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Abstract
This paper provides the first systematic epistemological account of simulated data in 
empirical science. We focus on the epistemic issues modelers face when they generate 
simulated data to solve problems with empirical datasets, research tools, or experiments. 
We argue that for simulated data to count as epistemically reliable, a simulation model 
does not have to mimic its target. Instead, some models take empirical data as a target, and 
simulated data may successfully mimic such a target even if the model does not. We show 
how to distinguish between simulated and empirical data, and we also offer a definition of 
simulation that can accommodate Monte Carlo models. We shed light on the epistemology 
of simulated data by providing a taxonomy of four different mimicking relations that dif-
fer concerning the nature of the relation or relata. We illustrate mimicking relations with 
examples from different sciences. Our main claim is that the epistemic evaluation of simu-
lated data should start with recognizing the diversity of mimicking relations rather than 
presuming that only one relation existed.

Keywords  Data · Computer simulation · Computation · Monte Carlo models · Mimicking

1  Introduction

The use of simulated data has become ubiquitous in the sciences, but extant philosophical 
accounts of simulation are incapable of accounting for the diverse scientific uses of simu-
lated data. We provide the first systematic epistemological account of the uses of simu-
lated data in empirical science. The typical reason for using simulated data is that existing 
empirical datasets, research tools, or experiments are deficient, and simulated data are used 
to enhance their epistemic or evidential relevance. We aim to show the conditions under 
which simulated data can be used to provide better data-to-phenomena inferences.

Antoniou (2021) posits that a dataset is epistemically reliable if it provides correct 
information for the physical phenomenon it represents. Similarly, one can ask: When is 
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a simulated dataset epistemically reliable? Answering this question requires defining 
what simulated data are, distinguishing them from empirical data, and then providing an 
account of what is epistemically relevant about simulated data. This is what we will do in 
this paper. However, we could not possibly provide an epistemology that covers the whole 
epistemology of simulation (see e.g., Winsberg, 2010; Beisbart & Saam, 2019; Durán, 
2018).1 Our definition posits that simulations2 mimic something. We are thus providing 
answers to a more limited question: When does mimicking support the epistemic reliability 
of simulated data?

Why is an epistemology of simulated data needed in addition to the already existing lit-
erature on the epistemology of simulation models? This is because evaluating the reliability 
of simulated data requires paying attention to the variety of relevant representational rela-
tions in generating simulated data. Importantly, we will discuss an example in which the 
simulated data mimics empirical data. Such examples cannot be analyzed with accounts 
presupposing that a simulation model mimics something. Although using simulated data 
serves various methodological functions, there is always some mimicking relation that is 
relevant for their epistemic evaluation. An epistemological investigation should begin by 
asking: What is the relevant representational relation, and is the mimicking successful? We 
identify four such relations (see Fig. 1). A simulation model may aim to mimic (a) one sys-
tem, (b) several specific systems, or (c) represent a Data Generating Process (DGP). Data 
produced by a simulation model may aim to mimic (d) existing empirical data.

A DGP consists of all the processes that are responsible for producing empirical data 
about a real-world system. Although the term is commonly used in statistics, we use it 
here in a broader sense in that DGPs can include instruments, experiments, measurements, 

A system 
or spesific 
systems

DGP(s)
Empirical 

Data
Data 

model(s)

(d) 

Simulated data

SDGP

(a)/(b)
(c)

Simula�on model

Fig. 1   The thin arrows and letters (a–d) indicate the relevant mimicking/representational relations and 
relata. The thick vertical black arrow indicates that the simulation model generates simulated data using a 
Simulated Data Generating Process (SDGP). While empirical data are generated from a system via a DGP 
or DGPs (light grey horizontal arrows), data models provide a representation of empirical data (the dark 
grey color of the rightmost horizontal arrow indicates this difference). A data model is needed for making 
empirical data usable for evidential purposes. Simulations can themselves be data models, test or correct 
data models, or take data models as input. (Color figure online)

1  We also do not discuss whether simulations are best characterized as experiments or arguments (see Mor-
rison 2015; Lenhard 2016; Imbert 2017 for overviews).
2  Although analog simulations mimic, we only discuss computer simulations.
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and data-collection methods. Modelers typically talk about DGPs when they study some 
particular problems with data, and the problems are different for different variables. This 
explains why the content of a DGP may vary from one study to another even when they 
concern the same system: the DGP in a model abstracts from some properties of the sys-
tem, and it is study-relative.3

The epistemically relevant mimicking relation depends on the function of the simulation 
and the case at hand. We discuss cases from several disciplines to show that the reasons for 
using simulated data, and the relevant mimicking relations vary. In sum, then, we need an 
epistemology of simulated data because extant accounts do not pay attention to the mim-
icking relations that are crucial in evaluating those data.

Mimicking relations are diverse because empirical data and the methods of analyz-
ing them are problematic in different ways. Depending on the case at hand, researchers 
may need to correct empirical data concerning biases, filter the signal from noise, add or 
augment data when data are insufficient for the researchers, enhance the interpretability 
of ambiguous data (cf. Bokulich, 2020), or aggregate data when researchers endeavor to 
obtain an overall view of some empirical literature. Moreover, simulated data are used to 
test the performance of research tools that researchers utilize in correcting, estimating, or 
collecting empirical data.

What are simulated data? Barberousse et al. (2009) provide an origin-based definition: 
Simulated data have their origin in a computer simulation model. This account does not 
provide a complete definition without a specification of what a computer simulation model 
is. Unfortunately, the extant definitions of simulation models (see Sect. 5) restrict their tar-
gets to physical systems.

Any method that exploits computer-generated randomness in calculating some results is 
a Monte Carlo method. Monte Carlo models are often used in generating data that model-
ers claim to be simulated, and some of our examples involve Monte Carlo models. A well-
recognized philosophical problem of the extant definitions of simulation is that they fail to 
accommodate Monte Carlo models (Winsberg, 2015). A related problem of origin-based 
definitions is that distinguishing between simulated and empirical data requires one to be 
able to separate between the computational processing of empirical data and using empiri-
cal data to calibrate simulation models (Arnold, 2013).

