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Abstract

A signal extraction problem in simulated games is studied. A modelling technique is proposed for
deriving beliefs for players in simulated games. Since standard Bayesian games provide conditions for
beliefs on the basis of the common prior assumption, they do not allow for non-uniform beliefs unless
the game has some dynamic structure that allows for learning. The framework presented allows for
deriving beliefs by characterizing the reliability of the signals, and the players’ degree of confidence
in these signals. This makes it particularly suitable for games with a large number of heterogenous
players.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In standard Bayesian incomplete information models, the players’actions are independent
of the realisations of random variables because they are assumed to know the probability
distributions for the relevant random variables, but not the realisations of these variables
(e.g. Harsanyi, 1967–1968, 1995). These models assume that the players start with common
priors and update them with Bayes’ rule as the play unfolds. Bayesian models have proven
to be very useful in game theory but they are not applicable in all circumstances. For
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example, in games where the players do not have the opportunity of updating their beliefs
by observing other players’ choices, they may update their beliefs only if they obtain a
signal that contains some valuable information for them.

A decade ago Carlsson and van Damme (1993) proposed an alternative to the Bayesian
approach of analysing incomplete information in games; the global games. See Morris
and Shin (2001) for a review of the literature on global games. Frankel et al. (2003)
generalise the results of Hansson and van Damme to arbitrary numbers of players and
actions.

In this paper, we will propose a modelling technique that is similar to global games and
to statistical signal extraction in that the players are assumed to observe a perturbed signal
of the underlying true game. However, instead of presenting an analytical model, our model
is best applied in simulated games with a large number of heterogenous players.

A model where the players receive perturbed signals concerning the true game is par-
ticularly appropriate when the preference profile (the set of preferences for all players) is
drawn from some symmetric distribution, and the players need to know something beyond
their priors about the characteristics of a large population of heterogenous players. Such
models are not to be confused with signaling models, where the players themselves send
signals. We will study a setting where such characteristics include the realised distribu-
tion of players, i.e. the number of players with some particular type of preferences. More
particularly, we will show how to derive beliefs in simulated games where the profile of
player types is generated with a uniform distribution such that each player type is equally
likely.

It is difficult to model the beliefs of a large number of heterogenous players because it
is practically impossible to collect information on such beliefs. Our approach provides
one possible way of dealing with such situations because we characterise the players’
information by the reliability of signals they receive, and by the degree of confidence that
they have for these signals. The framework allows us to derive beliefs for a large number
of players with heterogenous preferences who receive different signals.

Since the terms ‘reliability’and ‘degree of confidence’have various meanings in different
frameworks, let us emphasize at the outset that the reliability of the players’ information
is a property of the signals rather than an intentional state of the players in our model.
It is formalised as the standard deviation of the perturbations. The degree of confidence
also concerns the signals rather than the beliefs derived from them. The degree of confi-
dence affects the players’ beliefs, but it is conceptually and formally different from those
beliefs.

One area of application for our information model is voting theory where simulations
with the uniform distribution on player types is known as the impartial culture assump-
tion. See Tsetlin et al. (2003) and Gehrlein (2002) for recent discussions of impartial
culture. In principle, the technique is general enough to be applicable in any situation
with a large number of players, but the fact that we derive beliefs for players whose
types are drawn from a uniform distribution of course limits the applicability of the
model.

The structure of the paper is the following. Section 2 delineates the similarities and
differences of our approach to global games. Section 3 describes the signals. The beliefs are
derived from these signals in Appendix A. In Section 4 we discuss how the reliability of the
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signals and the players’ confidence in these signals affect the beliefs. Section 5 compares
our concept of the degree of confidence to some previous conceptualizations.

2. Global games

A global game (Carlsson and van Damme, 1993) is an incomplete information game
where the actual payoff structure is determined by a random draw from a given class of
games and where each player makes a noisy signal of the selected game.

Consider a situation in which the players know that some game in the class of games G
will be played, but they do not know which one. A class of games is a set of games with a
set of players I (i = 1, 2, . . . , N) and a set of possible payoff profiles �.

