c) , and hence at most ℵ0 Galois-types of elements of the form t(c)

over A . So the set of realized Galois-types over A is separable.

Corollary 5.8. If K is κ-categorical for some uncountable κ then K is ω -d-stable.

Proof. Assume towards a contradiction that K is not ω -d-stable. Then there is A ∈ K

and a separable set A ⊂ A such that A realizes a nonseparable set of types over A .
Without loss of generality |A | = ℵ1 , so A can be extended to a model M of size κ .

On the other hand we can build an Ehrenfeucht-Mostowski model EM(κ) of density κ .
By categoricity EM(κ) ∼= M but EM(κ) realizes only a separable set of types over any
countable parameter set whereas M realizes a non-separable set of types over A ⊂ M , a
contradiction.

Note that by Theorem 4.13 this implies that if K is κ-categorical in some uncountable
κ , then it is stable in every λ = λℵ0 . Especially K is c-stable.

18



6 Homogeneous model theory

In this section we introduce predicates Rp for the types in order to get a first order setting
and be able to use results of homogeneous model theory from [HS00].

Definition 6.1. We denote by τh the extension of the signature τ where we have added
a predicate Rp for each Galois-type p over the empty set. We expand M to Mh by
interpreting the predicates Rp in the obvious way, i.e. for each a ∈ M

M
h |= Rp(a) if and only if tg(a/∅) = p.

Note that by homogeneity, two elements have the same Galois-type over a set A if and
only if they have the same quantifier-free τ h -type over A . It follows that two elements
have the same Galois-type over a given set if and only if they have the same FO(τ h)-type
over that set and that Mh is homogeneous.

We wish to use results in homogeneous model theory from [HS00]. The setting there is a
stable homogeneous monster model together with its (small enough) elementary submodels.
So we will assume that K is ω -d-stable and hence by Theorem 4.13 c-stable and show
that the F M

ω -saturated 4-submodels of M and the 4ωω -submodels of Mh are the same.

Lemma 6.2. If K is ω -d-stable then for every metrically complete A,

A 4ωω M
h if and only if A � τ 4 M and A is F M

ω -saturated.

Proof. To see that the F M
ω -saturated 4-submodels of M are elementary submodels of

Mh , let A 4 M , a ∈ A and b ∈ Mh . Then by F M
ω -saturation there is b′ ∈ A such that

tg(ab′/∅) = tg(ab/∅) which takes care of the Tarski-Vaught criterion.

For the other direction note that for any a ∈ A , b ∈ Mh and Rp ∈ τh , there is b′ ∈ A

such that
M

h |= Rp(ab) if and only if M
h |= Rp(ab′).

But this means that b and b′ have the same Galois-type over a . So A is F M
ω -saturated

and hence by Corollary 3.11, A 4 M .

Hence, as long as we assume a stable monster and consider only F M
ω -saturated models,

the results from [HS00] apply. This way we can use the independence calculus tools de-
veloped in [HS00] and hence know that over strongly F M

κ(K) -saturated models transitivity,
stationarity, finite character and symmetry for ↓ hold.

Assuming ω -d-stability we also see that the independence notions ↓ and ↓0 coincide:

Lemma 6.3. Assume K is ω -d-stable. If A is F M

ℵ1
-saturated then it is strongly F M

ℵ1
-

saturated.

Proof. Fix a and A ⊂ A such that |A| < ℵ1 . We wish to realize the strong type of
a over A in A . By Theorem 4.6 pick a separable A0 ⊂ A such that A0 ⊇ A and
tg(a/A ) does not split over A0 . By induction on i < ω and the F M

ℵ1
-saturation of A let

ai ∈ A realize tg(a/A0 ∪
⋃
{aj : j < i}) . Then (ai)i<ω

a〈a〉 is indiscernible over A0 , so
Lstp(ai/A0) = Lstp(a/A0) and hence Lstp(ai/A) = Lstp(a/A) .

Theorem 6.4. If K is ω -d-stable, A ⊆ B and A is F M

ℵ1
-saturated, then for any a,

a ↓0
A

B if and only if a ↓A B .
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Proof. First assume a ↓A B . By lemma 4.11 a ↓0
A

A . Let B ⊃ B be F M

ℵ1
saturated

and use theorem 4.15 to find some b realizing tg(a/A ) and satisfying b ↓0
A

B . Then
since tg(b/B) does not split strongly over A , by [HS00, Lemma 3.2(iii)] b ↓A B and
by monotonicity b ↓A B . Then by stationarity ([HS00, Lemma 3.4]) tg(b/B) = tg(a/B)

which proves a ↓0
A

B .

For the other direction assume a ↓0
A

B . Again by [HS00, Lemma 3.2(iii)], a ↓A A .
Since ↓ has built in extensions this implies the existence of some b realizing tg(a/A ) and
satisfying b ↓A B . Then by the previous direction b ↓0

A
B so by stationarity (lemma 4.12)

we are done.

7 Prime models

Definition 7.1. A type tg(a/A) is F M
κ -isolated if there is B ⊆ A of cardinality < κ such

that for all b , tg(b/B) = tg(a/B) implies tg(b/A) = tg(a/A) . In this case we say that
tg(a/B) F M

κ -isolates tg(a/A) .

Definition 7.2. (i) An F M
κ -construction is a triple 〈A, (ai)i<α, (Bi)i<α〉 such that

Bi ⊂ A ∪
⋃
{aj : j < i} and tg(ai/Bi) F M

κ -isolates tg(ai/A ∪
⋃
{aj : j < i}) .

(ii) A set C is called F M
κ -constructible over A if there exists an F M

κ -construction
〈A, (ai)i<α, (Bi)i<α〉 such that C = A ∪

⋃
{ai : i < α} .

(iii) We say that C is F M
κ -primary over A if it is F M

κ -constructible over A and F M
κ -

saturated.

(iv) A model C is F M
κ -prime over A if it is F M

κ -saturated, A ⊆ C and for every F M
κ -

saturated C ′ ⊇ A there is a K-embedding f : C → C ′ such that f � A = id.

(v) A set C is F M
κ -atomic over A if A ⊆ C and for every a ∈ C , tg(a/A) is F M

κ -
isolated.

Once again, we will define a metric version of a standard notion, this time of isolation.

Definition 7.3. For A ⊆ B and a , we say that tg(a/A) ε-isolates tg(a/B) if for all
C such that A ⊆ C ⊆ B and C\A is finite and for all b , tg(a/A) = tg(b/A) implies
d(tg(a/C), tg(b/C)) < ε .

Lemma 7.4. If K is ω -d-stable then for all ε > 0, a, C and finite A ⊆ C , there are B

and b such that A ⊆ B ⊆ C , B\A is finite, tg(b/A) = tg(a/A) and tg(b/B) ε-isolates

tg(b/C).

Proof. Assume towards a contradiction that this does not hold. Define An for n < ω and
aη for η ∈ <ω2 as follows:

(i) A0 = A , An ⊆ An+1 , An+1\An is finite,

(ii) a∅ = a and if length(η) ≥ n then tg(aη/An) = tg(aη�n/An) ,

(iii) d(tg(aηa〈0〉/Alength(η)+1), t
g(aηa〈1〉/Alength(η)+1)) ≥ ε .
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If An , aη have been defined, η ∈ n2 , then since tg(aη/An) by our assumption does not
ε-isolate tg(aη/C) there are a′η and a finite A′

η such that tg(a′η/An) = tg(aη/An) but
d(tg(a′η/An ∪ A′

η), t
g(aη/An ∪ A′

η)) ≥ ε . Let aηa〈0〉 = aη , aηa〈1〉 = a′η and once aη has
been defined for all η ∈ n+12 let An+1 = An ∪

⋃
{A′

η : η ∈ n2} . Since n2 is finite and each
A′

η is finite, An+1\An is finite.

Next note that for each η ∈ ω2 and each n < ω , tg(aη�n/An) = tg(aη�n+1/An) so
by Lemma 4.14 for each η ∈ ω2 , there is aη such that tg(aη/An) = tg(aη�n/An) . Let
A∗ =

⋃
n<ω An . Then A∗ is at most countable but for η 6= ν ∈ ω2 when n = min{n :

η(n) 6= ν(n)}

d(tg(aη/A
∗), tg(aν/A

∗)) ≥ d(tg(aη/An+1), t
g(aν/An+1))

= d(tg(aη�n+1/An+1), t
g(aν�n+1/An+1))

= d(tg(aη�na〈0〉/An+1), t
g(aη�na〈1〉/An+1))

≥ ε.

This contradicts ω -d-stability.

Lemma 7.5. Assume K is ω -d-stable and A is countable. Then for all a and B ⊇ A

there is b such that tg(b/A) = tg(a/A) and tg(b/B) is F M

ℵ1
-isolated.

Proof. Define An ⊆ B and an for n < ω such that

(i) A0 = A , a0 = a , An ⊆ An+1 and An is countable,

(ii) tg(an+1/An) = tg(an/An) ,

(iii) for n > 0 , tg(an/An) 1
n -isolates tg(an/B) .

This is possible by the previous lemma. Let A∗ =
⋃

n<ω An and by Lemma 4.14 let b be
such that tg(b/An) = tg(an/An) for all n < ω . Then A∗ is countable, tg(b/A) = tg(a/A)

and tg(b/A∗) F M

ℵ1
-isolates tg(b/B) : If not let c be such that tg(c/A∗) = tg(b/A∗) but

tg(c/B) 6= tg(b/B) . Then there is a finite A′ ⊆ B such that tg(c/A′) 6= tg(b/A′) and
hence d(tg(b/A′), tg(c/A′)) > 0 , contradicting 1

n -isolation for n large enough.

Using the previous lemma we can proceed essentially as in [She90, Theorem IV.3.1]
and obtain:

Fact 7.6. Assume K is ω -d-stable. Then for all A there is an F M

ℵ1
-primary model over

A.

Further by considering type-preserving mappings instead of elementary mappings in
[She90, Theorem IV.3.10] we obtain:

Fact 7.7. If A is F M
κ -constructible over A and B ⊃ A is a model realizing all F M

κ -

isolated types over subsets of cardinality < κ, then there is a K-embedding f : A → B

such that f � A = id.

Corollary 7.8. If A is F M
κ -primary over A then it is F M

κ -prime over A.

By a proof similar to that of [She90, Theorem IV.3.2] we obtain:

Fact 7.9. If A is F M

ℵ1
-primary over A then A is F M

ℵ1
-atomic over A.
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Definition 7.10. We say that A dominates B over C , denoted A BC B , if for all a ,
a ↓C A implies a ↓C B .

Lemma 7.11. If K is ω -d-stable, A is F M

ℵ1
-saturated and B is F M

ℵ1
-primary over

A ∪ B , then B BA B .

Proof. Assume this is not the case. Then there is some a such that a ↓A B but a 6↓A B .
Now by finite character of ↓ ([HS00, Corollary 3.5]) there is a finite b ∈ B such that
a 6↓A b .

Without loss of generality, we may assume B is countable, since we can restrict ourself
to the part of B needed to isolate tg(b/A ∪ B) . Now choose a countable A ⊆ A such
that

(i) tg(b/A ∪ B) F M

ℵ1
-isolates tg(b/A ∪ B) ,

(ii) for all d ∈ B , tg(d/A ∪ a) does not split strongly over A ,

(iii) tg(b/A ) does not split over A .