We provide a revised definition of simulation that can accommodate Monte Carlo mod-
els. It amends the extant ones by expanding the range of targets of simulation to include 
data. Moreover, we argue that to account for the diverse uses of simulated data, the tra-
ditional requirement that computational models must mimic something must be relaxed. 
Instead, it is sufficient if the data produced by the model mimic. We distinguish between 
simulation and mere computation4 by claiming that empirical input data remain empirical 
if their computational processing does not include mimicking. This philosophical machin-
ery is required to successfully solve the problem of distinguishing between empirical and 
simulated data, but it is also necessary for paving the way for an account of the epistemol-
ogy of simulated data: what is crucial is that simulated data either themselves mimic some-
thing or derive from a model that aims to mimic something.

We adopt the following terminological conventions. When we use the term’target,’ 
we mean whatever the model or the data it generates aims to represent.  A system, 

3  Thus, for example, the DGP for the global mean surface temperature is different from the DGP for satel-
lite data on temperature in the models that study these DGPs, even though the climate as a whole is ulti-
mately responsible for both datasets.
4  In what follows, we use ‘computation’ or ‘calculation’ for ‘mere computation/calculation’.



390	 A. Lehtinen, J. Raerinne 

many specific systems, a DGP, or data may be ‘targets.’ Targets are abstractions over 
something (systems, phenomena, or data) in that the modeler selects particular features 
that must be accounted for (i.e., the target-defining properties), and ignores the rest 
(cf. Weisberg, 2013). The reason why we use the term’target’ rather than the more 
traditional ‘target system’ is that, while systems and DGPs qua targets are ‘target 
systems,’ some models aim to ‘target’ data, which is not a ‘target system’ because data, 
a (static) collection of properties or numbers that do not have interacting parts, cannot 
be referred to as a ‘system.’ We use the term ‘target system’ such that it only covers 
case (a) in which the ‘target’ is indeed a system. We will use the term ‘system’ when 
one can meaningfully identify a system that is ultimately responsible for generating 
data, even though that system as a whole is not the target of the investigation at hand. 
In case (b), we can say that the target consists of many specific systems.

We will speak about ‘mimicking’ whenever modelers aim to represent the tar-
get accurately, whatever accuracy means exactly in the context (see Contessa, 2007; 
Nguyen, 2020). In most cases, accurate mimicking means providing descriptions that 
are similar or isomorphic to the target, or true about it, but we do not rule out func-
tional relationships (‘keys’) not captured by these concepts. When modelers are not 
concerned with the accuracy of representing the whole target but aim to mimic only 
some parts of it, we will say that they are ‘representing’ the target.‘Representing’ 
typically involves strategic misrepresentations of targets. In ‘mimicking’, one aims to 
mimic accurately all properties which need to be represented in the first place (viz. the 
target-defining ones), while in ‘representing’, one does not aim to mimic accurately all 
properties that need to be represented. The reason for distinguishing between mimick-
ing and representing is to show that mimicking relations differ not only with respect to 
their targets and relata (i.e., a system, DGP, data, and so on) but also with respect to 
the nature of the representational relation.

A mimicking model is not necessarily more accurate overall than a representing 
model. It is entirely possible to encounter two models: one aiming to mimic all proper-
ties of a target, while the other mimics only a subset. However, the latter may exhibit 
greater accuracy in representing the same target due to its less severely flawed ide-
alizations or its superior description of specific target properties, including improved 
approximation of variable values. Instead of ranking representational relations in terms 
of accuracy, the point of this distinction is to pay attention to the fact that in some 
cases, inaccuracies are required to be able to test research tools.

Nonetheless, representing at least something accurately is typically important for 
the epistemology of simulated data. But why? It is because our examples concern 
cases in which empirical data are problematic. Given that simulations produce simu-
lated data that are better than empirical data in our examples, they had better mimic 
the relevant aspects of their targets accurately.

Section 2 presents examples of the different mimicking relations. Section 3 explains 
how and why these mimicking relations must be distinguished from each other. Sec-
tion 4 discusses how the difference between computation and simulation can be used to 
distinguish between empirical and simulated data. Section 5 provides a revised defini-
tion of computer simulation that can account for the diverse scientific uses of simu-
lated data by accommodating Monte Carlo models.
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2 � Examples of Four Mimicking Relations

Understanding the epistemology of simulated data requires paying attention to the 
fact that simulations mimic something. Since it is not always the simulation model that 
mimics something, but rather the simulated data, one must pay attention to the variety 
of mimicking relations. However, demonstrating such variety is not sufficient because 
the previous conceptual frameworks are unable to accommodate some of our scientific 
examples. According to some extant accounts, some of our examples involve empirical 
rather than simulated data, some involve mere computation rather than simulation, and all 
except cases (a) and (b) are not simulations because they are based on Monte Carlo models. 
A credible philosophical account is thus needed for defining data and simulated data, for 
distinguishing empirical and simulated data from each other, and for defining simulation.

We will provide such an account in Sects. 4 and 5, but it is easier to understand what 
we are trying to do if we first present examples of different kinds of mimicking relations, 
and then provide a philosophical account that explains why each of the cases counts as an 
example of simulated data and explains why one must distinguish them from each other for 
epistemic reasons.

For now, it is important to bear in mind that the examples illustrate the variety of mim-
icking relations. The different examples we present provide the basis for a philosophical 
account of simulated data; they display the variety and properties of examples that a philo-
sophical account must be able to accommodate. On the one hand, the definitions of simu-
lation and simulated data must be able to include all the cases as examples of simulated 
data. On the other, they must be able to capture the differences in the representational and 
mimicking relations in the different examples. While we aim for our distinction between 
various mimicking relations to be comprehensive, the diversity of practices involving sim-
ulated data leads us to make this assertion with caution.

A simulation model generates simulated data using the simulated data generating pro-
cess (SDGP). We will see that in cases (b–d) modelers exploit the fact that the SDGP is 
known. Since modelers know the SDGP, they also know what kind of simulated data it 
produces. The ‘benchmark property’ is a property of the SDGP that allows for assessing 
whether a research tool is reliable. Modelers know what the benchmark is because they 
put it into the programming code. Knowing the SDGP implies that the data it produces can 
constitute a benchmark against which the performance of research tools can be compared. 
We call cases (b)-(d) benchmark data simulations and the data generated in such exercises 
are benchmark data. Benchmark data are used to test the performance of research tools 
for correcting, filtering, imputing, or estimating empirical data. The point of benchmark 
data simulations is to test whether the research tool can track the benchmark properties 
correctly.