Initially, the players have common prior beliefs represented by a probability distribution
with support on G. Before choosing an action, each player gets additional private information
in the form of a perturbed signal of the actual game g to be played. The resulting incom-
plete information game is thus called a global game. It can be described by the following
steps:

1. Nature selects a game g from G.
2. Each player observes g with some noise.
3. Players choose actions simultaneously.
4. Payoffs are determined by g and by the player’s choices.

Player i:s signal is described by a random variable S�
i which is defined by:

S�
i = g + �ri ,

where ri is a realisation of a random variable, and � is a scale parameter. The players are
thus assumed to observe the realised game g, plus an error term �ri . The players’ signals
are correlated, because they are noisy signals of the true game.

Our approach differs from global games as follows. First, most contributions in global
games derive limit uniqueness results assuming that � approaches zero. In this sense the
signals in global games are ‘close’ to being correct, whereas in our approach parameter
� may in principle be of any size whatsoever. Our players are thus allowed to be ‘less’
informed than the players in global games.

Second, it is usually assumed in global games that as � → 0, each player becomes certain
that she and her opponent have observed the true game. In contrast, we may consider
parameter � as unobservable and not necessarily known. Therefore, even if the reliability of
the signals was perfect (i.e. � was zero), we need not assume that the players are certain to
have observed the true game.

Third, our model is better suited for situations with parametric rationality than strategic
rationality (Elster, 1983). We derive beliefs for the players on the basis of what they know
about the payoff profile, but we do not derive equilibrium strategies. Our model of signals
and beliefs can be used together with different models that formulate the players’ expected
utilities. Since we do not present any particular application in this paper, we will not present
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an account for how the players can take other players’ optimal strategies into account. For
an example of how this can be done, see Lehtinen (2005).

3. The signals

The players’ preferences are defined on a set X of items. X contains some items that the
players rank or compare with each other. The most typical application of such a model
is one where the players are interested in whether a majority of players prefer j to k or
vice versa. The model is obviously applicable to any number of pairwise comparisons of
items.

Let N denote the number of players and ng(j � k) the number of players who prefer j
to k (j, k ∈ X) in a simulated game g. Since all the symbols will be defined for a given
simulated game g, we will not subscript our variables by ‘g’ in the sequel.

Let ni(j � k) = 1, if player i prefers j to k, and ni(j � k) = 0, if player i prefers k to j.
In this simple setting, a player’s type refers merely to whether she prefers j to k. Since we
assume that the profile of player types for a simulated game g is generated with impartial
culture, each type is equally likely. n(j � k) can thus be viewed as a sum of N Bernoulli
trials, n(j � k) =∑N

i=1ni(j � k), and the probability p that such a Bernoulli trial results
in the outcome ni(j � k) = 1 is 1

2 .
The players are assumed to obtain a perturbed signal of the number of players who prefer

j to k. One way of writing the signal is as follows:

s�
i = n(j � k)

N
+ �ri , (1)

where � is a scaling factor and ri is a realisation of a random variable P. � reflects the
reliability of the signal. In this paper we will assume that the variable P is standard normal;
P ∼ N(0, 1).

What we want to do is to derive the probability that the number of players who prefer j
to k is larger than N

2 , given a signal S�
i . Let pi(j, k) denote such a probability for player i:

pi(j, k) = prob(n(j � k) > n(k � j)) (2)

= prob

(
n(j � k) >

N

2

)
(3)

= prob

(
2n(j � k)

n(j � k) + n(k � j)
> 1

)
. (4)

The derivation of such probabilities requires knowledge of the variance of the variable
n(j � k). In simulated games generated with the impartial culture assumption, this variance
is Np2.

Since n(j � k) is the sum of N Bernoulli trials, the Central Limit Theorem implies that
the random variable n(j � k)/N can be approximated with a normally distributed random
variable N(j � k). Naturally, invoking the central limit theorem restricts the applicability
of this model to games with a relatively large number of players.