(i) can be achieved since b ∈ B , (ii) follows from the assumption that a ↓A B by symmetry
and finite character and (iii) we get from Theorem 4.6.

Now by 6.3 A is strongly F M

ℵ1
-saturated and we may choose a′ ∈ A with Lstp(a′/A) =

Lstp(a/A) . By (ii) tg(a′/A ∪ d) = tg(a/A ∪ d) for all d ∈ B so by homogeneity tg(a′/A ∪
B) = tg(a/A ∪B) . Fix f ∈ Aut(M/A ∪B) mapping a to a′ . By (iii) and [HS00, Lemma
3.2(iii)], b ↓A A so b ↓A a′ . However, b 6↓A a so especially b 6↓A a and f(b) 6↓A a′ ,
contradicting (i).

8 Categoricity transfer

Remark 8.1. If K is κ-categorical for some κ = κℵ0 then by 5.8 K is ω -d-stable and by
4.13 it is stable in every λ = λℵ0 . Hence it is κ-stable. Since the density and cardinality
of κ-sized models is the same, we may use [HS00, Theorem 3.14] to find a F M

κ -saturated
model of size κ so the unique model of size κ is saturated and hence every model of size
≥ κ is F M

κ -saturated.

Lemma 8.2. If K is κ-categorical for some κℵ0 = κ then there is some ξ < ic+ such

that every model of cardinality at least ξ is F M

ℵ1
-saturated.

Proof. Assume this is not the case. Then if (λi)i<c+ is an increasing cardinal sequence such
that

⋃
i<c+

λi = ic+ and λi < ic+ , we can for each i < c+ find a model Ai such that Ai

has cardinality λi and is not F M

ℵ1
-saturated. By Theorem 3.7 Ai is not F M

ℵ1
-d-saturated

so there is a countable Ai ⊂ Ai , a type pi ∈ S(Ai) and some εi > 0 such that all types
q ∈ S(Ai) realized in Ai satisfy d(pi, q) ≥ εi . We will refer to this property as omitting
pi at distance εi .

By the categoricity assumption K is ω -d-stable and hence also c-stable. Hence there
are at most c types over the empty set and since by homogeneity the type of a countable
set is determined by the types of its finite subsets, there are at most cℵ0 = c countable
types over the empty set. Hence c+ many sets Ai have the same type over the empty set
and we can denote one of these sets by A and find automorphisms fi of the monster model
mapping the other sets Ai of same type onto A . Then the corresponding models Ai are
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mapped to models fi(Ai) containing A and omitting some type over A at distance εi .
Again we use c-stability to see that there are at most c different types over A and hence
c+ many models omit the same type p and finally by the pigeonhole principle c+ many
models omit p at the same fixed distance ε . Among these models rename and enumerate
c+ many as (Ai)i<c+ , such that

(i) A ⊆ Ai and Ai omits p at distance ε ,

(ii) |Ai| ≥ iω·i .

For each Ai , add constant symbols for the elements of A and Skolem functions to obtain
expansions A ∗

i as in 5.1. Then by a modelwise version of Fact 5.6, we obtain sequences In ,
each inside some Ai , which are ∗-n-order-indiscernible over A and have the property that
for n > m , m-tuples of In and Im have the same ∗-type over A in their corresponding
models.

Now we can build an Ehrenfeucht-Mostowski model EM(κ) as in Theorem 5.7 con-
sisting of equivalence classes of τ ∗ -terms (and elements obtained in taking the completion)
with for τ ∗ -terms t1 and t2

t1(x0, . . . , xn−1) = t2(y0, . . . , ym−1)

if
(t1(ai0 , . . . , ain−1))

A ∗
i = (t2(bi0 , . . . , bim−1))

A ∗
i

where ai, bi ∈ Ik ⊂ Ai for k ≥ n + m . Since the indiscernible sequences agree on short
enough tuples, the equivalence relation is well-defined. Also if a′ and a are tuples from
different indiscernible sequences with length(a′) < length(a) then the model A(a′) defined
in the proof of 5.7 embeds into A(a) . Hence the construction of EM(κ) can be carried out
as in 5.7 and we obtain a model of size κ which because of the added constants contains
A . Further since every element in SH(κ) is the interpretation of an τ ∗ -term, interpreted
as in some Ai , all these elements realize a type at distance ≥ ε from p . Hence EM(κ)

omits p . But this contradicts the categoricity assumption since by 8.1 the unique model
of size κ must be saturated.

For our forthcoming constructions we need the classical notion of a Morley sequence.
In our settings it means the following:

Definition 8.3. Let A ⊆ B and let p ∈ S(B) . We call a sequence (ai)i<α a Morley

sequence for p over A if tg(ai/B) = p for all i < α and ai ↓A B ∪
⋃

j<i aj for all i < α .
The Morley sequence is nontrivial if ai 6∈ A for all i < α .

Remark 8.4. Note that without further requirements for the set A Morley sequences over
A do not necessarily exist. However if K is ω -d-stable and A is an F M

ℵ1
-saturated model

we can construct a Morley sequence over A since then a0 ↓A A for any a0 and we can
choose aα such that tg(aα/A ∪ {ai : i < α}) = tg(a0/A ∪ {ai : i < α} and tg(aα/D) does
not split strongly over C ⊂ A (see definition 4.9) for some F M

ℵ1
saturated D containing

A ∪ {ai : i < α} .

Furthermore by stationarity, if A is F M

ℵ1
-saturated then for a given type p ∈ S(A)

the Morley sequence over A is unique up to A-isomorphism, i.e. if I and J are Morley
sequences for p over A with length(I) = length(J) then there is f ∈ Aut(M/A) mapping
I to J .
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Theorem 8.5 (Unidimensionality). Assume K is κ-categorical for some κℵ0 = κ > ℵ1 .

For all F M

ℵ1
-saturated A and unbounded p, q ∈ S(A ), if (ai)i<ω is a nontrivial Morley

sequence for p then q has a realization in any F M

ℵ1
-primary model over A ∪ {ai : i < ω}.

Proof. Let A be F M

ℵ1
-saturated and let p and q be unbounded types over A . By 8.1 K

is ω -d-stable and c-stable so by 4.6 we can find a countable A ⊂ A such that p and q do
not split over A . By ω -d-stability we can extend A by an ℵ1 -length construction to an
FM

ℵ1
-saturated model A ′ of density ℵ1 . By 4.8 and 6.3, A ′ is strongly F M

κ(K) -saturated
so by [HS00, 3.2] we can construct a nontrivial Morley sequence I = (bi)i<κ for p over
A ′ . By Theorem 7.6 let B be an F M

ℵ1
-primary model over A ′ ∪ I . Then |B| ≥ κ so by

Remark 8.1 B is F M

ℵ2
-saturated. So B realizes q � A ′ by, say, a . Now by the construction

I ↓A ′ A , so by symmetry ([HS00, Corollary 3.5 and Lemma 3.6]) A ↓A ′ I . Further by
7.11 I BA ′ B , so A ↓A ′ B and hence B ↓A ′ A and finally a ↓A ′ A .

To see that tg(a/A ) = q , let b ∈ M realize q . By [HS00, Lemma 3.4] types over
strongly F M

ℵ1
-saturated models are stationary and by the choice of A ′ , b ↓A ′ A , so

tg(a/A ) = tg(b/A ) = q . We finally want to find a realization of q already in a primary
model over a countable Morley sequence. By 7.9, B is F M

ℵ1
-atomic over A ′ ∪ I so there

are countable A′ ⊂ A ′ and J ⊂ I such that tg(a/A′ ∪ J) isolates tg(a/A ′ ∪ I) . Hence
if B′ is F M

ℵ1
-primary over A ′ ∪ J it realizes tg(a/A ′ ∪ J) by, say, a′ and as above by

symmetry and dominance a′ ↓A ′ A and by stationarity tg(a′/A ) = q .

We claim J has the required properties. So let C be F M

ℵ1
-primary over A ∪ J . Then

since B′ by 7.8 is F M

ℵ1
-prime over A ′ ∪ J ⊂ A ∪ J , there is a K-embedding f : B ′ → C

such that f � A ′ ∪ J = id. Then f(B′) is still F M

ℵ1
-primary over A ′ ∪ J so as above

f(a′) ↓A ′ A and tg(f(a′)/A ) must be q .

Finally if J ′ = (ai)i<ω is any nontrivial Morley sequence for p then since tg(ai/A )

does not split over A , by transitivity ([HS00, Lemma 3.8(ii)]) J ′ is Morley over A ′ and
by the uniqueness of Morley sequences we see that the claim holds for J ′ .

We are now ready to glue together the pieces into our main theorem.

Theorem 8.6. Assume K is κ-categorical for some κ = κℵ0 > ℵ1 . Then there is ξ < ic+

such that K is categorical in all λ satisfying

(i) λ ≥ min{ξ, κ},

(ii) λℵ0 = λ,

(iii) for all ζ < λ, ζℵ0 < λ.

Proof. Assume λ is as in the claim. We prove that all models of density λ are saturated,
from which the claim follows. So let |A | = λ , B ⊂ A , |B| < λ and q ∈ S(B) .

By (i) and either Remark 8.1 or Lemma 8.2 A is F M

ℵ1
-saturated. By 8.1 K is ω -

d-stable and λ-stable for every λ = λℵ0 , so by (iii) we may assume that B is also
FM

ℵ1
-saturated and by 6.3 B is in fact strongly F M

ℵ1
-saturated.

First assume λ is regular. Choose Bi and bi , for i < λ such that

(i) B0 = B ,

(ii) bi ∈ A \Bi ,

(iii) Bi ⊆ A ,
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(iv) Bi+1 is F M

ℵ1
-primary over Bi ∪ bi ,

(v) |Bi| < λ ,

(vi) for limit i , Bi ⊃
⋃

j<i Bj and is (strongly) F M

ℵ1
-saturated and if cf(i) ≥ ℵ1 then

Bi =
⋃

j<i Bj .

By Theorem 4.6 for each i < λ choose Ai ⊂ Bi such that tg(bi/Bi) does not split
over Ai . Let f(i) be the least j for which Ai ⊂ Bj . Then for cf(i) ≥ ℵ1 , f(i) < i and
since the set of indices i with cofinality ≥ ℵ1 forms a stationary subset of λ , we can use
Fodor’s lemma to find a stationary set S and an i∗ < λ such that Ai ⊂ Bi∗ for all i ∈ S ,
and we may choose i∗ such that Bi∗ is F M

ℵ1
-saturated. Note that S must be of power λ .

Now there are only |Bi∗ |
ℵ0 < λ types over Bi∗ , so for λ many i ∈ S the elements bi have

the same type over Bi∗ . Since for these indices i , tg(bi/Bi) does not split over Ai ⊂ Bi∗ ,
by [HS00, Lemma 3.2] we have bi ↓Bi∗

Bi , i.e. bi ↓Bi∗
Bi∗ ∪ {bj : j < i} . Hence we have

found an infinite nontrivial Morley sequence I over Bi∗ ⊃ B and by 8.5 we are done.