2.1 � Mimicking a Target System (a)

Empirical raw data about the climate are problematic in various ways. There are temporal 
and spatial gaps in climate datasets, data suffer from discontinuities, and some of the data 
are biased, for example. Data assimilation refers to the whole process of integrating vari-
ous data sets with global simulation models (see Edwards, 2010; Parker, 2017).

The justification for employing simulation in data assimilation is that it allows for 
the use of physical theory in determining the properties of the missing data rather than 



392	 A. Lehtinen, J. Raerinne 

adding artificial data points ad hoc. Constructing the reanalysis data with the help of 
global simulation models is an attempt to mimic the real processes in the target system 
that generate the needed missing climate data: In other words, the simulation model 
purports to mimic a specific target system (a), the climate system (see Fig. 2). The sim-
ulation does not purport to mimic the DGPs that produce empirical data about the cli-
mate, because the DGPs are known to produce erroneous and incomplete data. Instead, 
the purpose is to apply knowledge about the physical relationships governing the cli-
mate system to correct, fill and smooth the erroneous empirical data produced by the 
DGPs. Hence, the epistemic evaluation of models that generate reanalysis data hinges 
on whether they can mimic the target system successfully.

Simulated data has brought about a clear improvement in data quality. As Parker 
(2016) notes, reanalysis data is not self-evidently less reliable than empirical data. This 
is a general feature of simulated data that holds in a variety of cases: Several recent 
contributions have argued against the idea that the epistemic reliability of data is high-
est when they are unprocessed (“pure” or “raw”) (Antoniou, 2021; Bokulich, 2021; 
Bokulich & Parker, 2021; Humphreys, 2014). Simulation is often used to generate bet-
ter data models. Indeed, given that our examples included cases in which simulated 
data are superior to empirical data, whether a given dataset is simulated or empirical 
does not determine epistemic superiority (Parke, 2014; see also Massimi & Bhimji, 
2015; Morrison, 2015).

The overall purpose of the reanalysis data is to provide a better description of the 
state of the climate than that produced from empirical data deriving from the DGPs. 
However, even if the model successfully mimicked the target system, this would not be 
sufficient for the data to do so successfully. This is because the reanalysis derives from 
a huge assortment of methods used to manipulate the empirical data over and above 
simulations of the target system. Without trying to describe these complexities, let us 

System DGP(s) Empirical 
data

Data 
model(s)

input
Simulated data 

SDGP

Simula�on model 

(a)

Fig. 2   A simulation model mimics a target system (a). The black arrow illustrates the mimicking relation. 
The dashed grey line describes the evidential role of the simulated data: If the model successfully mimics 
the target system, then simulated data may be used as evidence about the target system. The simulation 
model takes empirical data modified with data models as input (thin solid grey arrows), and yields simu-
lated data that then replaces the empirical data as the best description of the climate system. (Color figure 
online)



393Simulated Data in Empirical Science﻿	

merely note that additional mimicking relations are involved in generating reanalysis 
data.

2.2 � Mimicking Several Specific Systems (b)

When scientists test the performance of research tools with the help of simulated 
benchmark data, robust performance under diverse simulated data is a frequently used 
reliability criterion. One strategy to produce diverse simulated data is to mimic several 
specific systems (b) in a simulation model.

Metapopulation (MP) models describe the colonization and extinction dynamics of a 
species over a spatial area (Levins, 1969). The species is described as one metapopulation. 
It consists of subpopulations living in separate areas. The spatial area consists of habitat 
patches and the habitat matrix, where subpopulations can and cannot persist. Subpopu-
lations can migrate through the matrix to other habitat patches and colonize them. The 
extinction and colonization probabilities of a metapopulation depend on the size of the 
habitat patches, the distances and connections between them, and species-specific param-
eters concerning survival and migration ability.

Hanski’s (1994) “incidence function” framework was commonly used for estimating 
parameters in MP models. The problem is that Hanski’s method provides biased param-
eter estimates in many cases. Since Hanski’s method lacked robustness, Moilanen (1999) 
developed an improved Monte-Carlo-based parameter estimation method. He used simu-
lated benchmark data to test his and Hanski’s methods. Given that Moilanen himself coded 
a description of the different metapopulation targets into the simulation model, this knowl-
edge of the SDGP provided an objective criterion for evaluating the performance of the 
estimation methods.

In the simulations, Moilanen varied the sizes (= S) of the habitat patches and the dis-
tances (= D) between them, the migration abilities and extinction (= E) probabilities of 
metapopulations, and the minimum (= M) patch-size area required for subpopulations to 
persist. The different simulations created a diverse set of data concerning patch presences/
absences and extinction as well as colonization turnover events in metapopulations of 

•
•
•
•
•
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(S2, D2, E2, M2)

SDGP

Specific system3
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Fig. 3   A simulation model mimics several specific systems (b). The model contains a description of the 
metapopulation parameter estimators that are applied to the simulated datasets (the grey dashed line). 
(Color figure online)
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different generic species with their varying extinction and colonization dynamics. These 
simulations thus mimicked a diverse set of specific systems (b) (see Fig. 3).

Moilanen (1999) tested the predictive accuracy and performance of parameter estima-
tion methods on the above-mentioned simulated data. If a method captures the differences 
between various simulated systems from simulated data, then its performance is robust.5 
The results indicated that the new Monte Carlo method not only produced more accurate 
parameter estimates of simulated metapopulation data than Hanski’s regression method. It 
was also more robust in its performance under diverse metapopulation simulated datasets.

Whether the simulation model provides evidence of the performance of estimators 
depends on whether it correctly mimicked the relevantly diverse range of specific systems. 
Moilanen aimed to mimic various systems because the metapopulation models are meant 
to apply to a diverse set of real systems. If the set of simulated specific systems is not suffi-
ciently diverse, modelers end up with an illusion of robust performance of the tested tools.

2.3 � Representing a DGP (c)

Santer et al. (2008) use simulated data to criticize a data model proposed by other authors 
who claim to find phenomenon X from empirical data. Here, X is a discrepancy between 
the temperature predictions of global climate models and satellite data that climate skeptics 
(Douglass et al., 2008) claimed to detect, and the relevant data model is the statistical esti-
mator d* that they used. The point of using simulated data is to show that the data model 
used to arrive at X is faulty and hence they have failed to show that X is in the data.