A. Lehtinen / Computational Statistics & Data Analysis 50 (2006) 2495–2507 2499

Let us define a perturbation Ri as Ri = �ri . The signal can now be written as a sum of
two normally distributed random variables:

s�
i = N(j � k) + Ri . (5)

Before deriving beliefs from such signals, let us point out that it will usually be more
convenient to use a standardized sum of Bernoulli trials, Q(j � k), instead of the variable
n(j � k) itself. The standardised sum is given by:

Q(j � k) = n(j � k) − Np√
Np2

. (6)

In models with impartial culture p = 1
2 , so that this is

Q(j � k) = 2n(j � k) − N√
N

. (7)

A standardised signal of player i is then given by

s�
i = 2n(j � k) − N√

N
+ �ri (8)

= Q(j � k) + Ri . (9)

Deriving the beliefs from such signals involves standard statistical inference. The derivation
is relegated to an appendix because it is somewhat tedious. Eq. (A.13) in theAppendix shows
that the players’ beliefs are given by

pi(j, k) = 1 − �

(
− 1

�
√

1 + �2
s�
i

)
. (10)

4. Reliability of signals and confidence

We will now consider how the degree of confidence and the reliability of the sig-
nals are interpreted in our model. Let us define the random variable X as follows: X =(
Q(j � k)|S = s�

i

)
. X is the conditional value of the standardised variable Q(j � k), given

the signal s�
i . Inserting the standard deviations �R = �, and �Q = 1 into Eq. (A.8) in the

Appendix gives the density of variable X:

fX(x) =
√

1 + �2
√

2��
exp

⎛
⎝−1

2

(
1 + �2

)
�2

(
x − s�

i(
1 + �2

)
)2
⎞
⎠ . (11)

The expected value of X is thus

E[X] = E
[
Q(j � k)|S = s�

i

]= s�
i(

1 + �2
) . (12)

Eq. (12) has a natural interpretation. The smaller the variance
(
�2
)

of the error term Ri , the
more exact information the signal provides of the variable Q(j � k), and the more it will
be rational to update the beliefs.
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Note that

lim
�→0

E
[
Q(j � k)|S = s�

i

]= s�
i . (13)

Hence, as the error term Ri (=�ri) approaches zero, the signal provides more and more exact
information on the ratio 2n(j�k)

n(j�k)+n(k�j)
or the corresponding standardised ratio 2n(j�k)−N√

N
.

Furthermore,

lim
�→∞ E

[
Q(j � k)|S = s�

i

]= 0. (14)

Hence, as the variance of the error term approaches infinity, the expected value of the
conditional value of the standardised variable Q approaches zero. This means that the signals
become more and more uninformative as the variance of the perturbations increases.

It may not be realistic to assume that the players know the reliability � of their signals.
In such cases the players may be assumed to formulate expectations Ei(�) concerning the
reliability of their signals �. The player’s beliefs can then be derived using a modified version
of Eq. (10):

pi(j, k) = 1 − �

(
− 1

E(�)
√

1 + [E(�)]2
s�
i

)
. (15)

Let us say that � denotes the reliability of signals, and Ei(�) the degree of confidence in
these signals. Considering Eq. (8), we may now define the following concepts:

Definition 1. The reliability of signals, �, is the standard deviation of the perturbations Ri

of the signals.

Definition 2. The degree of confidence in the signals is the expectation of the reliability of
the signals E(�).

Here is how the proposed model can be used in computer simulations. We can test how
the outcomes differ when we keep the preference profile fixed but vary the reliability of
the signals and the degree of confidence. It is usually convenient to assume that all players
and player types have the same reliability of signals and the same degree of confidence,
but this is by no means necessary. It is also possible to study cases where the players are
systematically over-confident (E(�) < �) or under-confident (E(�) > �).

It seems reasonable to assume that the reliability of the signals is the same for all players
because the differences in the realized values of the perturbations already generate variation
in the quality of the signals. However, it may also be reasonable to assume that the reliability
of the signals is different for different types of players. On the other hand, making � different
by drawing it from the same probability distribution for all players would merely make the
model more complicated without changing its substance. In contrast, it may be reasonable
to assume that different people have different degrees of confidence in the signals even if
the reliability of the signals is the same for all players. After all, if the players are assumed
not to know what the reliability of the signals is, it seems natural to assume that they may
have different degrees of confidence in the signals. Making this assumption makes sense if
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one is interested in studying how differences in the degree of confidence affect the results
of the model. It may also be perfectly justified to assume the same reliability and degree of
confidence for all players in a given simulation round.