For non-regular cardinals λ , saturation, and hence categoricity, is proved by induction.
So assume λ is singular and satisfies the conditions (i) to (iii). We may assume λ >

min{ξ, κ} in (i) (if λ = κ we are done and if the ξ given by Lemma 8.2 is not regular we
can replace it with ξ+ ). Let A be a model with |A | = λ and A ⊂ A a subset of density
ζ < λ with ζ ≥ min{ξ, κ} . By the assumptions on λ , ζℵ0 < λ and since λ must be a
limit cardinal we also have (ζℵ0)+ < λ . Hence by Löwenheim-Skolem we can find a model
of density (ζℵ0)+ inside A containing A . But by the induction hypothesis this model is
saturated and we are done.

9 Examples

This section has two objectives. On one hand we see how homogeneous metric abstract
elementary classes relate to the positive bounded model theory developed by Henson and
Iovino and Ben-Yaacov’s compact abstract theories or cats. On the other hand we give
two concrete example classes, the class of all Banach spaces and the class of all spaces
isometrically isomorphic to a (possibly transfinite) `p -space for a fixed p 6= 2 . These
examples show what the additional assumptions in 2.13 mean in practice.

9.1 Positive bounded theories and cats

In [HI02] Henson and Iovino develop model theory for positive bounded theories together
with the notions of approximate satisfaction and approximate elementary equivalence. For
a fixed positive bounded theory T the class C of models approximately satisfying T does
not as such form a MAEC since the models need not be complete. However the subclass
of complete models in C is a homogeneous MAEC with LSd = ℵ0 , where 4 is interpreted
by the approximate elementary submodel relation. Unions of chains and Löwenheim-
Skolem numbers with respect to densities are treated in [HI02], homogeneity follows from
compactness and the perturbation property from the so called Perturbation lemma ([HI02]
Proposition 5.15).

The other main approach to the model theory of metric structures is Ben-Yaacov’s
notion of compact abstract theories or cats. In [BY03] he defines a cat among others as a
positive Robinson theory. In [BY05] he shows that every countable Hausdorff cat admits
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a metric. A Hausdorff cat is a cat where the type-spaces are Hausdorff in the topology
induced by partial types as closed sets.

Ben-Yaacov proves an analogue of Morley’s categoricity transfer theorem in [BY05]. He
considers the collection of completions of so-called premodels inside a universal domain.
A premodel is defined as a subset M of the universal domain such that for every n < ω

the set of types over M realized in M are dense in Sn(M) . The existence of a language
and compactness ensures that the class of complete models forms a homogeneous MAEC.
The perturbation property follows from Theorem 2.20 of [BY05] where it is shown that the
metric topology coincides with the logic topology on the model. This topology is defined
by letting the closed sets be the sets definable by partial types.

9.2 The class of all Banach spaces

A basic example of a homogeneous metric abstract elementary class is the class of all
Banach spaces with the (closed) subspace relation for 4 .

Conditions (i)-(iii) and (v) of the definition of a MAEC (Definition 2.1) are trivial.
Furthermore the only functions we have are the vector space operations and the norm,
and hence the completion of the normed space obtained as a union of an increasing chain
clearly exists, is unique, and satisfies the demands in (iv).

The Löwenheim-Skolem number of the class is ℵ0 since clearly the smallest Banach
space containing a given nonempty set A is

Span(A).

Since this set is obtained as the closure of the set of rational linear combinations of elements
of A , the space has density at most |A| + ℵ0 .

We thus see that the class is a metric abstract elementary class. We now turn our
attention to the properties of a homogeneous MAEC.

Clearly there are arbitrary large Banach spaces. For the joint embedding property we
define the direct sum of two Banach spaces A and B as

A × B

with component-wise vector space operations and with the norm

‖(a, b)‖ = ‖a‖A + ‖b‖B .

Now any two Banach spaces can be embedded into the direct sum of (disjoint copies of)
them by the canonical embeddings

i : A → A × B, i(a) = (a, 0) and j : B → A × B, j(b) = (0, b).

For the amalgamation property we use a construction by Kislyakov. This actually
gives a stronger form of amalgamation namely one for the functional analytic notion for
an isomorphism instead of an isometry.

Definition 9.1. Let f be a continuous linear bijection from A onto B . Then

‖f‖ = sup{‖f(x)‖ : x ∈ A , ‖x‖ ≤ 1} < ∞.

If also the inverse function f−1 is continuous and

C ≥ ‖f‖ ‖f−1‖

we call f a C -isomorphism. We call a C -isomorphism onto a subspace of B a C -
embedding into B .
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The functional analytic notion of an isomorphism is a C -isomorphism for some C .
Note that if f is a 1-isomorphism, it is of the form cf ′ where c is a constant and f ′ is an
isometry.

Lemma 9.2. Suppose A 4 B (in the class of all Banach spaces) and f : A → A ′ is

a C -embedding. Then there are B ′ < A ′ and g : B → B′ such that g � A = f and

‖g‖ = ‖f‖, ‖g−1‖ = ‖f−1‖. Especially g is a C -embedding.

Proof. Let A , B , f and A ′ be as in the claim and denote f ′ = f
‖f‖ . By the Kislyakov

construction described in [CG97] Chapter 1.3, if we let ∆ = {〈a,−f ′(a)〉 : a ∈ A } and
define

C = (B × A
′)/∆

then A ′ embeds isometrically into C and there is an embedding jB of B into C satisfying

‖jB‖ ≤ 1 and ‖j−1
B

‖ ≤ ‖(f ′)−1‖ = ‖f‖ ‖f−1‖.

We then choose an isometrically isomorphic copy B ′ of C and an isometric isomorphism
h : C → B′ satisfying h ◦ jA ′ = idA ′ . Defining g = h ◦ ‖f‖jB gives the required
embedding.

Corollary 9.3. The class of all Banach spaces has the amalgamation property.

Proof. This is seen by taking f to be an isometry. Then also g is one.

Note that since all Banach spaces have the trivial space {0} as a subspace the joint
embedding property follows from amalgamation and the construction above actually is the
direct sum of B and A ′ .

Lemma 9.4. The class of all Banach spaces is homogeneous.

Proof. Assume (ai)i<α ⊂ A and (bi)i<α ⊂ B are such that for all n < ω and i0, . . . , in−1

there are a Banach space C and isometric embeddings f : A → C , g : B → C such that

f(ai0 , . . . , ain−1) = g(bi0 , . . . , bin−1).

Now for each finite I ⊂ α these embeddings define an isometric isomorphism hI = g−1◦f :

Span{ai : i ∈ I} → Span{bi : i ∈ I} and for I 6= I ′ the mappings hI and hI′ agree on
elements in the intersection of their domains, since both map ai to bi for i ∈ I ∩ I ′ .
Further note that Span{ai : i < α} =

⋃
{Span{ai : i ∈ I} : I ⊂ α, |I| < ℵ0} since the set

contains just finite linear combinations. Hence h =
⋃
{hI : I ⊂ α, |I| < ℵ0} is an isometric

isomorphism h : Span{ai : i < α} → Span{bi : i < α} and can be extended to an isometric
isomorphism between the closures. So

A < Span{ai : i < α} ∼= Span{bi : i < α} 4 B

and the claim follows by amalgamation.

Remark 9.5. The proof above actually shows that any class of Banach-spaces, which is
closed under the closed subspace relation and satisfies the amalgamation and joint embed-
ding properties, is homogeneous (when 4 is the subspace relation). Especially the class
of Hilbert spaces together with the subspace relation forms a homogeneous MAEC, since
amalgamation and joint embedding is trivially achieved by considering orthogonal bases.
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The properties so far assure the existence of a homogeneous monster model. Our last
property is the perturbation property.

Lemma 9.6. The class of all Banach spaces has the perturbation property.

Proof. Let A ⊂ M and let (ai)i<ω be a convergent sequence in M with tg(ai/A) =

tg(aj/A) for all i, j < ω . Denote by a the limit of (ai)i<ω . We wish to show that
Span(A ∪ a) is isometrically isomorphic to Span(A ∪ a0) . For this let for each i < ω ,
fi be an isometric automorphism mapping a0 to ai and fixing A pointwise. Further let
A0 = Span(A ∪ a0) . Now note that since (fi(a0))i<ω converges to a and fi � A = id for
every i < ω , (fi(b))i<ω converges for every b ∈ A0 . More specifically, if b =

∑
j≤n rjxj

for some rj ∈ R and xj ∈ A ∪ a0 then by linearity of fi

fi



∑

j≤n

rjxj


 =

∑

j≤n

rjfi(xj)

and fi(xj) = xj if xj ∈ A and if xj = a0 , (fi(xj))i<ω converges to a .

Hence we conclude that A0 is isometrically isomorphic to Span(A ∪ a) , so their clo-
sures are isometrically isomorphic 4-submodels of M and hence by amalgamation and
homogeneity, there is an isometric automorphism F of M mapping A0 onto Span(A ∪ a) ,
especially F (a0) = a .

Having put all the pieces together we conclude that the class of all Banach spaces
with the subspace relation for 4 is a homogeneous metric abstract elementary class with
LSd -number ℵ0 .

9.3 A categorical class of Banach spaces

In this section we present an example of a categorical homogeneous MAEC consisting
of Banach space structures which are not Hilbert spaces. Note that by Remark 9.5 the
Hilbert spaces together with the subspace relation forms a homogeneous MAEC and this
class clearly is categorical. For the example of this section we, however, need a stronger
relation for 4 .

We need the notion of a generalized series. In [Sin81] (Chapter III.17) this is defined
as follows:

Definition 9.7. Consider the ordinals equipped with the order topology, i.e. the topology
generated by the open intervals (β, γ) = {i : β < i < γ} . If (yi)i<α is a sequence in a
Banach space E , we say that the series

∑
i<α yi converges to an element x ∈ E and write

x =
∑

i<α

yi,

if there exists a continuous function S : α + 1 → E such that

(i) S(0) = 0 ,

(ii) S(α) = x ,

(iii) S(i + 1) = S(i) + yi for each i < α .
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In the case of α = ω the definition coincides with the standard definition of a series.
It also holds that for a convergent series

∑

i<α

yi = x,

only countably many of the terms yi can be nonzero.

Transfinite series of reals will be used in the definition of generalized `p -spaces.

Definition 9.8. Let 1 ≤ p < ∞ . For I a well-order we define the `p -space over I as the
space

`p(I) = {(ai)i∈I : ai ∈ R,
∑

i∈I

|ai|
p < ∞},

equipped with the norm

‖(ai)i∈I‖ =

(
∑

i∈I

|ai|
p

) 1
p

.

We will consider the class of spaces isometrically isomorphic to some `p(I) for a fixed
p , 1 ≤ p < ∞ , p 6= 2 . Note that if I ⊂ J there is a natural embedding f : `p(I) → `p(J)

defined by f((ai)i∈I) = (bi)i∈J where

bi =

{
ai if i ∈ I,

0 otherwise.

Hence we may consider `p(I) as a subspace of `p(J) and we will, with a slight abuse of
notation, write `p(I) ⊆ `p(J) for situations like this.

We start with the notion of a basis. What we call a basis is in [Sin81] referred to as a
transfinite basis. If α = ω the definition gives a Shauder basis.

Definition 9.9. Let X be a Banach space. We call a sequence (ei)i<α a basis of X if for
all x ∈ X , there exists a unique sequence (ai)i<α of real numbers such that x =

∑
i<α aiei .