The simulated data are generated in such a way that X is not part of the represented 
DGP. The main point is to show that the tested research tools (the estimator d*) detect X 
under the simulated conditions even though X is not in the simulated DGP by design.

The simulated dataset represents accurately only some of the statistical properties of 
empirical data/DGP, but irrespective of whether X is to be found in empirical data, X is 
absent in the represented DGP.6 Yet, the epistemic credibility of these studies hinges on 
correctly mimicking other properties of the DGP. For example, Santer et  al. calibrate a 
parameter (describing the intertemporal dependence of temperatures between the peri-
ods in the autoregressive dynamic stochastic DGP) with empirical data, to mimic the 
real DGP and the resulting data. Thus, in these cases, only certain parts of the DGP were 
accurately mimicked, whereas the DGP itself was only represented because it was crucial 

5  The notion of robust performance is different from the more extensively discussed notion of robustness 
of results. Unlike the latter, the former is studied when the correct results are known, it does not require the 
sameness of any results, and the concept applies to a single research tool because the robust performance of 
a research tool can be established independently of other research tools. We use the notion of robust perfor-
mance in the same way as the practitioners of benchmark data studies. We thank an anonymous reviewer for 
pointing out the need for clarification here.
6  In this case, it remains uncertain whether excluding X from the SDGP qualifies as an idealization. Santer 
et al. (2008) argue that X is absent in reality, which is irrelevant to the methodological foundation of their 
study. However, climate skeptics maintain the existence of X. Other studies, such as Hoover and Salyer 
(1998), which share the same structural framework as Santer et al. (2008), provide clearer instances of X 
as a distortion of reality. They demonstrate that an alternative data analysis method identifies technology 
shocks in the simulated data, even when such shocks are not explicitly included in the SDGP. In this con-
text, the existence of technology shocks is more evident. The data analysis detects them even during periods 
when they do not occur. Hoover and Salyer (1998) explicitly acknowledge that they are not attempting to 
mimic every aspect of the Data Generating Process: “It is not the case that we have created an artificial 
world in which there are artificial analogues to true technology shocks” (p. 313).
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to demonstrate the improper functioning of research tools. The simulated DGP did not 
include X but the research tool found it notwithstanding. Figure 4 illustrates the case (c).

Philosophers have described other cases in which the computer simulation mimics a 
part of the DGP (Lusk, 2021; Massimi & Bhimji, 2015). While the simulation generates 
a benchmark in these cases as well, the difference to the case above is that the simulation 
model must mimic the real DGP more extensively. Simulated benchmark data are used 
to develop research tools (e.g., the ‘spectrum’ in Lusk, and the ‘background’ in Massimi 
& Bhimji) that help interpret features in empirical data as evidence of detecting a 
phenomenon. In these cases, the research tools themselves are part of the DGP. The 
accuracy requirements of mimicking are more stringent because these studies aim to 
demonstrate the proper rather than improper functioning of the research tools.

2.4 � Simulated Data Mimicking Empirical Data (d)

The normative voting theory aims to determine which voting rules are the best in different 
circumstances concerning the numbers of voters and candidates, the range of options, and 
the institutional setting. There are several criteria for the performance of voting rules, but 
they all reflect the idea that the rules should select the best candidate, and they should not 
exhibit various sorts of paradoxical changes in the selected candidates when the electorate 
changes slightly.

Plassmann and Tideman (2014) sought to evaluate how often various voting rules gen-
erated problematic outcomes. Given the rareness of many of these problems, however, they 
needed to study millions of elections, but empirical data are available for only a few thou-
sand elections. Their solution was to use a statistical Monte Carlo model that was cali-
brated with empirical data on votes. This allowed them to construct an amplified simulated 
dataset of a million simulated elections that preserved and replicated the relevant aspects 

System Part(s) of 
DGP

Empirical 
Data

Data 
model: 

es�mator 
d*

Simulated data

SDGP

Simula�on model

(c)

Fig. 4   A simulation model represents a DGP (c). Simulated data are used as evidence for the improper 
functioning of a research tool (the grey dashed line). (Color figure online)
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of empirical data, especially the distributional properties.7 In this context, the relevant dis-
tributional properties of the data refer to the proportion of elections in which there is one 
clear winner, two close contestants, or three genuine competitors; and how often is there a 
consensus candidate who is not the best choice of many voters but who is the second-best 
for many.

The amplified datasets are similar to each other and empirical data in terms of their 
distributional properties, but they differ in detail. The amplified simulated data must mimic 
the relevant distributional properties of empirical data because the authors evaluate how 
often various problems are likely to occur under different voting rules.

One may think of individual preferences as the underlying system that generates empiri-
cal data here. The DGP could be taken to consist of those preferences, but filtered with the 
strategic behavior of voters,8 voting rules used in collecting the empirical data, as well as 
the selection procedures for putting together datasets from different elections.9 Mimicking 
the preferences is difficult if not impossible: if we knew the preferences of individuals, we 
would not need voting rules in the first place. However, Plassmann and Tideman (2011) 
did not try to mimic any other properties of the DGP either. Instead, Plassmann and Tide-
man (2011) sought to mimic the distributional properties of the existing empirical data on 
voting (d) (see Fig. 5). Constructing such simulated datasets yields information about how 
slightly different yet realistic datasets might affect the performance of various voting rules.

(d)

Individual 
preferences

DGP (includes vo�ng 
rules) Empirical Data

In
pu

t

Calibra�on

SDGP

Simula�on model = 
data model (P&T 2011)

Simulated dataBenchmark data 
simula�on (P&T 2014)

Fig. 5   Simulated data mimic empirical data (d) in Plassmann and Tideman (2011). Empirical data are 
used to calibrate the parameters of the simulation model. The SDGP consists of a Monte Carlo model that 
parameterizes a ‘spatial model’ expressed as a set of probability distributions. The simulated data are then 
used as input in the benchmark data study by Plassmann and Tideman (2014). The aim of this benchmark 
data study (indicated by the dashed line) is to evaluate which voting rules provide the best performance in 
translating individual preferences to voting results

8  Voting strategically (i.e., misrepresenting one’s preferences) has two important implications. First, it 
makes it impossible to find out voters’ preferences reliably. Second, even if one knew the preferences, they 
could not be aggregated directly into voting outcomes.
9  For example, some rules only collect information on the best candidates, but to be included in the empiri-
cal data requires information on the full rankings for three-candidate elections.