Definition 3. The players have a correct degree of confidence if their degree of confidence
in their signals equals the reliability of these signals; Ei(�) = �i for all i ∈ I .

The correct degree of confidence means that the players’ beliefs about the quality of their
signals reflects the real quality of those signals. The standard way of distinguishing between
objective and subjective interpretations of probabilities is to say that probabilities can be
interpreted as objective if they are based on a known probabilistic process. Probabilities are
subjective if they are not based on such processes. It may thus be said that models assuming
a correct degree of confidence incorporate objectively interpreted probabilities.

The smaller � is, the more reliable a player’s signals are, and the smaller Ei(�) is, the
greater the player’s degree of confidence in her signals. If � =0 for all i ∈ I , we say that
the players have perfectly reliable information. However, if the players are not assumed to
know the value of � even though the players have the same signals as they would have in a
corresponding complete information game, this does not yet imply that they act in the same
way as players with complete information.

If �=Ei(�)= 0 for all players, i.e. if the players have both perfectly reliable information
and a correct degree of confidence in their signals, the players’ beliefs correspond to the
knowledge of players in a corresponding complete information game. In this sense, complete
information games can be viewed as a special case of our information model. To see this,
note first that

pi(j, k) > 1
2 ⇔ s�

i > 0,

pi(j, k) = 1
2 ⇔ s�

i = 0,

pi(j, k) < 1
2 ⇔ s�

i < 0.

With � = E(�), and inserting (8) into (15), we have

lim
E(�)→0

pi(j, k)

= lim
E(�)→0

{
1 − �

(
− 1

E(�)
√

1 + E(�)2

[
2n(j � k) − N√

N
+ �ri

])}

= 1 ⇔ 2n(j � k) − N√
N

> 0

= 0 ⇔ 2n(j � k) − N√
N

< 0.

Even if � 	= 0, it is possible that a player’s perturbed signal corresponds exactly to the true
value of the variable Q, if ri happens to be exactly zero. This is very unlikely, of course,
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because the perturbations are normally distributed. If ri =0, and Ei(�) 	= 0, player i’s signal
is essentially the same as in a corresponding complete information game, but again, she
will not act as if she had complete information because player i’s beliefs are not degenerate
(0 or 1) when she does not have full confidence in her signals. In other words, if a player
happens to guess the ratio 2n(j�k)−N√

N
correctly, she is not willing to act on the basis of this

guess if she believes it is based on highly dubious evidence.

5. Relation to some previous literature

Many previous accounts have considered the degree of confidence in one’s beliefs. Here,
however, we model the degree of confidence in one’s signals. This is why we need not invoke
second-order beliefs (e.g., Marschak, 1975; Borch, 1975), or intervals of beliefs (e.g. Good,
1962; Gärdenfors and Sahlin, 1982) to take into account the players’ confidence. These
approaches suffer from well-known weaknesses. The degree of confidence in one’s beliefs
should already be taken into account in the first-order probabilities and thus the second-
order probabilities are superfluous (see Savage, 1954, p. 58; de Finetti, 1977). If the upper
and lower probabilities in the interval do not yield the same recommendations for action,
there is no evident way to choose between the different actions (e.g. Skyrms, 1990, p. 113).

Second-order beliefs and intervals of beliefs have been proposed as a solution to Ellsberg’s
(1961) paradox. The literature that has tried to respond to Ellsberg’s experiments has been
concerned with two related concepts; the degree of confidence in one’s probability judgments
and the ambiguity of the players’ information. See also the papers on the third kind of
solution; non-additive probabilities (Gilboa, 1987; Schmeidler, 1989). Our approach is not
designed nor suitable for modelling ambiguity because the players are always assumed to
know the form of the distribution that is of interest to them. At the same time, the degree of
confidence has a natural interpretation in our model.

Savage (1954, p. 68) denies that the degree of confidence in one’s information can have an
effect on a person’s judgment of probabilities: “...the particular personalistic view sponsored
here does not leave room for optimism or pessimism, however these traits be interpreted, to
play any role in the person’s judgment of probabilities”. But since we model the degree of
confidence in the signals rather than the degree of confidence in the probability judgments,
we arrive at unique probabilities that may be used in standard expected utility calculations.
This is why we can sidestep Skyrms’ criticism even though we explicitly model the players’
degree of confidence.