In classical `p -spaces there is a natural notion of a standard basis. The notion gener-
alizes to `p(I)-spaces as (ei)i∈I , where ei = (δij)j∈I and δij is the Kronecker delta. Now
the formal definition of our class is the following:

Definition 9.10. Let (K`p ,4) (where 1 ≤ p < ∞ , p 6= 2) be the class of all structures of
the form

A = 〈EA , RA 〉,

where EA is a Banach space isometrically isomorphic to some `p(I) and RA is isometri-
cally isomorphic to R , equipped with the normed space structure of EA and the structure
of the ordered field RA .

As a shorthand we write A ∼= `p(I) for EA
∼= `p(I) . Further if f : `p(I) → A is an

isometric isomorphism we denote for each J ⊆ I ,

Ĵf = {f(ej) : j ∈ J}

and
˜̀p(Ĵf ) = {

∑

i∈J

aif(ei) : (ai)i∈J ∈ `p(J)},

where (ei)i∈I is the standard basis of `p(I) .
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Now we can define for A ,B ∈ K`p ,

A 4 B

if whenever J is a well-order such that `p(J) ∼= B and f is an isometric isomorphism
witnessing this then A = ˜̀p(Ĵf ∩ A ) .

The fact that this definition of 4 makes sense depends heavily on Banach’s classification
of the isometric automorphisms of `p -spaces for 1 ≤ p < ∞ , p 6= 2 . Note that the standard
basis of an `p -space is unconditional, i.e. for any convergent sequence

∑
i<α aiei , the series∑

i<α aσ(i)eσ(i) converges to the same limit for all permutations σ of α . Hence when σ is
a permutation of I and εi ∈ {−1, 1} for each i ∈ I then all mappings U of the form

U(
∑

i∈I

aiei) =
∑

i∈I

εiaieσ(i),

where ai ∈ R , are isometric automorphisms of `p(I) . By Banach’s classification result,
this is is the only possible form for an isometric automorphism. The theorem is proved in
Chapter XI.5 of [Ban78]. We state it in a different form, but the proof is essentially the
same.

Theorem 9.11. If 1 ≤ p < ∞, p 6= 2 then each isometric automorphism of `p(I) is of

the form

U(
∑

i∈I

aiei) =
∑

i∈I

εiaieσ(i),

for
∑

i∈I aiei ∈ `p(I), where (ei)i∈I is the standard basis of `p(I), σ is a permutation of

I and for each i ∈ I , εi ∈ {−1, 1}.

Remark 9.12. From the result above it follows that if A is a model in our class and
B ⊂ A is the image of the standard basis under some isometric isomorphism f : `p(I) → A

then B as a set is unique up to change of sign. So although we do not have a unique
standard basis in A there is a unique set, B(A ) = {εb : b ∈ B, ε ∈ {−1, 1}} , such
that if g : `p(J) ∼= A then Ĵg = g({ej : j ∈ J}) ⊂ B(A ) and for every a ∈ B(A ) ,
a ∈ Ĵg if and only if −a 6∈ Ĵg . Now if A ,B ∈ K`p , A 4 B can be stated differently as
B(A ) = B(B) ∩ A .Note that this implies that e.g. block-base constructions generally do
not give 4-submodels. This also means that the K`p -embeddings A → B are precisely
the isometric embeddings mapping B(A ) into B(B) .

Notation 9.13. Although for `p(I) ∼= A we do not have a unique image of the standard
basis in A we will, for a given isometric isomorphism f : `p(I) → A call Îf = f({ei : i ∈
I}) a standard basis of A . Hence B(A) is the union of possible standard bases for A .

We now set out to show that our class is a homogeneous MAEC.

Lemma 9.14. (K`p ,4) is a metric abstract elementary class, i.e. satisfies Definition 2.1.

Furthermore the Löwenheim-Skolem number LSd of the class is ℵ0 .

Proof. The first three items are trivial. For the fourth, note that if 〈Ai : i < δ〉 is an
4-increasing chain, we may write it as 〈`p(Ii) : i < δ〉 where (Ii)i<δ is increasing. Then
the completion of the union of the chain is

`p

(
⋃

i<δ

Ii

)
,
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since each element of this space can be approximated by elements of finite support which
hence are in some Ai . This space also trivially satisfies demands (b) and (c) of the
definition.

For the fifth item note that if A ,B,C ∈ K`p , A ,B 4 C and A ⊆ B then

B(B) = B(C ) ∩ B

and (since A ⊆ B )

B(A ) = B(C ) ∩ A = B(C ) ∩ A ∩ B = B(B) ∩ A

and by Remark 9.12 we are done.

Finally for the Löwenheim-Skolem number let A ⊆ `p(I) for some I and let J =

supp(A) =
⋃

a∈A supp(a) , the support of A . Then |{ei : i ∈ J}| ≤ |A| · ℵ0 and taking
all rational linear combinations of these vectors only increases the cardinality by ℵ0 . Also
these linear combinations are enough since the closure of them is `p(J) which is clearly
the smallest 4-submodel of `p(I) containing A .

Lemma 9.15. If A ,B ∈ K`p and A ∩ B is either empty or a 4-submodel of both A

and B , then there is C ∈ K`p such that A ,B 4 C . In particular K`p satisfies the joint

embedding and amalgamation properties.

Proof. Let A ,B ∈ K`p . Choose standard bases IA for A and IB for B such that the
bases coincide in the set

B(A ) ∩ B(B).

Then the required model is
C = ˜̀p(IA ∪ IB).

Since we have amalgamation we now have a well-behaved notion of a Galois-type (see
def. 2.8) and can turn our attention to the homogeneity property. First we take a closer
look at the relation between embeddings and automorphisms.

Lemma 9.16. Assume (K`p ,4) is the class defined in 9.10.

(i) If A 4 B , |B(A )| < |B(B)| and f : A → B is a K`p -embedding then f extends

to an isometric automorphism of B .

(ii) If a ∈ A and b ∈ B are such that

tg
A

(a/∅) = tg
B

(b/∅)

then there is C such that A ,B 4 C and C has an isometric automorphism mapping

a to b.

Proof. For (i) let A 4 B and fix a standard basis (êi)i∈J of B and I ⊂ J such that (êi)i∈I

is a standard basis for A . Now if f : A → B is a K`p -embedding, f((êi)i∈I) ⊂ B(B)

and f is of the form
f(
∑

i∈I

aiêi) =
∑

i∈I

εiaiêσ(i)
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for some one-to-one function σ : I → J and εi ∈ {−1, 1} . Since |B(A )| < |B(B)| , we also
have |I| < |J | and hence

|J\I| = |J\σ(I)|.

So σ can be extended to a permutation σ ′ of J and hence for any choice of εi ∈ {−1, 1}
for i /∈ I , the function generated by

êi 7→ εiêσ′(i)

is an isometric automorphism of B extending f .

For (ii) assume a, b,A ,B are as in the claim. By the definition of Galois-types there
are C ′ ∈ K`p and K`p -embeddings f : A → C ′ and g : B → C ′ such that f(a) = g(b) .
By 2.6 we may assume g = id and B 4 C ′ . Now by 9.15 there is a model C ∈ K`p such
that A ,C ′ 4 C and we may assume |B(C )| > |B(A )| . Now, since

f(A ) 4 C
′ 4 C ,

f can be interpreted as a K`p -embedding A → C and hence by (i) extends to an isometric
automorphism of C mapping a to b .

The following two lemmas are based on the same idea: when considering different ways
of mapping a given element onto another, we only have finitely many alternatives for where
an index of the support can be mapped.

Lemma 9.17. For 1 ≤ p < ∞ and p 6= 2, (K`p ,4) is homogeneous.

Proof. By Lemmas 9.15 and 9.16 it is enough to show the following:

If (ai)i<α, (bi)i<α ⊆ `p(J) , |J | > α + ℵ0 and for all n < ω and i0, . . . , in−1 < α there
is an isometric automorphism f of `p(J) such that

f(aik) = bik for each k < n

then there is an isometric automorphism F of `p(J) such that

F (ai) = bi for each i < α.

So let (ai)i<α and (bi)i<α be as above. For j ∈ J we denote by ai(j) the j th coordinate
of ai , i.e.

ai = (ai(j))j∈J (∈ `p(J)).

Note that each element of `p(J) has at most countable support and that for each
c ∈ `p(J) only finitely many of the coordinates c(j), j ∈ J , can have the same nonzero
absolute value. Hence each element of `p(J) gives rise to an equivalence relation ∼c on J ,

j1 ∼c j2 if and only if |c(j1)| = |c(j2)|.

which divides the support of c into finite equivalence classes. If c is ai or bi for some
i < α , we will name these equivalence classes

Ia
(i,t) = {j ∈ J : |ai(j)| = t}, Ib

(i,t) = {j ∈ J : |bi(j)| = t}

(if ±t is not in the range of ai , Ia
(i,t) is not an equivalence class but still a well-defined set,

namely ∅).
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Since by 9.11 an isometric automorphism of `p(J) is a combination of a permutation
and changes of signs, it is clear that every isometric automorphism of `p(J) mapping a to
b must map Ia

(i,t) to the corresponding Ib
(i,t) . Furthermore by the assumption that finite

tuples of (ai)i<α can be mapped by isometric automorphisms to the corresponding tuple
from (bi)i<α it is clear that for all finite collections Γ of pairs (i, t) , where i < α and
t ∈ R+ , the intersections

Ia
Γ =

⋂

(i,t)∈Γ

Ia
(i,t) and Ib

Γ =
⋂

(i,t)∈Γ

Ib
(i,t) (9.1)

have the same finite size (which of course may be 0). For a given Γ ⊂ α×R+ we say that
the set Ia

Γ (or Ib
Γ respectively) is minimal if it is nonempty and for every Γ′ ) Γ either

Ia
Γ′ = ∅ or Ia

Γ′ = Ia
Γ . Now since Ia

(i,t) is finite for every (i, t) ∈ α×R+ , if Ia
(i,t) is nonempty

there is a finite Γ 3 (i, t) such that Ia
Γ is minimal. Furthermore the supports of (ai)i<α

and (bi)i<α can be covered by (disjoint) minimal sets Ia
Γ , Ib

Γ where the sets Γ are finite.

Since |
⋃

i<α(supp(ai) ∪ supp(bi))| ≤ α · ℵ0 < |J | it is clear that each partial mapping
σ : J → J taking each Ia

Γ to the corresponding Ib
Γ can be extended to a permutation of J .

We still need to show that we can find signs and fix the partial mappings on the minimal
sets so that we get an isometric automorphism mapping each ai to the corresponding bi .
So let j ∈ J and fix a finite Γ ⊂ α×R+ such that Ia

Γ is minimal and contains j . For each
j ∈ Ia

Γ there is a unique partition P a
j of α such that i1 and i2 belong to the same part if

and only if sign(ai1(j)) = sign(ai2(j)) , where

sign(r) =

{
1, if r ≥ 0,

0, otherwise.

Now we claim that there is a bijection σ : Ia
Γ → Ib

Γ such that

P a
j = P b

σ(j) for all j ∈ Ia
Γ. (9.2)

If not, let
S = {σ : σ is a bijection Ia

Γ → Ib
Γ}.