7  Their calibration procedure is described in an unpublished paper: Plassmann and Tideman (2011): “How 
to Predict the Frequency of Voting Events in Actual Elections”, https://​papers.​ssrn.​com/​sol3/​papers.​cfm?​
abstr​act_​id=​19112​86.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1911286
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1911286
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Although the simulation model includes a SDGP, it does not aim to mimic the real one, 
not merely because it does not aim to account for strategic voting or the selection proce-
dures in the empirical dataset, but also because it represents the DGP as if it were random, 
even though the real DGP is not random in this sense. Note also that the sense in which 
Plassmann and Tideman (2011) ‘calibrate’ their model with empirical data is different from 
that of Santer et al. (2008). While the latter insert an estimated parameter value directly 
into the simulation model, the former use the similarity of the empirical and simulated 
datasets (measured with the Kullback–Leibler divergence) as the performance criterion for 
the Monte Carlo model. Several parameters of the Monte Carlo model are then selected 
based on their performance. In other words, here the distributional properties of the empiri-
cal data function as the benchmark. Unlike Santer et al.’s parameter, these parameters do 
not have a counterpart in the empirical data, and we do not even know how they would be 
empirically interpreted. This is why they cannot be said to mimic the DGP.

3 � Diversity of Mimicking Relations and Relata

Simulated data are always generated by representing something and assessing whether 
such data are reliable requires evaluating whether that part of the representational relation 
that requires accurate mimicking is successfully mimicked. Table  1 summarizes the rel-
evant mimicking relations/cases.

We now explain why this fourfold division helps in understanding the epistemology of 
simulated data. This, in turn, requires clarifying the differences in the mimicking relations. 
The criterion for distinguishing between the four different cases is that their mimicking 
relations or relata are different.

In general, the term ‘target system’ refers to whatever a model is about, it being implied 
that it is in some sense ‘out there’ (Elliott-Graves, 2020). Recall that we use the broader 
notion of a ‘target’ because some models are not about one system (b) and some are not 
about systems at all (d). Yet, even when data constitute the target for a model, they are ‘out 
there’ in the sense that they are what the simulated data aim to mimic and what the model 
is about. Consider first the difference between mimicking a system (a) and mimicking sev-
eral specific systems (b).

A model applies generically to a system if it describes the properties that define the tar-
get and if the system possesses those target-defining properties (Lehtinen, 2021). Given that 
a target may consist of a set of similar but not identical systems, a model may also apply to 
other similar systems if it applies generically to a target. For example, the Lotka–Volterra 
predation model applies generically to sharks and sardines, but also to foxes and rabbits, 
in virtue of the fact that its target consists of predator–prey systems. A model applies spe-
cifically to a system if it describes some of its system-specific properties (Lehtinen, 2021). 
The Lotka–Volterra model does not apply specifically to sharks and sardines (unless the 
target populations are further specified to have specific features of sharks and sardines).

Let us now apply Lehtinen’s distinction to distinguish between (a) and (b). When a sys-
tem is mimicked (a), we can call it a ‘target system’, and the simulation model may apply 
to it either generically or specifically. If a target system is mimicked and the simulation 
model applies to it generically, the modeler aims to correctly represent the target-defining 
properties. It follows that a model may apply to several systems that one can distinguish 
from each other with respect to their system-specific characteristics. If, in contrast, the 
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simulation model aims to mimic the characteristics of a target that only encompasses one 
system, then the model applies specifically to that system. To put it differently, the model 
is required to mimic the properties of only one system. In contrast, in case (b), the simula-
tion model must apply specifically to several systems because it must describe the system-
specific properties of more than one system.

The difference between (a) and (b) does not lie in the number of mimicked systems 
because a model may apply to many systems generically in virtue of mimicking the 
target-defining properties. It is rather that, in case (b), the simulation model must mimic 
some specific properties of more than one system, that is, properties that are not shared 
by all the systems to which the model applies generically. The difference between (a) 
and (b) thus lies in the fact that evaluating whether mimicking several specific systems 
succeeds (i.e., b) cannot be conducted by comparing the simulated system with a single 
system because the simulation model must mimic the specific characteristics of several 
systems, characteristics that are not shared by all the systems (that constitute the target 
in virtue of sharing the target-defining properties).

Consider now the difference between mimicking one system (a) and representing a 
DGP (c). A given system may give rise to several DGPs. Therefore, it is possible to 
mimic a DGP without mimicking the system that gives rise to it, and vice versa. How-
ever, we do not use these differences in the relata in constructing our four-fold catego-
rization of mimicking relations because there is no epistemic difference between cases 
that mimic a DGP (see Tal, 2011 for an example) and cases that mimic a system (viz. 
case (a)). This is why we have not treated mimicking a DGP as an independent mimick-
ing relation. Since the only difference between the two is that they have different relata, 
mimicking a DGP can be treated as an instance of (a). Put in another way, in cases of 
mimicking a DGP or a system, traditional philosophical literature on modeling would 
posit that a ‘target system is mimicked.’ The difference between (a) and (c) is rather that, 
when a target system is mimicked (a), modelers are concerned with mimicking all the 
properties that define the target as accurately as possible. When they are representing a 
DGP (c), they only aim to mimic a part or parts of the DGP as accurately as possible, 
whereas other parts are represented less accurately and sometimes even misrepresented. 
Cases (a) and (b) thus have different representational relations: in (c) the target is repre-
sented (and partially mimicked) whereas in case (a) the target is completely mimicked.

In typical cases of benchmark data simulation, a research tool is applied to simulated 
data that a SDGP produces. The output of the research tool can then be compared to the 
benchmark data that the SDGP produced. The benchmark property in the simulation 
model may represent its target correctly, which holds for cases (b) and (d). However, 
in case (c), it mustn’t, since it is crucial for the testing of a research tool that the target 
(i.e., the DGP) is “only” represented, especially if the aim is to show the improper func-
tioning of a research tool.