6. Conclusions

Our account of perturbed signals is particularly well suited for modelling situations
where a large number of players have heterogenous preferences and beliefs. It is designed
to be used as a part of a larger expected utility model where the differences in the players’
beliefs play an important role. Since the beliefs are based on the realised profile of player
types rather than on a profile of equilibrium strategies, the signal extraction belief model
does not itself provide any way of taking other players’ strategic behaviour into account.
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Therefore, the methods for deriving the players’ beliefs presented in this paper are most
appropriate in situations where the players’ types provide sufficiently adequate information
on their actions. Given that the model is intended to be used in models with a large number
of heterogenous players, and given that they have merely imprecise information on other
players’ types, it may well be reasonable to assume that the players do not know very much
about individual players’ degree of confidence. In such circumstances it is reasonable to
ignore how the other players’ degree of confidence might influence the degree of reliability
of the information.

Voting theory provides an obvious field in which to apply our information model. There
are a large number of voters with different preferences for the various candidates or al-
ternatives. A typical piece of information that interests the voters is whether candidate A
will obtain more votes than candidate B. The model presented here can be used to derive
probabilities with which candidate A obtains more votes than candidate B by assuming that
the probabilities are based on perturbed signals of the voters’ real preferences for A and B.

There is nothing, however, in the information model that restricts its use to voting simu-
lations. It remains to be seen whether the model can fruitfully be applied in other fields of
research.
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Appendix A. Deriving the beliefs

We will now derive the belief of a player who has obtained a signal s�
i . In what follows

in this appendix, we will omit the subscripts denoting the individuals (i), the candidates (j
and k) and the simulated game (g) in order to make it easier to read the formulas. We will
thus write the signal (Eq. (9)) as

S = Q + R. (A.1)

R is a random variable with mean zero and variance �2. Since variable Q is standard normal,
the signal S can be viewed as a sum of two normally distributed random variables Q ∼
N(0, 1) and R ∼ N(0, �2).

Let �Q (=1) and �R (=�) denote the standard deviations of Q and R, respectively. We
will now derive a conditional distribution for the variable Q, F(Q < 0|S = s�

i ).
The density of Q is

fQ(q) = 1√
2��Q

exp

[
−1

2

(
q

�Q

)2
]

, (A.2)



2504 A. Lehtinen / Computational Statistics & Data Analysis 50 (2006) 2495–2507

and the density of R is

fR(r) = 1√
2��R

exp

[
−1

2

(
r

�R

)2
]

. (A.3)

Now q + r = s so that r = s − q. Let us now use

q = x, and (A.4)

r = s − x.

Since Q and R are two independent random variables, their joint density is given by the
product of their densities (e.g. Casella and Berger, 1990, p. 210)

fQ,R(q, r) = fQ(q)fR(r)

= 1

2�

1

�Q�R

exp

[
−1

2

(
q

�Q

)2

− 1

2

(
r

�R

)2
]

. (A.5)

Using (A.4) we get

= 1

2�

1

�Q�R

exp

[
−1

2

(
x

�Q

)2

− 1

2

(
s − x

�R

)2
]

.

Let D =
[
− 1

2

(
x

�Q

)2 − 1
2

(
s−x
�R

)2
]

. This can be written as follows:

D = −1

2

[(
1

�2
R

+ 1

�2
Q

)
x2 − 2sx

�2
R

+ s2

�2
R

]
.