Since Ia
Γ is finite, S is finite. Now for each σ in S we can choose witnesses to the fact

that for some j ∈ Ia
Γ P a

j 6= P b
σ(j) , i.e. we choose i1σ, i2σ ∈ Ia

Γ such that they are equivalent

in P a
j but σ(i1), σ(i2) are nonequivalent in P b

σ(j) (or vice versa). Then

I = {i < α : (i, t) ∈ Γ for some t} ∪ {ilσ < α : σ ∈ S, l = 1, 2}

is finite. By the assumption there should be an isometric automorphism of `p(J) mapping
(ai)i∈I to (bi)i∈I , but this is impossible since we know such an automorphism must
map the basis element corresponding to Ia

Γ to the ones corresponding to I b
Γ and we have

collected witnesses spoiling every possible permutation doing this, a contradiction. Hence
there must be some σ such that 9.2 holds. Then we let

εj =

{
1, if sign(a0(j)) = sign(b0(σ(j))),

−1, otherwise

and are done.

Remark 9.18. In addition to now having the properties necessary to build a monster
model we actually know what the monster looks like. Since M ∈ K it is clear that it is
an `p -space, but Lemma 9.17 shows that we do not need it to be especially large. For
`p(I) to be µ-homogeneous it suffices that |I| ≥ µ+ . Also it is clear that any `p -space of
cardinality ≤ µ is K`p -embeddable into such a `p(I) .
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Lemma 9.19. For 1 ≤ p < ∞, p 6= 2 and κ > ω , `p(κ) satisfies the perturbation property

2.12.

Proof. Let (bn)n<ω be a convergent sequence in `p(κ) of elements of a fixed type. Then
for each n < ω there is an isometric automorphism fn of `p(κ) mapping b0 to bn . Let
b = limn→∞ bn . We wish to show that tg

`p(κ)(b) = tg
`p(κ)(bn) .

Denote by bn(i) the i ’th element of bn . Note that since all the bn have the same
type, their supports have the same size and also rng(bn) = {bn(i) : i < κ} is the same
for every n < ω up to change of signs. Also, since bn → b as n → ∞ we have for each
i < κ , bn(i) → b(i) as n → ∞ . Further rng(b) is nowhere dense, i.e. inside every interval
there is an interval not intersecting rng(b) since else there would be some ε > 0 with
b(i) > ε for infinitely many i , which is impossible. Hence for every n there are pn , δn

with 0 < pn < 1
n+1 such that

[pn − δn, pn + δn] ∩ rng(b) = ∅ and [−pn − δn,−pn + δn] ∩ rng(b) = ∅.

Now for each n < ω , there are only finitely many indices i for which |b(i)| > pn . Hence
the sets

I0 = {i < κ : |b(i)| > p0},

In+1 = {i < κ : pn > |b(i)| > pn+1}

are finite. Since bn → b there is, for each n < ω , some Nn < ω such that for all m ≥ Nn ,
pn−1 > |bm(i)| > pn (or just |bm(i)| > pn if n = 0) if and only if i ∈ In . Hence from Nn

onwards there are only finitely many possible values for bm(i) for i ∈ In , so from some
N ′

n onwards the sequence (bm(i))N ′
n<m<ω is constant for each i ∈ In . Now denote

An = {f−1
N ′

n
(ei) : i ∈ In}

and note that if m ≥ N ′
n and e ∈ An then fm(e) ∈ {ei : i ∈ In} so the sets An are

disjoint. Also
⋃

n<ω = An = supp(b0) since for every i ∈ supp(b0) there is n < ω such
that pn−1 > |b0(i)| > pn (or |b0(i)| > p0 ) and then fN ′

n
will map ei into {ej : j ∈ In} .

Now let g map {ej : j ∈ κ\supp(b0)} to {ej : j ∈ κ\supp(b)} , the function

⋃

n<ω

fN ′
n

� An ∪ g

induces an isometric automorphism of `p(κ) mapping b0 to b and hence proving that b is
of the desired type.

We finally have the theorem we have been working towards.

Theorem 9.20. For 1 ≤ p < ∞, p 6= 2, the class of Banach spaces isometrically iso-

morphic to some `p(I) with 4 defined as in (9.10) forms a homogeneous metric abstract

elementary class with Löwenheim-Skolem number ℵ0 .

Proof. This was proved in lemmas 9.14 to 9.19, since the class trivially contains arbitrary
large models.

Trivially we see that the class `p -spaces is categorical in every κℵ0 = κ satisfying
ξℵ0 < κ for every ξ < κ .
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10 Metric homogeneity

This final section introduces the notion of metric homogeneity. It enables us to prove
categoricity transfer from any uncountable κ to cardinals greater than some ξ < ic+ .

Definition 10.1. K is metricly homogeneous if for all ε > 0 there is some δ > 0 such
that for all finite a, b ∈ M and all sets A , if d(tg(a/A), tg(b/A)) > ε then there is a finite
A′ ⊂ A such that d(tg(a/A′), tg(b/A′)) > δ .

10.1 Better tools enabled

In this section we prove that metric homogeneity gives us stability transfer and saturated
models. We also show that the property holds in K`p , our example class of `p -spaces.

Notation 10.2. If K is metricly homogeneous and ε > 0 , we denote the δ > 0 from the
definition by fMH(ε) .

Remark 10.3. Note that fMH(ε) ≤ ε .

To prove stability transfer we need some ε-splitting calculations.

Lemma 10.4. Assume K is ω -d-stable and metricly homogeneous. Assume further

that A ⊂ A ⊂ B , A is countable, A realizes all types over finite subsets of A,

d(tg(a/A ), tg(b/A )) = δ1 , a ↓δ2
A B and b ↓δ3

A B . Then if

δ1 + δ2 + δ3 ≤ fMH(ε),

we have

d(tg(a/B), tg(b/B)) ≤ ε.

Note that one or some of the δ ’s may be 0.

Proof. Assume towards a contradiction that d(tg(a/B), tg(b/B)) > ε . By metric ho-
mogeneity, let C ⊂ B be finite such that d(tg(a/C), tg(b/C)) = d > fMH(ε) and let

0 < δ′ < d − fMH(ε) . Let A′ ⊂ A be finite and such that a ↓
δ2+δ′/2
A′ B and b ↓

δ3+δ′/2
A′ B .

Let f ∈ Aut(M/A′) be such that f(C) ⊂ A . Now

d = d(tg(a/C), tg(b/C))

= d(tg(f(a)/f(C)), tg(f(b)/f(C)))

≤ d(tg(f(a)/f(C)), tg(a/f(C)))

+d(tg(a/f(C)), tg(b/f(C)))

+d(tg(b/f(C)), tg(f(b)/f(C)))

≤ δ2 + δ′/2 + δ1 + δ3 + δ′/2

≤ fMH(ε) + δ′

< d,

a contradiction.

Lemma 10.5. If a ↓0
A B and d(b, a) < δ then b ↓2δ

A B .
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Proof. Let ε = δ − d(b, a) > 0 . Let A′ ⊂ A be finite and such that a ↓ε
A′ B . We claim

that b ↓2δ
A′ B . Assume towards a contradiction that c, d ∈ B and f ∈ Aut(M/A′) are such

that f(d) = c and d(tg(b/A′c), tg(f(b)/A′c)) ≥ 2δ . Then

2δ ≤ d(tg(b/A′c), tg(f(b)/A′c))

≤ d(tg(b/A′c), tg(a/A′c))

+d(tg(a/A′c), tg(f(a)/A′c))

+d(tg(f(a)/A′c), tg(f(b)/A′c))

≤ d(b, a) + ε + d(a, b)

< 2δ,

a contradiction.

We now turn our attention to stability transfer. The proof is done in parts due to the
nontrivialness of extending sets to F M

ω -saturated models.

Lemma 10.6. Assume K is ω -d-stable and metricly homogeneous. If for all B with

|B| = λ there exists an F M
ω -saturated B ⊃ B with |B| = λ then K is λ-d-stable.

Proof. Assume towards a contradiction that |B| = λ , B is F M
ω -saturated but |S(B)| > λ .

Then there are some ε > 0 and types pi ∈ S(B) , for i < λ+ such that d(pi, pj) > ε for all
i < j < λ+ . By ω -d-stability and lemma 4.5 choose for each i < λ+ a finite Ai ⊂ B such
that pi does not fMH(ε)/3-split over Ai . λ+ many of these Ai ’s are the same, denote it
by A and re-enumerate the types for which Ai = A . Next extend A to A ⊂ B realizing
all types over A : Let A0 = A and for each n < ω let An+1 contain An and realize a
countable dense subset of S(An) . Then define A =

⋃
n<ω An . Since B is F M

ω -saturated
we see by a construction similar to that in theorem 3.7 that A in fact does realize all
p ∈ S(A) .

Now for i < j < λ+ , since d(pi, pj) > ε , by metric homogeneity there is some finite
C ∈ B such that

d(pi � C, pj � C) > fMH(ε).

Let a, b ∈ M realize pi , pj respectively. Since A realizes tg(C/A) there is some f ∈
Aut(M/A) with f(C) = C ′ ∈ A . Then

fMH(ε) < d(tg(a/C), tg(b/C))

= d(tg(f(a)/C ′), tg(f(b)/C ′))

= d(tg(f(a)/C ′), tg(a/C ′))

+d(tg(a/C ′), tg(b/C ′))

+d(tg(b/C ′), tg(f(b)/C ′))

≤ 2fMH(ε)/3 + d(tg(a/C ′), tg(b/C ′)).

Hence d(tg(a/A ), tg(b/A )) ≥ d(tg(a/C ′), tg(b/C ′)) ≥ fMH(ε)/3 and since we can do the
same conclusion for all i < j < λ+ this gives us a type-space of density ≥ λ+ over a
separable set, a contradiction.

Lemma 10.7. Assume K is λ-d-stable. Then if |B| ≥ λ+ , there exists an F M

λ+ -saturated

B ⊃ B with |B| ≥ λ+ .
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Proof. Let B with |B| ≤ λ+ be given. Fix some dense B ′ ⊂ B of cardinality ≤ λ+ and
enumerate B ′ = {bi : i < λ+} . Then construct Bi , for i < λ+ , inductively as follows:

• B0 = ∅ ,

• Bi+1 contains Bi ∪ {bi} and realizations for a dense subset of S(Bi) ,

• for δ a limit Bδ =
⋃

i<δ Bi .

• |Bi| ≤ λ .

In the end let B =
⋃

i<λ+ Bi . Then |B| ≤ λ+ and since B ⊃ B ′ and is (metricly) closed,
it contains B . To show that B is F M

λ+ -saturated, by theorem 3.7 it is enough to show that
B is F M

λ+ -d-saturated. So let C ⊂ B , |C| < λ+ , a ∈ M and ε > 0 be given. Let C ′ ⊂ C

be a dense subset of cardinality < λ+ . Now for each c ∈ C ′ there is some countable
Cc ⊂

⋃
i<λ+ Bi such that c ∈ Cc . Let C+ =

⋃
c∈C′ Cc . Then C+ ⊂

⋃
i<λ+ Bi and C+

has cardinality < λ+ so C+ ⊂ Bi for some i < λ+ . Hence there is some a′ ∈ Bi+1 with
d(tg(a′/Bi), tg(a/Bi)) < ε and by the way C+ was chosen, the type over Bi determines
the type over C so we are done.