In contrast to (c), in case (b), the tools are tested to find out how robustly they per-
form under simulated data conditions that mimic diverse targets. In typical benchmark 
data simulations, trying to represent one DGP (c) or mimic a target system (a) responsi-
ble for empirical data is beside the point because the performance of the research tools 
typically depends on their ability to track data produced by different DGPs or specific 
systems.

The tested tools should be robust with respect to finding the relevant phenomena in dif-
ferent simulated circumstances that cover diverse specific systems or many DGPs because 
researchers want their tools to function reliably in different empirical circumstances. 
Benchmark data simulations provide evidence about the reliability of research tools only if 
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the simulated specific systems or DGPs include the relevant characteristics of the empirical 
systems or DGPs to which the tools are applied. If the simulated specific systems or DGPs 
are not relevantly diverse, the good or robust performance of the tools in benchmark data 
simulations may be just an illusion, and the evidential support of simulated data can be 
questioned.

In case (d), the simulation model first (stage 1) generates simulated data that aims 
to mimic empirical data. Then (stage 2) the simulated data are used to study how data-
aggregation mechanisms (voting rules) perform in analyzing the simulated data that now 
provide the benchmark. To evaluate whether stage 2 provides reliable information about 
the data-aggregation mechanisms (i.e., how well voting rules perform under simulated data 
conditions) requires evaluating whether the stage 1 simulation model mimics empirical 
data accurately. The target (in the sense of what one is interested in mimicking accurately) 
in the first stage is the empirical dataset, but in the second stage, the relationship between 
the data-aggregation mechanisms and the simulated benchmark data constitutes the target.

In cases (a–c), the crucial epistemic relation is whether the simulation model success-
fully mimics the target system, specific systems, or a part of the DGP. Iff this mimicking 
succeeds, then the simulated data could be said to successfully mimic targets. The fact that 
this is not true of cases, such as (d) explains why we need an epistemology of simulated 
data which goes beyond the traditional epistemology of simulation models.

4 � Simulated and Empirical Data

According to extant accounts of simulation and simulated data, case (d) does not qualify 
as simulated data. While all extant definitions of simulation specify that simulations must 
represent something (see Sect.  5), none of them accommodates Monte Carlo models 
because these models do not necessarily represent or mimic. Given that case (d) involves a 
relevant mimicking relation, but the relation concerns simulated data rather than the model, 
we need a definition of simulation that can accommodate case (d). Moreover, in case (d), 
empirical data is used to calibrate a model that generates (simulated) data. However, some 
philosophers, such as Lusk (see below), could claim that these data are empirical. We thus 
have two philosophical problems to solve: distinguishing between simulated and empirical 
data in such a way that case (d) exhibits the former and providing a definition of simulation 
that can accommodate the Monte Carlo models in the cases discussed, including cases (c) 
and (d). These problems are interrelated because they both require distinguishing between 
computation and simulation.

Data are typically defined as something given (lat. datum) to us in observation, or as 
that which registers on a measurement or recording device in a form that is accessible to 
humans (e.g., Woodward, 1989, p. 394). Barberousse et al. (2009) define empirical data 
(‘dataE’) as being of ‘empirical origin, namely produced by physical interactions with 
measuring or detection devices’ (p. 560).

The origin of simulated data lies in a computer simulation model. Consequently, simu-
lated data are not what nature ‘gives’ us because they are the result of calculating the con-
sequences of what is in the computer code (Beisbart, 2018). A simulation is not in causal 
interaction with whatever the simulated data are taken to represent.

The problem with origin-based definitions of data is that they do not always allow a 
clear differentiation between simulation and computation. It is difficult to distinguish 
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between a simulation that uses empirical data as input, and a measurement that involves the 
computational refinement of empirical data (Arnold, 2013). Calculating an average for a 
variable from empirical data with a computer does not change its empirical status, but data 
may be processed and transformed more extensively, which could even change what the 
data are about (Humphreys, 2013).

Arnold (2013, pp. 31–36) proposes that data are empirical if the output data from a 
simulation are interpreted to concern the same variables that are responsible for the 
empirical input data. Arnold’s proposal fails because data assimilation for climate models 
(Section  3.1) takes empirical data about some variables as input, and then replaces 
the values of the same variables with simulated values (see e.g., Parker, 2017; Werndl, 
2019). Even though the input data and the output data concern the same variables (and 
the same spatiotemporal units), the input data are empirical whereas the output data are 
simulated because the global climate model was used in generating them, and that model is 
a simulation according to all extant definitions.

Lusk (2016, pp. 148–151; see also Barberousse & Vorms, 2013) argues that data pro-
duced by a computer (simulation) model are always empirical as long as the model has any 
empirical data as input. Lusk does not try to distinguish between computation and simula-
tion and does not limit the transformations of data in any way. He also argues that the epis-
temic properties of data ought to be the same irrespective of whether their initial collection 
and processing are included in the activity of simulation. We take him to mean that, for the 
epistemic properties of data, it does not matter whether the transformations are made inside 
a simulation that takes empirical data as input, or before entering the simulation when the 
empirical data were collected or processed. While we agree with Lusk that simulated data 
may derive their epistemic importance from empirical data from which they are gener-
ated, we do not think it makes sense to argue that those data (viz. the output data) are also 
empirical irrespective of what kind of transformations are conducted on the empirical data. 
When a simulation model is calibrated with empirical data, the empirical data are typically 
used in modeling the DGP as in case (c), the target system as in case (a), or simulated data 
as in case (d), whereas when empirical data are filtered or corrected, they typically retain 
their status as evidence about a target system. Lusk’s proposal forces one to ignore this cru-
cial epistemic difference.

Consider some characterizations of data to clarify the issue. According to the “repre-
sentational” conception of data, data have representational content in the sense that they 
instantiate some of the properties of a target of investigation (Barberousse & Vorms, 2013; 
Leonelli, 2015, 2016, 2019). Leonelli argues that if both models and data represent, it 
becomes impossible to distinguish between models and data, arguing instead for a “rela-
tional” account of data: any object that can be used as evidence for a claim about the world 
can be taken as data. Data are thus defined by their epistemic properties as evidence for 
something. We agree with Leonelli that data do not always have a representational func-
tion. Neither, however, do they always function as evidence.