Completing the square we have

D = −1

2

⎡
⎣( 1

�2
R

+ 1

�2
Q

)(
x − �2

Q

�2
Q + �2

R

s

)2

+ s2

�2
R

− s2

�4
R

⎤
⎦ . (A.6)

Consider now the random variable X = (Q|S = s). From (A.6) we see that

X ∼ N

(
�2

Q

�2
Q+�2

R

s, �2
X

)
, where �2

X= 1(
1

�2
R

+ 1
�2
Q

) .The density function of X is of the following

form:

fX(x) = A
1

2�

1

�Q�R

exp

[
−1

2

(
s2

�2
R

− s2

�4
R

)]

× exp

⎡
⎣− 1

2�2
X

(
x − �2

Q

�2
Q + �2

R

s

)2
⎤
⎦ . (A.7)
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Now since
∫∞
−∞ fX(x) dx = 1, we have

A
1

2�

1

�Q�R

exp

[
−1

2

(
s2

�2
R

− s2

�4
R

)]

×
∫ ∞

−∞
exp

⎡
⎣− 1

2�2
X

(
x − �2

Q

�2
Q + �2

R

s

)2
⎤
⎦ dx = 1

and since

∫ ∞

−∞
exp

⎡
⎣− 1

2�2
X

(
x − �2

Q

�2
Q + �2

R

s

)2
⎤
⎦ dx = √

2��X,

it is easy to see that

A = 1

1

2�

1

�Q�R

exp

[
−1

2

(
s2

�2
R

− s2

�4
R

)]√
2��X

,

so that

fX(x) = 1√
2��X

exp

⎡
⎣− 1

2�2
X

(
x − �2

Q

�2
Q + �2

R

s

)2
⎤
⎦ . (A.8)

The probability p(Q < 0|S = s) is given by the cumulative distribution function of X:

FX(x) =
∫ 0

−∞
1√

2��X

exp

⎡
⎣− 1

2�2
X

(
x − �2

Q

�2
Q + �2

R

s

)2
⎤
⎦ dx. (A.9)

Since �2
X = 1(

1
�2
R

+ 1
�2
Q

) = 1(
�2
Q

+�2
R

�2
R

�2
Q

) = �2
Q�2

R

�2
Q+�2

R

, 1
�2

X

= �2
Q+�2

R

�2
Q�2

R

, and 1
�X

=
√

�2
Q+�2

R

�2
Q�2

R

, we can

write Eq. (A.9) as follows:

FX(x) = 1√
2�

√√√√�2
Q + �2

R

�2
Q�2

R

×
∫ 0

−∞
exp

⎡
⎢⎣−1

2

⎛
⎜⎝x

√
�2

Q + �2
R

�Q�R

− 1

�Q�R

�2
Q√

�2
Q + �2

R

s

⎞
⎟⎠

2⎤
⎥⎦ dx. (A.10)

We will need to make two changes of variables in order to derive a functional form

that can be used in computer simulations. Let u =
√

�2
Q + �2

Rx, so that dx = du√
�2

Q+�2
R

.
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When x = −∞, u = −∞, and when x = 0, u = 0. We have thus

FX(x) = 1√
2�

√√√√�2
Q + �2

R

�2
Q�2

R

1√
�2

Q + �2
R

×
∫ 0

−∞
exp

⎡
⎢⎣−1

2

⎛
⎜⎝ u

�Q�R

− 1

�Q�R

�2
Q√

�2
Q + �2

R

s

⎞
⎟⎠

2⎤
⎥⎦ du

= 1√
2��Q�R

∫ 0

−∞
exp

⎡
⎢⎣−1

2

⎛
⎜⎝ u

�Q�R

− 1

�Q�R

�2
Q√

�2
Q + �2

R

s

⎞
⎟⎠

2⎤
⎥⎦ du.

Now let w = u
�Q�R

− �Q

�R

1√
�2

Q+�2
R

s, so that du = �Q�Rdw. When u = −∞, w = −∞, and

when u = 0, w = −�Q

�R

1√
�2

Q+�2
R

s, so that

FX(x) = 1√
2�

∫ − �Q
�R

1√
�2
Q

+�2
R

s

−∞
exp

[
−1

2
w2
]

dw. (A.11)

This is the cumulative distribution function of a standard normal random variable so that

F(Q < 0|S = s) = �

⎛
⎜⎝−�Q

�R

1√
�2

Q + �2
R

s

⎞
⎟⎠ . (A.12)

Now since �Q = 1, and �R = �, �Q

�R

1√
�2

Q+�2
R

s = s

�
√

1+�2 . Player i’s beliefs are given by

pi(j, k) = 1 − �

(
− 1

�
√

1 + �2
s�
i

)
. (A.13)
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