Lemma 10.8. Assume K is metricly homogeneous, λ > ℵ0 is a limit cardinal and that for

all infinite ξ < λ, K is ξ -d-stable (especially ω -d-stable) and for any set B of density

ξ > ℵ0 there exists an F M

ξ -saturated B ⊃ B of density ξ . Then any set B of density λ

can be extended to some F M

λ -saturated B ⊃ B of density λ.

Proof. Let B of density λ be given and let B ′ ⊂ B be a dense subset of cardinality
λ . Enumerate B ′ = {bi : i < λ} . Let κ = cf(λ) and choose an increasing sequence of
cardinals λi , for i < κ such that ℵ1 ≤ λi < λ . We construct Bi by induction on i < κ as
follows:

• B0 is F M

ℵ1
-saturated,

• Bi+1 contains Bi , {bj : j < λi} and a length-λn Morley sequence of realizations for
each type in a dense subset of S(Bn) , is F M

λi
-saturated and of size λn ,

• for limit δ , Bδ =
⋃

i<δ Bi .

We build the Morley sequences as in remark 8.4, by extending the set to an F M

ℵ1
-saturated

model after adding a new element to the sequence. Note that this does not increase the
size of Bi . In the end let B =

⋃
i<κ Bi . To prove that B is F M

λ -saturated, we prove
FM

λ -d-saturation. So let C ⊂ B , |C| < λ , a ∈ M and ε > 0 . As in lemma 10.7 we can
find C+ ⊂

⋃
i<κ Bi which is dense in C and of cardinality ℵ0 · |C| < λ . By lemma 4.5

there is i′ < κ such that
a ↓

fMH(ε)/2
Bi′

⋃

j<κ

Bj.

Then we can choose i ≥ i′ such that λi > card(C+) . Choose p ∈ S(Bi) such that
d(p, tg(a/Bi)) < fMH(ε)/2 and there is a Morley sequence (aj)j<λi

in Bi+1 realizing p .
We claim that for some j < λi , aj ↓Bi

B+ . Otherwise, by finite character, for each j < λi ,
there exists some cj ∈ B+ such that aj 6↓Bi

cj , and since λi > card(B+) , λi many cj ’s
are the same, denote it c . But then there is a λi -sequence of aj ’s such that aj 6↓Bi

c .
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Then if Dj are the F M

ℵ1
-saturated models from the Morley sequence construction, with

Dj ⊃ {aj′ : j′ < j} , we have
aj ↓Bi

Dj and aj 6↓Bi
c

so by transitivity we have
aj 6↓Dj

c,

i.e. by symmetry and monotonicity

c 6↓Dj
Dj+1.

But by [HS00, Lemma 3.2(iii)] this gives a strongly splitting sequence of length λi ≥ ℵ1 , a
contradiction. Hence there must be some aj satisfying aj ↓Bi

B+ . Since Bi is (at least)
FM

ℵ1
-saturated, by theorem 6.4 aj ↓

0
Bi

B+ .

Now d(tg(aj/Bi), tg(a/Bi)) < fMH(ε)/2 , aj ↓0
Bi

B+ and a ↓
fMH (ε)/2
Bi′

⋃
j<κ Bj , espe-

cially a ↓
fMH (ε)/2
Bi

B+ , so by lemma 10.4 d(tg(aj/B
+), tg(a/B+)) ≤ ε and we are done.

The previous three lemmas give us the following theorems:

Theorem 10.9. If K is ω -d-stable and metricly homogeneous, then it is λ-d-stable for

all λ.

Theorem 10.10. If K is ω -d-stable and metricly homogeneous and λ > ℵ0 then every

set B of density ≤ λ can be extended to an F M

λ -saturated B ⊃ B of density λ.

Theorem 10.11. K`p is metricly homogeneous with fMH = id.

Proof. Fix finite tuples a and b and a set A such that for all finite B ⊂ A ,

d(tg(a/B), tg(b/B)) ≤ ε.

We wish to show that d(tg(a/A), tg(b/A)) ≤ ε , i.e. for all δ > 0 find an automorphism f

of the monster fixing A pointwise and satisfying d(f(a), b) ≤ ε + δ .

Recall that M is just some `p(I) with |I| > |A| and that the (isometric) automorphisms
of `p(I) are of the form

U(
∑

i∈I

xiei) =
∑

i∈I

εixieσ(i),

where (ei)i∈I is the standard basis of `p(I) , σ is a permutation of I and εi ∈ {−1, 1} for
each i ∈ I . Hence, as in the proof of lemma 9.17, the demand that f fix A pointwise
gives rise to a partition of supp(A) =

⋃
{supp(c) : c ∈ A} with finite equivalence classes

corresponding to the absolute values of the coordinates of elements of A . Since a and b

are finite, the union of their support is countable and of supp(A) we only need to consider
those equivalence classes that intersect supp(a) ∪ supp(b) . We can enumerate these as
(In)n<ω . In addition to these we consider the part of supp(a) ∪ supp(b) outside

⋃
n<ω In ,

denote it by J , and a countable set J∅ intersecting neither supp(A) nor supp(a)∪supp(b) .
Hence we restrict our attention to the countable set I ′ =

⋃
n<ω In ∪ J ∪ J∅ . Outside this

index set f can be built of the identity permutation. Also, when by the assumption we are
given an automorphism g of the monster fixing some finite B ⊂ A , we may assume that
it permutes I ′ and I\I ′ separately, since changing the permutation associated to g (i.e.
permuting the coordinates in g(a)) outside supp(b) does not affect the distance d(g(a), b)

and J∅ gives us space enough inside I ′ to adjust the permutation.
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Inside each In , consider the set Sn of all pairs of permutations and tuples of signs
giving rise to (part of) an automorphism fixing A :

Sn = {(σ, (εi)i∈In) : σ a permutation of In, εi ∈ {−1, 1},∑

i∈In

aiei =
∑

i∈In

εiaieσ(i) for all (ai)i∈I ∈ A}.

Since In is finite we only need a finite subset of A to rule out automorphisms whose
permutation or signs do not match the configurations in Sn . Hence, for each n < ω there
is an automorphism g of `p(I) matching some configuration in Sm for each m ≤ n and
also satisfying ∑

i∈I

|(g(ak))i − bk
i |

p =
∑

i∈I

|εg
i a

k
i − bk

σ(i)|
p ≤ εp, (10.1)

for each k < length(a) , where ak and bk denote the coordinates of the finite tuples a and
b .

Now we turn to the task of finding suitable automorphisms for given δ ’s. So let δ > 0

be given. Let δ′ = δ/4 and choose n < ω such that for each k < length(a) ,

(
∑

i∈
S

m>n Im

|ak
i |

p)
1
p < δ′ and (

∑

i∈
S

m>n Im

|bk
i |

p)
1
p < δ′. (10.2)

By the assumption and the considerations when defining I ′ there is a permutation σ of I ′

and signs εi ∈ {−1, 1} for i ∈ I ′ such that

(
∑

i∈I′

|εia
k
i − bk

σ(i)|
p)

1
p ≤ ε (10.3)

for each k < length(a) . Now define a new permutation σ ′ such that

• σ′ �
⋃

m≤n Im = σ �
⋃

m≤n Im ,

• σ′ �
⋃

m>n Im = id,

• if i, σ(i) ∈ J then σ′(i) = σ(i) otherwise for i ∈ J , let σ′(i) ∈ J∅ and finally σ′ � J∅

is defined such that σ′ � (J ∪ J∅) becomes a permutation.

Now we observe that

• for i ∈
⋃

m≤n Im , |εia
k
i − bk

σ′(i)| = |εia
k
i − bk

σ(i)| ,

• for i ∈
⋃

m>n Im , |ak
i − bk

σ′(i)| = |ak
i − bk

i | ≤ |ak
i | + |bk

i | ,

• if i ∈ J ∪ J∅ we have four cases:

– i, σ′(i) ∈ J : then σ′(i) = σ(i) ,

– i ∈ J and σ′(i) ∈ J∅ : then either σ(i) ∈
⋃

m>n Im or σ(i) ∈ J∅ and

|εia
k
i − bk

σ′(i)| ≤ |εia
k
i | + |bk

σ′(i)|

= |εia
k
i | + 0

≤ |εia
k
i − bk

σ(i)| + |bk
σ(i)|,
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– i ∈ J∅ and σ′(i) ∈ J : then σ′(i) = σ(j) for some j either in
⋃

m>n Im or in J∅

and

|εia
k
i − bk

σ′(i)| ≤ |ak
i | + |bk

σ′(i)|

= 0 + |bk
σ′(i)|

= |bk
σ(j)|

≤ |εja
k
j − bk

σ(j)| + |εja
k
j |,

– i, σ′(i) ∈ J∅ : then |εia
k
i − bk

σ′(i)| = 0 .

Now let ε′i = εi for i /∈
⋃

m>n Im and 1 for i ∈
⋃

m>n Im . Then combining the above
observations with (10.2) and (10.3) and using Minkowski’s inequality, we obtain

(
∑

i∈I′

|ε′ia
k
i − bk

σ′(i)|
p

) 1
p

≤

(
∑

i∈I′

|εia
k
i − bk

σ(i)|
p

) 1
p

+2




∑

i∈
S

m>n Im

|ak
i |

p




1
p

+2




∑

i∈
S

m>n Im

|bk
i |

p




1
p

≤ ε + 4δ′

= ε + δ.

Then σ′ and the signs ε′i (together with the identity mapping outside I ′ ) give rise to an
automorphism g of the monster fixing A pointwise and satisfying d(g(a), b) ≤ ε + δ .

10.2 Primary models

In this section we define new isolation and saturation notions and build primary models.
We also prove an ε-version of dominance for this isolation notion.

10.2.1 [B]-isolation

Definition 10.12. We say that tg(a/A) is ε-isolated with respect to B ⊂ A ( [B]-ε-

isolated for short) if there exist some δ > 0 and finite Aε ⊂ A such that for all f ∈
Aut(M/(Aε ∩B)) with d(f(c), c) < δ for all c ∈ Aε and for all finite A+ ⊂ A , there exists
f ′ ∈ Aut(M(A+ ∩B)) with d(f ′(c), c) < ε for all c ∈ A+ and d(f ′(a), f(a)) < ε (in other
words d(tg(f(a)A+/A+ ∩ B), tg(aA+/A+ ∩ B)) < ε).

Definition 10.13. tg(a/A) is isolated with respect to B ⊂ A ( [B]-isolated for short) if it
is [B]-ε-isolated for all ε > 0 .

Notation 10.14. If δ > 0 and Aε ⊂ A are as in the definitions above, we say that δ,Aε

ε-isolate tg(a/A) with respect to B .

Notation 10.15. We write tg(a/A) =δ
[B] tg(b/A) if there exists f ∈ Aut(M/A ∩ B) with

d(f(c), c) < δ for all c ∈ A and f(a) = b .
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Remark 10.16. The above is not an equivalence relation. However, it is symmetric and
reflexive and instead of transitivity we have: if tg(a/A) =δ1

[B] tg(b/A) and tg(b/A) =δ2
[B]

tg(c/A) , then tg(a/A) =δ1+δ2
[B] tg(c/A) .

Lemma 10.17. Assume B ⊂ A, (An)n<ω is an increasing sequence of finite sets with

An ⊂ A, δn > 0, for n < ω are such that
∑

n<ω δn < ∞ and an , for n < ω satisfy

tg(an+1/An) =δn

[B] tg(an/An).