Consider the example we discussed in Sect. 2.3 to see the problem more clearly: Santer 
et al. (2008). The point of their Monte Carlo model was to provide an artificial DGP that 
aims to mimic some but not all aspects of the real DGP. The data were generated with a 
simulation model which is calibrated with parameters estimated from empirical data. This 
parameter mimics (and thereby also represents) the relevant distributional properties of the 
empirical DGP. The data generated by the Monte Carlo model could not be used as evi-
dence about the target system, however, because the SDGP that generates them deliberately 
misrepresents some other aspects of the empirical DGP (see Sect.  2.3). The data which 
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were originally collected for evidential purposes have now assumed a representational 
function within the model.

We propose to distinguish between computation and simulation as follows (cf. Lehtinen 
& Kuorikoski, 2007). A model simulates if its epistemic credibility depends on success-
fully mimicking, and it calculates or computes if its credibility does not depend on mim-
icking. The epistemic credibility of a simulation always depends on whether it or the data 
it generates successfully mimics its target. A model is computational if it does not (aim 
to) mimic anything, and if the data it generates do not mimic empirical data. For exam-
ple, calculating an average of empirical data counts as computation because its epistemic 
credibility does not depend on any mimicking relation. It depends, instead, on whether 
the mathematical calculation is correctly carried out. Empirical data thus remain empiri-
cal after being computationally processed with a computer if the processes do not include 
mimicking.

In contrast, the model of Santer et al. is a simulation because it aims to mimic part of 
the empirical DGP. It is just that the mimicking is done with the parameter estimated from 
empirical data. While the transformation from empirical data to an estimated parameter 
may well be a matter of mere computation, the data generated by Santer et  al.’s Monte 
Carlo model calibrated with this parameter are simulated rather than empirical because, 
according to our distinction, this Monte Carlo model is a simulation. After all, it mimics 
parts of the DGP.

Calling the generated data empirical in virtue of the fact that the model takes empiri-
cal data as input via the estimated parameter would be misleading because the primary 
function of empirical data here is not to provide evidence about the climate. Although the 
empirical input data were originally collected to provide evidence, after the repurposing 
(Bokulich & Parker, 2021), they no longer have that role. The simulated output data are 
used as evidence about the performance of a data model (the estimator d*), whereas the 
empirical input data had a representational rather than an evidential function because it 
was used for mimicking the empirical DGP.

However, it is worth bearing in mind that using some data as evidence for some real 
phenomena does not define those data as empirical or simulated. After all, there are plenty 
of simulation models that do not take any empirical data as input, but that aim to provide 
data that are to be used as evidence for empirical phenomena. They generate simulated 
data.

Our examples in Sect. 2 included Monte Carlo models. First, the Monte Carlo simula-
tion model aims to represent the DGP to produce benchmark data (Sect. 2.3). Second, if 
there are some empirical data, but not sufficient for the purpose at hand, the data produced 
by a Monte Carlo simulation may mimic the relevant properties of existing empirical data 
(Sect. 2.4). The distinction between simulation and computation allows us to accommodate 
case (c) in Sect. 2.3. The distinction itself, however, does not yet accommodate case (d).

More importantly, it could be argued that case (d) does not qualify as an example of 
simulated data according to extant definitions because the mimicking is not done by the 
model, but rather by the data that the Monte Carlo model generates.
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5 � A Revised Definition of Simulation

We now provide a definition of simulation that can accommodate case (d). Recall that we 
require that the epistemic credibility of a simulation hinges on the success of a representa-
tional relation. The basic idea is to expand the scope of applicability of extant definitions 
by dropping the requirement that the representational relation must hold between the simu-
lation model and the physical target system.

Hartmann’s (1996, pp. 83–84) definition of simulation refers to imitating a process with 
another process, whereas Humphreys (2004, p. 110) expands the scope of this definition 
by taking into account the possibility that a simulation may mimic a static object rather 
than a process: ‘System S provides a core simulation of an object or process B just in case 
S is a concrete computational device that produces, via a temporal process, solutions to a 
computational model [...] that correctly represents B, either dynamically or statically. If in 
addition the computational model used by S correctly represents the structure of the real 
system R, then S provides a core simulation of system R with respect to B.’ The system 
S, a computer simulation model, is a program that runs on a computer (see also Winsberg, 
2015).

Imbert’s (2017, p. 739) working definition reads as follows: ‘A computer simulation 
corresponds to the actual use of a computer to investigate a physical system S, by 
computationally generating the description of some of the states of one of the potential 
trajectories of S in the state space of a computational model of S.’

It would seem to follow that the simulation model must mimic the target system which 
is interpreted as a spatiotemporal object or process (cf. Peschard, 2019). There are two 
interrelated problems with these definitions. First, the definitions restrict the targets of 
simulations to physical target systems, but simulated data are often generated with models 
that do not aim to mimic a physical target system. What is being mimicked or represented 
instead can be a DGP, the data, a data model, or several specific systems. To accommodate 
them, the definition of computer simulation must be broadened to include such relata.

Second, some models commonly taken to be simulations do not aim to mimic their tar-
gets. Monte Carlo models are a common case in point because the randomness on which 
the method is based is not normally meant to be a claim about the object or process of 
interest (Beisbart & Norton, 2012). The randomness is produced with a pseudorandom 
number generator (PRNG). Although some philosophers (e.g., Hartmann 1996, pp. 87–88; 
Lenhard, 2016, p. 722; Morrison, 2015, p. 213) and many scientists refer to Monte Carlo 
models as “simulations,” the above definitions cannot accommodate Monte Carlo models 
because the models themselves do not necessarily mimic. Moreover, Grüne-Yanoff and 
Weirich (2010, p. 30) argue that all Monte Carlo models lack the mimicking aspect and 
therefore should be counted as computations, not simulations.