Then there is a such that

tg(a/An) =εn

[B] tg(an/An),

where εn =
∑∞

i=n δi .

Proof. Let B ⊂ A , An , an and δn be as above. Then there are fn ∈ Aut(M) , for n < ω ,
such that

• fo = id,

• fn+1(an+1) = an ,

• fn+1 � B ∩ An = id and d(fn+1(c), c) < δn for all c ∈ An .

By now defining F0 = f0 = id and Fn+1 = Fn ◦ fn+1 , we obtain Fn ∈ Aut(M) , for
n < ω , satisfying:

• Fn+1(an+1) = a0 ,

• for all c ∈ An , d(Fn+1(c), Fn(c)) = d(Fn ◦ fn+1(c), Fn(c)) = d(fn+1(c), c) < δn ,

• for all c ∈ An ∩ B , d(Fn+1(c), Fn(c)) = d(fn+1(c), c) = 0 .

Because
∑

n<ω δn converges, the sequence (Fn � (
⋃

m<ω Am))n<ω converges (point-
wisely), so by the perturbation property there is F ∈ Aut(M) such that for all n < ω and
all c ∈ An , d(F (c), Fn(c)) ≤ εn and for all c ∈ An ∩ B , d(F (c), Fn(c)) = 0 . Hence, we
can define a = F−1(a0) , and obtain, for all n < ω ,

• F−1
n ◦ F (a) = an ,

• for all c ∈ An , d(F−1
n ◦ F (c), c) = d(F (c), Fn(c)) ≤ εn ,

• F−1
n ◦ F � An ∩ B = id,

i.e. tg(a/An) =εn

[B] tg(an/An) .

Lemma 10.18. Assume K is ω -d-stable. Then for all a, B ⊂ A, finite C ⊂ A, ε > 0

and δ > 0 there exist a′ , δε > 0 and a finite Aε ⊂ A with Aε ⊃ C such that tg(a′/C) =δ
[B]

tg(a/C) and δε , Aε ε-isolate tg(a′/A) with respect to B .

Proof. Assume towards a contradiction that for all a′ with tg(a′/C) =δ
[B] tg(a/C) and all

δε > 0 and finite Aε there is f ∈ Aut(M/Aε ∩ B) , with d(f(c), c) < δε for all c ∈ Aε ,
but for some finite A+ ⊂ A , d(tg(A+a′/A+ ∩B), tg(A+f(a′)/A+ ∩B)) ≥ ε . Then we can
define δn , An , for n < ω , and aξ , fξ , Aξ , for ξ ∈ <ω2 , such that
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• δn = 2−(n+1)δ′ , where δ′ = min{δ, ε/2} ,

• A0 = C , An ⊂ An+1 ⊂ A , An is finite,

• a∅ = a , tg(aξ/C) =δ
[B] tg(a/C) ,

• f∅ = id and for all ξ ∈ <ω2 , fξa(0) = id,

• fξa(1) and the finite set Aξ ⊃ Alength(ξ) are such that fξa(1) ∈ Aut(M/Alength(ξ)∩B) ,
d(fξa(1)(c), c) < δlength(ξ) for all c ∈ Alength(ξ) , and

d(tg(Aξaξ/Aξ ∩ B), tg(Aξfξa(1)(aξ)/Aξ ∩ B)) ≥ ε,

• aξa(i) = fξa(i)(aξ) for i ∈ {0, 1} ,

• An+1 =
⋃

length(ξ)=n Aξ .

Now tg(fξa(i)(aξ)/Alength(ξ)) =
δlength(ξ)

[B] tg(aξ/Alength(ξ)) , so since
∑length(ξ)−1

n=0 δn < δ′ ≤

δ , we have tg(aξ/C) =δ
[B] tg(a/C) , keeping the induction going.

By lemma 10.17, for each η ∈ ω2 , there exists some aη satisfying tg(aη/An) =εn

[B]

tg(aη�n/An) , where ε=
∑∞

i=n δi . Now |
⋃

n<ω An| = ℵ0 , but if η, ν ∈ ω2 , η 6= ν and
n = min{n : η(n) 6= ν(n)} , η(n) = 0 , then

d(tg(aη/
⋃

i<ω

Ai), t
g(aν/

⋃

i<ω

Ai))

≥ d(tg(aη/An+1), t
g(aν/An+1))

≥ d(tg(aη/Aη�n), tg(aν/Aη�n))

≥ d(tg(aηAη�n/Aη�n ∩ B), tg(aνAη�n/Aη�n ∩ B))

≥ d(tg(aη�n+1Aη�n/Aη�n ∩ B), tg(aν�n+1Aη�n/Aη�n ∩ B))

−d(tg(aη�n+1Aη�n/Aη�n ∩ B), tg(aηAη�n/Aη�n ∩ B))

−d(tg(aνAη�n/Aη�n ∩ B), tg(aν�n+1Aη�n/Aη�n ∩ B))

= d(tg(aη�nAη�n/Aη�n ∩ B), tg(fη�na(1)(aη�n)Aη�n/Aη�n ∩ B))

−d(tg(aη�n+1Aη�n/Aη�n ∩ B), tg(aηAη�n/Aη�n ∩ B))

−d(tg(aνAη�n/Aη�n ∩ B), tg(aν�n+1Aη�n/Aη�n ∩ B))

≥ ε − 2
∞∑

i=n+1

δi

≥ ε − 2−nδ′

≥ ε/2.

This contradicts ω -d-stability and hence proves the claim.

Lemma 10.19. Assume K is ω -d-stable. Then for all a, B ⊂ A, finite C ⊂ A and

δ > 0 there exists a′ such that tg(a′/C) =δ
[B] tg(a/C) and tg(a′/A) is isolated with respect

to B .

Proof. By lemma 10.18 we may for each n < ω choose δn, δ′n > 0 a finite set An ⊂ A and
some an such that

• A0 = C , a0 = a , δ′0 = δ0 = δ ,
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• An ⊂ An+1 , An is finite and when n > 0 then δn, An
1
n -isolate tg(an/A) with

respect to B ,

• δ′n+1 = 1
4 min(δn, δ′n) and

tg(an+1/An) =
δ′n+1

[B] tg(an/An).

By lemma 10.17 there is some a′ such that

tg(a′/An) =
ε′n
[B] tg(an/An),

where ε′n =
∑∞

i=n δ′i+1 . We claim that tg(a′/A) is isolated with respect to B . To prove this
let ε > 0 be given. Then choose n > 2/ε . We show that δn/2, An ε-isolate tg(a′/A) . So
let f ∈ Aut(M/An ∩B) be such that d(f(c), c) < δn/2 for all c ∈ An , and let A+ ⊂ A be

finite. Since tg(a′/An) =
ε′n
[B] tg(an/An) and ε′n ≤ δn/2 there is some g ∈ Aut(M(An ∩ B))

such that d(g(c), c) < δn/2 for all c ∈ An and g(an) = a′ . Since an is 1
n -isolated, there

is some g′ ∈ Aut(M/A+ ∩ B) , with d(g′(c), c) < 1
n for c ∈ A+ and d(g′(an), g(an)) < 1

n .
Further, since f ◦ g ∈ Aut(M/An ∩B) and d(f ◦ g(c), c) ≤ δn for all c ∈ An , there is some
h′ ∈ Aut(M/A+ ∩ B) with d(h′(c), c) < 1

n for all c ∈ A+ and d(h′(an), f ◦ g(an)) < 1
n .

Let g′ = h′ ◦ (g′)−1 . Then f ′ ∈ Aut(M/A+ ∩ B) , d(f ′(c), c) < 2
n < ε for all c ∈ A+ and

d(f ′(a′), f(a′)) = d(f ′ ◦ g(an), f ◦ g(an))

≤ d(f ′ ◦ g(an), f ′ ◦ g′(an)) + d(f ′ ◦ g′(an), f ◦ g(an))

= d(g(an), g′(an)) + d(h′(an), f ◦ g(an))

≥
1

n
+

1

n
≥ ε.

10.2.2 [B]-saturation

Definition 10.20. A set A ⊃ B is called F M

λ - [B]-saturated if for all A′ ⊂ A with
|A′| < λ , all a ∈ M and ε > 0 there is f ∈ Aut(M/A′ ∩ B) such that d(c, f(c)) < ε for
all c ∈ A′ and f(a) ∈ A .

Remark 10.21. Note that if B ′ ⊂ B then F M

λ - [B]-saturation implies F M

λ - [B′]-
saturation.

Fact 10.22. All complete F M
ω - [∅]-saturated sets are models.

Proof. This is proven essentially as in theorem 3.10 and corollary 3.11. The difference is
that we in the construction from 3.10 instead of fixing something close to the parameters
(An and Bn ) directly require that we move them just a little.

10.2.3 [B]-primary models

Definition 10.23. Let B ⊂ A ⊂ C . C is primary over A with respect to B ( [B]-primary
over A for short) if

• C = C where C = A ∪
⋃
{ai : i < α} ,
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• for all i < α , tg(ai/A ∪
⋃
{aj : j < i}) is [B]-isolated,

• C is F M
ω - [B]-saturated.

Remark 10.24. Note that the ai ’s in the definition are finite tuples and not single ele-
ments.

Remark 10.25. It is easy to see that if B ⊂ A and A is F M

λ - [B]-saturated, then A is
FM

λ - [B]-saturated.

Lemma 10.26. Assume K is ω -d-stable. Then for all A and B with A ⊃ B there exists

a [B]-primary model over A.

Proof. By fact 10.22 and remark 10.25 it is enough to construct a F M
ω - [B]-saturated set

C of the form C = A ∪
⋃
{ai : i < α} , where for all i < α , tg(ai/A ∪

⋃
{aj : j < i}) is

[B]-isolated.

We define by induction on i sets Ai and finite tuples ai such that Ai = A∪
⋃
{aj : j < i}

and tg(ai/Ai) is [B]-isolated. If Aα has been defined and is not F M
ω - [B]-saturated, then

there is some finite A′ ⊂ Aα , some a ∈ M and δ > 0 such that no f ∈ Aut(M/A′ ∩ B)

satisfies d(f(c), c) < δ for all c ∈ A′ and f(a) ∈ Aα . Among these choose A′ , a and δ

such that ja,A′,δ = min{j : A′ ⊆ Aj} is minimal. Let n > 1/δ . Then by lemma 10.19, let
a′ be such that

tg(a′/A′) =
1/n
[B] tg(a/A′)

and tg(a′/Aα) is [B]-isolated. Then define aα = a′ . Changing δ to some 1/n makes
sure that we do not treat the same type more than ω times. The construction will then
terminate essentially as in [She90, Theorem IV.3.1].

Then we take the metric closure of the constructed set and by 10.22 and remark 10.25
we are done.

Definition 10.27. Assume B ⊂ A ⊂ C . Then C is [B]-atomic over A if for every c ∈ C ,
tg(c/A) is [B]-isolated.

Lemma 10.28. Assume B ⊂ A ⊂ C and C is [B]-primary over A. Then C is [B]-

atomic over A.

Proof. By definition C = C for some C = A ∪
⋃
{ai : i < α} where for each i < α ,

tg(ai/A ∪
⋃
{aj : j < i}) is [B]-isolated. Hence, first prove by induction on i < α , that

for each a ∈ Ai , tg(a/A) is [B]-isolated. This proves that C is atomic. For a ∈ C ,
the [B]-ε/3-isolation of some a′ ∈ C with d(a′, a) < ε/3 implies the [B]-ε-isolation of
tg(a/A) , completing the proof.

Lemma 10.29. Assume K is ω -d-stable, A is countable, A ⊂ A and A realizes all

types over finite subsets of A. Assume further that some δ > 0 and finite A′ ∪B′ ⊂ A∪B

ε-isolate tg(a/A ∪B) with respect to A and B ′ ↓δ
A A ∪C . Then a ↓2ε

A A ∪C . Moreover if

A is F M
ω -saturated and B ↓0

A
C then for every a such that tg(a/A ∪B) is [A ]-isolated,

a ↓0
A

C .

Proof. Let δ > 0 and some finite A′ ∪ B′ ⊂ A ∪ B [A ]-ε-isolate tg(a/A ∪ B) and let
some finite A′′ ⊂ A witness B ′ ↓δ

A C . Let E = A′ ∪A′′ . We claim that tg(a/A ∪C) does
not 2ε-split over E . So let b, c ∈ A ∪ C and g ∈ Aut(M/E) such that g(c) = b .
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Case 1: b ∈ A . Since B ′ ↓δ
E A ∪ C ,

d(tg(B′/E ∪ b), tg(g(B′)/E ∪ b)) < δ.

Hence there is g′ ∈ Aut(M/E ∪ b) with d(g′ ◦ g(B′), B′) < δ . Now g′ ◦ g ∈ Aut(M/E)

and d(g′ ◦ g(B′), B′) < δ . Since δ and A′ ∪ B′ ⊂ E ∪ B′ [A ]-ε-isolate tg(a/A ∪ B) , for
every finite A+ ⊂ A we have

d(tg(g′ ◦ g(a)/A+), tg(a/A+)) < ε,

especially since tg(g′ ◦ g(a)/E ∪ b) = tg(g(a)/E ∪ b) ,

d(tg(g(a)/E ∪ b), tg(a/E ∪ b)) < ε,

which proves non-ε-splitting if b ∈ A .

Case 2: b /∈ A . By the saturation properties of A let g ′ ∈ Aut(M/E) , g′(b) ∈ A .
Then we use case 1 and deduce:

d(tg(g(a)/E ∪ b), tg(a/E ∪ b))

= d(tg(g′ ◦ g(a)/E ∪ g′(b)), tg(g′(a)/E ∪ g′(b)))

≤ d(tg(g′ ◦ g(a)/E ∪ g′(b)), tg(a/E ∪ g′(b)))

+d(tg(a/E ∪ g′(b)), tg(g′(a)/E ∪ g′(b)))

< ε + ε = 2ε.

Hence in either case a ↓2ε
A A ∪ C . The moreover part clearly follows.

10.3 Main theorem

Theorem 10.30. Assume K is κ-categorical for some uncountable κ and metricly homo-

geneous. Assume further that either κ ≥ ℵ2 or there are F M
ω -saturated separable models.

Then every F M

ℵ1
-saturated model A is saturated.

Proof. Let |A | = λ . We wish to show that A is F M

λ -d-saturated, since then the claim
follows using theorem 3.7. So let B ⊂ A , |B| < λ , q ∈ S(B) and ε > 0 .

Now note that by κ-categoricity, K is ω -d-stable (Corollary 5.8). Further by metric
homogeneity and theorem 10.9, K is ξ -d-stable for every ξ ≥ ℵ0 and by theorem 10.10
there exists saturated models of density ξ for each uncountable ξ . Hence the unique model
of density κ is saturated, and all larger models are at least F M

κ -saturated.

We may assume λ is regular since once we have proven the theorem for regular cardinals,
the claim will follow for singular cardinalities by taking an F M

ℵ1
-saturated submodel of

regular density containing the parameters.

Since A is F M

ℵ1
-saturated, we may assume B is. Since K is ω -d-stable, F M

ℵ1
-saturation

implies strong F M

ℵ1
-saturation (lemma 6.3). So we may choose models Bi and elements

bi , for i < λ , such that

• B0 = B ,

• Bi ⊂ A ,

• |Bi| < λ
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• Bi is (strongly) F M

ℵ1
-saturated,

• bi ∈ A \Bi ,

• Bi+1 ⊇ Bi ∪ bi

• for limit i , Bi ⊇
⋃

j<i Bj and for cf(i) ≥ ℵ1 we have equality.

By lemma 4.11 for each i < λ choose a countable set Ai ⊂ Bi such that bi ↓
0
Ai

Bi .
Let f(i) be the least j for which Ai ⊂ Bj . then for cf(i) ≥ ℵ1 , f(i) < i so by Fodor’s
lemma there is a stationary set S ⊂ λ and i∗ < λ such that Ai ⊂ Bi∗ for all i ∈ S . Since
S has size λ we may reenumerate Bi for i ∈ S , starting from B0 = Bi∗ . Now we have
an increasing chain of F M

ℵ1
-saturated models such that

• q ∈ S(B0) (we just take any extension of the original q ),

• for every i < λ , bi ↓
0
B0

Bi .

Since |B0| < λ and K is |B0|-d-stable, the set {tg(bi/B0) : i < λ} has an accumula-
tion point in S(B0) , denote it (one of them) by p . Now for each k < ω let (ikn)n<ω be an
increasing sequence of indices < λ such that d(tg(bikn

/B0), p) < 1/k .

Next let A ⊂ B0 be a countable set such that the types p , q and tg(bikn
/B0) , for

k, n < ω , are 0-independent over A . Let A + ⊂ B0 be F M
ω -saturated and such that

A ⊂ A + .

We may construct a “0-Morley sequence” for p over A as follows: Let a0 realize p .
Then a0 ↓0

A B0 . When ai has been defined for all i < α , let Dα ⊃ B0 ∪ {ai : i < α}
be F M

ℵ1
-saturated and by 4.15 let aα realize p = tg(a0/B0) and satisfy aα ↓0

A Dα . This
way construct a sequence I of length > κ such that I ↓0

A B0 . Let M be [A +]-primary
over A + ∪ I . Then |M | > κ so M is F M

κ -saturated. Now either κ ≥ ℵ2 or we can
assume A + to be separable, so M realizes q � A + , by say a . By lemma 10.28, M is
[A +]-atomic over A + ∪ I , so by lemma 10.29 a ↓0

A + B0 . Then by lemma 4.12 a realizes
q and a ↓0

A B0 .

Now let δ > 0 and some finite D ∪ J ⊂ A + ∪ I fMH(ε)/2-isolate tg(a/A + ∪ I) with
respect to A + . Then let A ′ be a separable model ⊃ A ∪D realizing all types over finite
subsets of A∪D . We wish to move J = {jn : n < l} into A close enough to some bi ’s to
be δ/2-independent. So let k > 1/fMH(δ/2) and note that since d(tg(bk

n
/B0), p) < 1/k

for each n < ω , there is some j+
0 (∈ M) realizing p with d(j+

0 , bik0
) < 1/k < fMH(δ/2) .

By F M

ℵ1
-saturation of Bik0+1 , we may realize tg(j+

0 /A ′ ∪ bik0
) in Bik0+1 by some j′0 . Then

tg(j′0/A
′) = tg(j+

0 /A ′) = tg(j0/A
′) and d(j′0, bik0

) = d(j+
0 , bik0

) < fMH(δ/2) ≤ δ/2 and
there is some f0 ∈ Aut(M/A ′) mapping j0 to j′0 . Next assume n < l and we have defined
elements j ′m , for m ≤ n and an automorphism fn such that

• j′m = fn(jm) ∈ Bikm+1 ,

• fn ∈ Aut(M/A ′) ,

• d(j′m, bikm
) < δ/2 .

Now

d(tg(fn(jn+1)/A
′), tg(bikn+1

/A ′)) = d(tg(jn+1/A
′), tg(bikn+1

/A ′))

= d(p � A
′, tg(bikn+1

/A ′))

< 1/k < fMH(δ/2).
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Further since jn+1 ↓0
A B0 ∪

⋃
{jm : m ≤ n} , we have

fn(jn+1) ↓
0
A A

′ ∪
⋃

{j′m : m ≤ n}.

Also, since j ′m ∈ Bikn+1 ⊆ Bikn+1
for m ≤ n , we have

bikn+1
↓0

A A
′ ∪
⋃

{j′m : m ≤ n}.

So by lemma 10.4

d(tg(fn(jn+1)/A
′ ∪
⋃

{j′m : m ≤ n}), tg(bikn+1
/A ′ ∪

⋃
{j′m : m ≤ n})) < δ/2.

So by the same technique as for finding j ′0 we can find j ′n+1 ∈ Bikn+1+1 with d(j′n+1, bikn+1
) <

δ/2 and some g ∈ Aut(M/A ′ ∪
⋃
{j′m : m ≤ n}) moving fn(jn+1) to j′n+1 . Then we let

fn+1 = g ◦ fn and continue the induction. Finally we let

f+ =
⋃

n<l

fn � (A ′ ∪
⋃

{jm : m ≤ n})

which is well-defined and type-preserving and hence extends to an automorphism f ′ ∈
Aut(M/A ′) . By further realizing tg(f ′(a)/A ′ ∪

⋃
{j′n : n < l}) in A we find f ∈

Aut(M/A ′) moving both J and a into A .

Denote J ′ = {j′n : n < l} and a′ = f(a) . Now d(J ′, (bikn
)n<l) < δ/2 and (bikn

)n<l ↓
0
A

B0 so by lemma 10.5 J ′ ↓δ
A B0 . Further since δ and D ∪ J [A +]-fMH(ε)/2-isolate

tg(a/A + ∪ I) , δ and D∪J ′ [A ′]-fMH(ε)/2-isolate tg(a′/A ′∪ f(I)) . So by lemma 10.29

a′ ↓
fMH (ε)
A B0 .

Finally we remember that a ↓0
A B0 and tg(a′/A ′) = tg(a/A ′) . Hence lemma 10.4

implies
d(tg(a′/B0), t

g(a/B0)) ≤ ε

proving F M

λ -d-saturation.

Corollary 10.31. If K is metricly homogeneous and κ-categorical for some uncountable κ

and either κ > ℵ1 or separable F M
ω -saturated models exist, then there exists some ξ < ic+

such that K is categorical in all λ ≥ min{κ, ξ}.

Proof. Note that lemma 8.2 uses the assumption of κℵ0 = κ only to get stability. However
with metric homogeneity this assumption becomes unnecessary. Hence the proof of the
lemma shows that for some ξ < ic+ , every model of cardinality at least ξ is F M

ℵ1
-saturated.

Hence of course all models of density≥ ξ are F M

ℵ1
-saturated, and the claim follows by

theorem 10.30.

Remark 10.32. Ben-Yaacov and Usvyatsov define d-finiteness in [BYU07]. In our con-
text a type tg(a/∅) is d-finite if for every b and ε > 0 there exists some δ > 0 such
that whenever tg(a′/∅) = tg(a/∅) and d(a, a′) ≤ δ , there is b′ such that d(b, b′) ≤ ε and
tg(a′b′/∅) = tg(ab/∅) . It is easy to see that if all (finite) types are d-finite, then approxi-
mately F M

ω -saturated models are F M
ω -saturated, giving us separable F M

ω saturated models
(and hence categoricity transfer also assuming κ = ℵ1 ).
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