We propose, however, that the best way to account for why Monte Carlo models are 
often counted as simulations is because of their mimicking aspects. However, Grüne-Yanoff 
and Weirich are partially right because Monte Carlo models are a diverse collection of dif-
ferent approaches, and while some are simulations, some are computations. An updated 
definition of simulation is thus needed because the definition should allow for the judg-
ment that some Monte Carlo models are simulations even though the model or its random 
components may not mimic any target. On the other hand, the definition should clarify why 
not all the Monte Carlo models are simulations because they lack mimicking aspects, thus 
explaining why philosophers have had divergent intuitions concerning the status of Monte 
Carlo models.
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Although the data generated by PRNGs always mimic the corresponding analyti-
cal probability distributions, we do not appeal to this mimicking relation in arguing that 
some Monte Carlo models count as simulations. It is epistemically relevant only if it fails, 
and if the failure affects the relevant results calculated with pseudorandom numbers (see 
Lenhard, 2019). A Monte Carlo model may involve several different components, some 
of which aim to represent the target, while others like the PRNG, do not aim to represent. 
If a Monte Carlo model has a relevant mimicking relation, it holds between the broader 
simulation model that embeds the pseudorandom generator, and the target. The simulation 
model of Santer et al. (Sect. 2.3) is a case in point because the non-random properties of 
their model (specifically, the parameters calibrated with empirical data) mimic parts of the 
DGP. However, in some cases, it is the data produced by the Monte Carlo simulation that 
mimic the empirical data (Sect. 2.4). The target of such simulation models is a dataset. This 
is one reason why a definition of simulation cannot require that a simulation must represent 
a dynamic process: a dataset is a static object.

With the necessary components at hand, we can now provide a definition of computer 
simulation that can be applied to the relevant cases, including Monte Carlo models. 
Humphreys’ definition applies to cases (a), (b), and (c), but it does not cover case (d).10 We 
take his definition as a starting point, but drop the part that refers to physical systems and 
simplify by substituting a target T for objects and processes:

(Def) System S provides a simulation of a target T just in case S is a concrete com-
putational device that produces, via a temporal process, solutions to a computational 
model that aims to represent the target, or if T is an empirical dataset, then the data 
produced by the model aims to represent T.

This definition of simulation is not restricted to representing physical target systems, 
it accommodates static targets, including datasets, and it includes the requirement that a 
simulation—the model or data it produces—must aim to represent the target. This defini-
tion captures case (d) because the simulated data aim to mimic the empirical data. The 
Monte Carlo model in this case can thus be called a ‘simulation model’ even though the 
model does not mimic because the data the model generates mimic something. Moreover, 
this definition accommodates different degrees of accuracy of representation. Although the 
‘target’ is expressed in singular in the definition, it is to be interpreted in such a way that 
case (b) can be accommodated; if one must mimic several specific systems, those systems 
constitute the target.

Let us finally return to the issue of distinguishing between empirical and simulated data. 
We have seen that when a simulation model is calibrated with empirical data, they are used 
in modeling something. When empirical data are computationally processed, they retain 
their status as evidence about the target system. However, even though this distinction 
is relevant for some models, there are cases in which this difference is insufficient for 
determining the status of the data that a model generates. Consider, for example, Bowden 
et al.’s (2006) Monte Carlo estimator. It corrects empirical data by taking them as input and 
then fills in data points randomly, but such that ‘publication bias’ is corrected. The data 
that this estimator generates retain their status as evidence about the target system, but it 
would not be altogether wrong to deny that they are empirical because they are generated 
with a random Monte Carlo process that is not in causal interaction with the target system.

10  The definitions of Hartmann (1996), Imbert (2017), and Parker (2009) do not apply to (b) because they 
require the targets to involve dynamic change.
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Whether such computational data are appropriately called simulated or empirical 
is somewhat interesting but not particularly important for their epistemic evaluation. To 
see this, note that, for example, Stanley and Doucouliagos’ (2017) estimator carries out a 
similar task as Bowden et al.’s estimator without generating any data before calculating its 
value. It is thus a clearly computational method that does not alter the status of empirical 
data. The reliability of the data generated by Bowden et al. does not derive entirely from 
empirical data, and the very reason for using such Monte Carlo methods is to correct 
problems of empirical data by generating data that takes the errors in the DGP into account. 
According to our definitions, Bowden et al.’s model is not a simulation (despite that they 
describe it as one) because it does not mimic the target, and the empirical dataset is not a 
target that the data aim to mimic.

We have supplied a definition of simulation models and simulated data to justify that 
our cases count as ‘simulated data’ in the first place. However, from the point of view of 
epistemology, what is more important than whether this or that dataset counts as simulated, 
is recognizing the relevant mimicking relation. But the example of Monte Carlo estimators 
shows that the epistemic importance of simulated data extends beyond cases in which sim-
ulated data appears! This is because benchmark testing with simulated data is commonly 
applied to computational methods. Even though Bowden et al. do not generate simulated 
data, the epistemic credibility of their estimator depends on an earlier benchmark test with 
simulated data. The relevant mimicking relation lies in whether this earlier benchmark data 
simulation correctly described the properties of the DGP to which the Monte Carlo estima-
tor is applied.

6 � Conclusions

We have argued that to account for the diverse epistemic and evidential uses of simulated 
data in contemporary empirical science, we should relax the requirement of traditional 
definitions of computer simulation that computational models must mimic something. 
Instead, it is sufficient if the data produced by such a model mimic something. This allowed 
us to accommodate some Monte Carlo models as simulations. Distinguishing between 
computation and simulation because the latter but not the former involves mimicking 
something enables defining simulated data as having its origin in a simulation model.

We considered various cases in which a simulation model or simulated data mimic something 
and identified four mimicking relations, differing in their relata or the representational relation. 
These relations are relevant for evaluating the epistemic credentials of simulation methods and 
the data produced. The common denominator in the cases was that the available empirical data, 
research tools, or experiments were deficient in some way, and simulation methods and the data 
they generated were employed to make them more reliable or relevant.

Given that no account studies the variety of mimicking relations, it seems to us that 
philosophers have taken for granted that simulation models—and scientific models in gen-
eral—have one privileged mimicking relation that has the same representational relation 
and relata across different cases. Typically, they have focused on the idea that simulation 
models should correctly mimic their target system (a). We have suggested that this is not 
a privileged mimicking relation. Moreover, in case (d), it is not the simulation model but 
rather the data it produced that is intended to mimic some properties of existing empirical 
data. It is impossible to understand the epistemology of these cases without paying atten-
tion to the special features of simulated data.
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Recognizing the relevant mimicking relation is the starting point for evaluating the evi-
dential and epistemic relevance of the use of simulated data in empirical science. Mim-
icking matters but the fact that a given simulation model fails to mimic anything may be 
epistemically irrelevant.
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